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Objectives
● Concepts

● What are standards?
● Why use standards?

● And why not? (drawbacks)
● Deciding when to adopt a standard

● Prevalent Architectural Standards
● Conceptual standards
● Notational standards
● Standard tools
● Process standards
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What are standards?

● Definition: a standard is a form of agreement between 
parties

● Many kinds of standards
● For notations, tools, processes, organizations, 

domains
 

● There is a prevalent view that complying to standard ‘X’ 
ensures that a constructed system has high quality
● This is almost never strictly true
● But that doesn’t mean standards are worthless!
● Here, we will attempt to put standards in perspective



Foundations, Theory, and PracticeSoftware Architecture

5

De jure and de facto standards

● Some standards are controlled by a body considered 
authoritative
● ANSI, ISO, ECMA, W3C, IETF

● These standards are called de jure (“from law”)
● De jure standards usually

● are formally defined and documented
● are evolved through a rigorous, well-known process
● are managed by an independent body, governmental 

agency, or multi-organizational coalition rather than a 
single individual or company
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De jure and de facto standards 
(cont’d)
● Some standards emerge through widespread awareness and use
● These standards are called de facto (“in practice”)
● De facto standards usually

● are created by a single individual organization to address a 
particular need

● are adopted due to technical superiority or market dominance of 
the creating organization

● evolve through an emergent, market-driven process
● are managed by the creating organization or the users 

themselves, rather than through a formal custodial body



Foundations, Theory, and PracticeSoftware Architecture

7

Examples of de jure and de facto

● De jure standards
● UML (managed by OMG)
● CORBA (also managed by OMG)
● HTTP protocol (managed by IETF)

● De facto standards
● PDF format (managed by Adobe)

● May become de jure through ISO
● Windows (managed by Microsoft)

● There is a substantial gray area between these two



Foundations, Theory, and PracticeSoftware Architecture

8

Gray-area Standards

● HTML
● Officially standardized by W3C, indicating de jure
● Flavors and browser-specific extensions developed by 

Microsoft, Netscape, and others, creating de facto variants
● None of these has power to force users to use standard

● JavaScript
● Developed by Netscape; copied (as JScript) by Microsoft
● After substantial adoption and possibly under threat of 

forking/splintering, Netscape submits it to ECMA
● Now standardized as ECMAScript (de jure)
● JavaScript and variants continue to be developed as 

compatible extensions of ECMAScript
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Another spectrum

● Standards (whether de jure or de facto) can be:
● Open

● Allow public participation in the standardization 
process

● Anyone can submit ideas or changes for review
● Closed (a.k.a. proprietary)

● Only the custodians of a standard can participate 
in its evolution
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Open vs. closed standards

● Another spectrum with a gray area
● Some standards bodies have high barriers to entry 

(e.g., steep membership fees, vote of existing 
membership)

● Some standards (e.g., Java) have aspects of both
● Sun Microsystems is effectively in control of Java 

as a de facto standard
● There is an open “community process” by which 

external parties can participate in a limited way
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Why use standards?
● Standards are an excellent way to create and exploit 

network effects
● A network effect exists if the value of participation 

increases as the number of users of the standard 
increases

● Other network effects:
● TCP/IP, HTTP & HTML, UML…

🡪 versus 🡪
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Why use standards? (cont’d)

● To ensure interoperability between products developed 
by different organizations
● Usually in the interest of fostering a network effect

● To carry hard-won engineering knowledge from one 
project to another
● To take advantage of hard-won engineering 

knowledge created by others
● As an effort to attract tool vendors

● To create economies of scale in tools
● To attempt to control the standard’s evolution in your 

favor
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Drawbacks of standards

● Limits your agility
● Remember that doing ‘good’ architecture-based 

development means identifying what is important in 
your project

● Standards often attempt to apply the same techniques to 
a too-broad variety of situations

● The most widely adopted standards are often the most 
general
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Overspecification vs. 
underspecification
● A perennial tension in standards use and development
● Overspecification

● A standard prescribes too much and therefore limits 
its applicability too much

● Underspecification
● A standard prescribes too little and therefore doesn’t 

provide enough guidance
● Possibly in an effort to broaden adoption
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Two different kinds of 
underspecification
● Two compromises often made in negotiation when 

disagreements occur
● Leave the disagreeable part of the standard 

unspecified or purposefully ambiguous
● Include both opinions in the standard but make them 

both optional
● Both of these weaken the standard’s value

● Consider the different kinds of reduction in 
interoperability imposed by these strategies

● Although they may improve adoