RNMNX

Гладышева Ирина Владимировна к.х.н., доцент

Литература

1. Попков В.А., Пузаков С.А. Общая химия: Учебник. - М.: ГЭОТАР-Медиа, 2010. -976 с. 2. Пузаков С.А. Сборник задач и упражнений по общей химии: Учеб. пособие/ С.А. Пузаков, В.А. Попков, А.А. Филиппова. - 2-е изд. испр. и доп. - М.: Высшая школа, 2007. -255 c.

3. Литвинова Т.Н. Сборник задач по общей химии: Учеб. пособие для студентов мед. вузов. - 3-е изд., перераб./- М.: ООО "Изд-во ОНИКС", 2007. - 244 с.

Интернет-источники

- http://www.chemlib.ru
- http://http://www.chem.
 msu.su
- http://www.xumuk.ru/
- http://www.alhimik.ru/
- http://alhimikov.net/
- http://chemistry.narod.ru

І. Элементы химической термодинамики

Термодинамика - наука, изучающая общие законы взаимного превращения одной формы энергии в другую.

К настоящему времени термодинамика содержит два основных раздела:

- 1. Равновесная термодинамика (термодинамика изолированных систем)
- 2. Неравновесная термодинамика (термодинамика открытых систем)

Система – это совокупность материальных объектов (тел), ограниченных каким-либо образом от окружающей среды

Элементы системы - части, обладающие определенными свойствами.

Термодинамические системы:

- Гомогенная система, в которой каждое ее свойство (параметр) имеет одно и то же значение во всех точках объема или меняется плавно от точки к точке.
- Гетерогенная -система, которая состоит из нескольких гомогенных систем, отделенных друг от друга поверхностью раздела фаз, на которой свойства меняются скачком.

система
изолированная замкнутая открытая

- Изолированная система система, которая не обменивается с окружающей средой ни веществом, ни энергией в форме работы или теплоты.
- Закрытая (замкнутая) система система, которая может обмениваться с окружающей средой лишь энергией и не может обмениваться веществом

Открытая система – система, которая обменивается с окружающей средой и энергией, и веществом.

Параметры системы

Интенсивные

(не зависят от массы или числа частиц в системе)

давление, температура и т.п.

Экстенсивные

(зависят от массы или числа частиц в системе)

общая энергия, энтропия, внутренняя энергия

Термодинамический процесс – изменение параметров термодинамической системы

Энергия системы (W) совокупность двух частей: зависящей от движения и положения системы как целого (W_{μ}) и не зависящей от этих факторов (U)

U - внутренняя энергия системы.

Первое начало термодинамики

• термодинамическая система (например, пар в тепловой машине) может совершать работу только за счёт своей внутренней энергии или каких-либо внешних источников энергии

$$Q = \Delta U + A$$

$$Q_{p} = \Delta U + A (1),$$

где А – работа по перемещению поршня

$$Q_p = \Delta U + p \Delta V (2),$$

где р – давление, ΔV – изменение объёма системы.

Формулу (2) можно переписать в следующем виде:

$$Q_{p} = (U_{2} - U_{1}) + p(V_{2} - V_{1}) (3)$$

$$Q_{p} = (U_{2} + pV_{2}) - (U_{1} + pV_{1}) (4)$$

В этом выражении параметры в скобках обозначим Н, т.е.

$$U_2 + pV_2 = H_2, U_1 + pV_1 = H_1, тогда$$
 $Q_p = H_2 - H_1 = \Delta H.$

Энтальпия Н - внутреннее теплосодержание системы

Для экзотермических реакций Q>0, $\Delta H<0$ Для эндотермических реакций Q<0, $\Delta H>0$

Количество теплоты, выделяющееся или поглощающееся в результате химической реакции, называется тепловым эффектом химической реакции.

• Термохимия – раздел термодинамики, изучающий, теплоты химических реакций.

Закон Гесса: Тепловой эффект химических реакций, протекающих при постоянном давлении или при постоянном объёме, не зависит от числа промежуточных стадий, а определяется лишь начальным и конечным состоянием системы.

В термодинамике принята следующая запись теплот химических реакций:

$$C(тв)+O_2(г)=CO_2(г); \Delta H_P=-405,8 кДж$$

в термохимии:

$$C(тв) + O2(г) = CO2(г) + 405,8 кДж$$

Теплотой сгорания вещества называется тепловой эффект реакции сгорания его (1 моль) с образованием устойчивых продуктов (для органических веществ это СО2 и H₂O).

Первое следствие закона Гесса:

Теплота реакции равна сумме теплот сгорания начальных участников реакции за вычетом суммы теплот сгорания конечных участников реакции с учетом стехиометрических коэффициентов.

$$\Delta H_P = \sum_{H} \nu_H \Delta H_{Crop,H} - \sum_{K} \nu_K \Delta H_{Crop,K}$$

где V_н, V_к - стехиометрические коэффициенты.

Пример для реакции аA + bB→dD

$$\Delta$$
Hреакц. = $a\Delta$ Hсгор(A) + $b\Delta$ Hсгор(B) - $d\Delta$ Hсгор(D).

Стандартная теплота образования вещества эффект тепловой реакции образования одного моль вещества из простых веществ в стандартных условиях (ΔH^0_{298}) (T = 298K u P = 1 atm)

Второе следствие закона Гесса:

Теплота реакции равна сумме теплот образования конечных веществ за вычетом суммы теплот образования начальных веществ с учетом стехиометрических коэффициентов.

$$\Delta H_{\text{peaku}} = \sum_{\kappa} v_{\kappa} \Delta H_{\text{ofp},\kappa} - \sum_{H} v_{H} \Delta H_{\text{ofp},H}$$

Или для стандартных условий:

$$\Delta H_{\text{peaku}}^{0} = \sum_{\kappa} \nu_{\kappa} \Delta H_{\text{ofp},\kappa}^{0} - \sum_{\text{H}} \nu_{\text{H}} \Delta H_{\text{ofp},\text{H}}^{0}$$

Пример:

$$aA + bB \rightarrow cC + dD$$

$$\Delta \mathbf{H}_{\text{реакц.}} = [\mathbf{c} \cdot \Delta \mathbf{Hoop}(\mathbf{C}) + \mathbf{d} \cdot \Delta \mathbf{Hoop}(\mathbf{D})]$$

- [a · ΔHοδp(A) + b · ΔHοδp(B)]

Второе начало термодинамики

• Постулат Клаузиуса

Единственным результатом любой совокупности процессов не может быть переход теплоты от менее нагретого тела к более нагретому.

•Постулат Томсона

Теплота наиболее холодного из участвующих в процессе тел не может служить источником работы. (Теплота не может полностью перейти в работу).

Энтропия -

функция состояния термодинамической системы, используемая во втором законе т/д для выражения через нее возможности или невозможности самопроизвольного протекания процесса (введена Клаузиусом).

Изменение энтропии определяется отношением количества теплоты, сообщенного системе или отведенного от нее, к температуре системы:

$$dS \ge \frac{\delta Q}{T}$$

где знак равенства относится к равновесному процессу, неравенства – к неравновесному.

Т.о. в равновесном процессе:

$$s = \frac{Q}{T}$$

Если энтропия увеличивается (S > 0), то самопроизвольный неравновесный процесс возможен,

если S < 0 - невозможен.

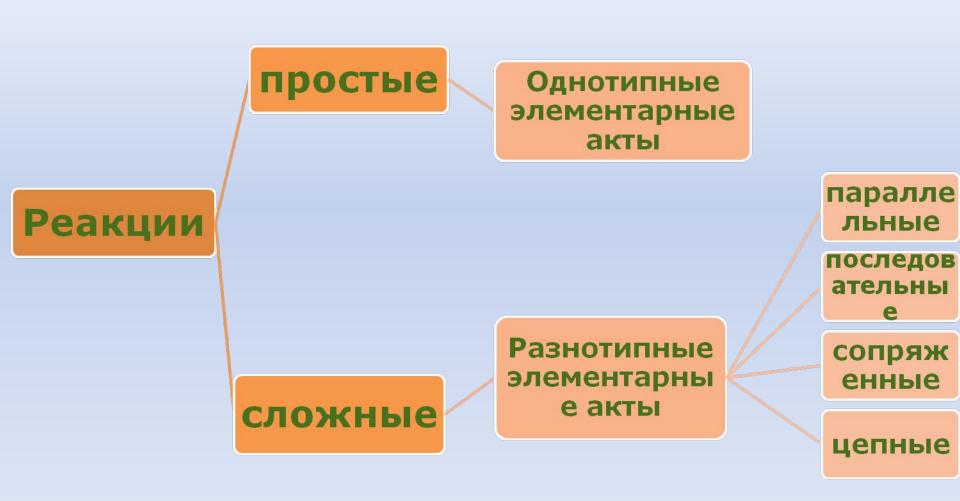
Все самопроизвольные процессы в изолированных системах идут в сторону увеличения энтропии до достижения равновесия, где она будет иметь постоянное и максимальное значение.

Изобарно-изотермический потенциал (Свободная энергия Гиббса)

$$\Delta G = \Delta H - T \cdot \Delta S$$

где ДН – изменение энтальпии,

- Т абсолютная температура,ΔS изменение энтропии.
- Если ΔG <0, процесс протекает самопроизвольно,
- если $\Delta G > 0$, то процесс невозможен.


Третье начало термодинамики

В. Нернст (1906) (тепловой закон Нернста): энтропия S любой системы стремится к конечному для неё пределу, не зависящему от давления, плотности или фазы, при стремлении температуры (T)к абсолютному нулю.

II. ХИМИЧЕСКАЯ КИНЕТИКА

Химическая кинетика занимается исследованием механизмов реакций и течения их во времени

Механизм реакции – последовательность и характер стадий химических реакций

Скорость химической реакции

гомогенная

Скорость - изменение количества вещества, вступающего в реакцию или образующегося в результате реакции за единицу времени в единице объема фазы

Реакция

гетерогенная

Скорость - изменение количества вещества, вступающего в реакцию или образующегося в результате за единицу времени на единице площади поверхности фазы

Факторы, влияющие на скорость химической реакции

- Природа реагирующих веществ
- Концентрация реагирующих веществ
- Температура
- Присутствие катализаторов

Закон действующих масс (К. Гульдберг и П. Вааге)

при постоянной температуре скорость химической реакции прямо пропорциональна концентрации реагирующих веществ

$$nA + mB \rightarrow gD$$
 $v=k C_A^n \cdot C_B^m$

• Константа скорости *k* не зависит от концентраций веществ

• Закон действующих масс применим только к газообразным и растворенным веществам

ПРИМЕРЫ

•
$$CuO_{(\kappa)} + H_{2(\Gamma)} = Cu_{(\kappa)} + H_2O_{(\Gamma)}$$

•
$$v=kC(H_2)$$

•
$$H_{2(r)} + I_{2(r)} = 2HI_{(r)}$$

•
$$v = kC(H_2)C(I_2)$$

Молекулярность и порядок реакций

- Молекулярность реакции число молекул, участвующих в элементарном акте химического взаимодействия
- Порядок реакции это сумма показателей степеней концентрации веществ в уравнении закона действующих масс

Реакция первого порядка

$$C = C_0 \cdot e^{-kt}$$
 или $InC = InC_0 - kt$

- C концентрация вещества в данный момент времени,
- C_0 исходная концентрация вещества,
- \cdot k константа скорости,
- t время протекания реакции.

Время, в течение которого прореагировала половина начального количества вещества, называется временем полураспада и обозначается Т1/2.

Для реакции первого порядка:

 $\tau_{1/2}=\ln 2/k$

Зависимость скорости реакции от температуры.

Правило Вант-Гоффа

при повышении температуры на каждые 10° скорость реакции увеличивается примерно в 2—4 раза

$$V_2 = V_1 \cdot \gamma^{(\Delta T/10)}$$
 $k_2 = k_1 \cdot \gamma^{(\Delta T/10)}$

Температурный коэффициент реакции (γ) -число, показывающее, во сколько раз увеличивается скорость данной реакции при повышении температуры на 10°

Уравнение Аррениуса

$$k = A \cdot e^{-Ea/RT}$$

- R универсальная газовая постоянная, 8,314 Дж/моль-К,
- Т температура по шкале Кельвина,
- E_a энергия активации,
- A предэкспоненциальный множитель.

Энергия активации (Еа) избыточная энергия, которой должны обладать молекулы для того, чтобы ИХ столкновение могло привести образованию НОВОГО вещества.

Молекулы, обладающие такой энергией, называются активными молекулами.

Уравнение Аррениуса позволяет рассчитать константы скорости реакций при различных

температурах:

$$\lim_{m \to \infty} \frac{k_2}{k_1} = \frac{E_a}{R} \frac{(T_2 - T_1)}{T_2 T_1}$$

а так же при изменении энергии активации

$$\lim_{m \to \infty} \frac{k_2}{k_1} = -\frac{E_{\alpha_2} - E_{\alpha_1}}{RT}$$

III. ХИМИЧЕСКОЕ РАВНОВЕСИЕ

• Химическое равновесие состояние химической системы, в котором обратимо протекает одна или несколько химических реакций, причём скорости прямой и обратной реакций равны между собой. Для системы, находящейся в химическом равновесии, концентрации реагентов, температура и другие параметры системы не изменяются со временем.

• Термодинамически химическое равновесие определяется как соотношение концентраций исходных продуктов веществ реакции, котором при энтропия системы имеет максимальное, изобарно-изотермический потенциал - минимальное значение

Константа химического равновесия

$$\begin{aligned} & \text{mA} + \text{nB} \leftrightarrow \text{pC} + \text{qD} \\ & \text{v}_1 = \text{k}_1 \cdot \text{C}_{\text{A}}^{\text{m}} \cdot \text{C}_{\text{B}}^{\text{n}} \\ & \text{v}_2 = \text{k}_2 \cdot \text{C}_{\text{C}}^{\text{p}} \cdot \text{C}_{\text{D}}^{\text{q}} \\ & \text{v}_1 = \text{v}_2 \\ & \text{k}_1 \cdot \text{C}_{\text{A}}^{\text{m}} \cdot \text{C}_{\text{B}}^{\text{n}} = \text{k}_2 \cdot \text{C}_{\text{C}}^{\text{p}} \cdot \text{C}_{\text{D}}^{\text{q}} \\ & \text{k}_1 / \text{k}_2 = \text{C}_{\text{C}}^{\text{p}} \cdot \text{C}_{\text{D}}^{\text{q}} / \text{C}_{\text{A}}^{\text{m}} \cdot \text{C}_{\text{B}}^{\text{n}} \\ & \text{K}_p = \text{C}_{\text{C}}^{\text{p}} \cdot \text{C}_{\text{D}}^{\text{q}} / \text{C}_{\text{A}}^{\text{m}} \cdot \text{C}_{\text{B}}^{\text{n}} \end{aligned}$$

Константа равновесия Кр частное деления OT произведения равновесных концентраций продуктов исходных веществ реакции (является величиной постоянной)

Константа равновесия и энергия Гиббса.

Константа химического равновесия зависит от природы реагентов, от температуры и связана с изменением стандартной энергии Гиббса ΔG° химической реакции уравнением

 $\Delta G^{\circ} = -RT \ln Kp$ Если ∆G° < 0 в равновесной смеси преобладают продукты взаимодействия. Если же $\Delta G^{\circ} > 0$, то в равновесной смеси преобладают исходные вещества.

Смещение химического равновесия.

Принцип Ле Шателье: если на систему, находящуюся в равновесии, воздействовать извне, то в системе усилится то из направлений процесса, которое противодействует данному воздействию.

Влияние давления Повышение давления, согласно принципу Ле-Шателье, должно смещать равновесие в сторону образования меньшего количества

моль газообразных продуктов.

Влияние температуры
При повышении температуры
химическое равновесие смещается
в сторону эндотермической
реакции и наоборот.

Влияние концентрации

Если в реакционную смесь ввести избыток одного из исходных веществ, то равновесие смещается в сторону образования продуктов реакции. Аналогичный результат может быть достигнут путем удаления из системы продуктов реакции.

Влияние температуры на константу равновесия химической реакции выражается уравнениями изобары и изохоры Вант-Гоффа:

$$\frac{d\ln K_p}{dT} = \frac{\Delta H}{RT^2}$$

$$\frac{d \ln K_c}{dT} = \frac{\Delta U}{RT^2}$$

где $\Delta H = Q_P$, $\Delta U = Q_V$.

Катализ

- Катализ процесс увеличения скорости реакции с помощью катализатора
- Катализаторы вещества, которые увеличивают скорость химической реакции, оставаясь в конечном итоге неизменными по химическому составу и количеству

Особенности катализаторов:

- Ускоряют реакцию, присутствуя в очень малых количествах
- Избирательность действия, то есть катализатор ускоряет одну реакцию и неэффективен для другой. Особенно это свойство проявляется у биологических катализаторов-ферментов
- Неизменность после реакции и возможность многократного использования
- Катализатор изменяет механизм реакции и направляет ее по такому пути, который характеризуется понижением энергии активации.

Катализ

гомогенный

каталитическое разложение пероксида водорода в водном растворе в присутствии $Cr_2O_7^{2-}$

катализ

гетероген ный окисление SO₂, до SO₃ в присутствии катализатора, находящегося в твердой фазе

Механизм гомогенной каталитической реакции

$$A+B \stackrel{K}{=} AB$$

$$A+K=AK$$

$$AK+B=AB+K$$

Ферменты – биологические катализаторы, ускоряющие биохимические реакции в растениях и животных организмах.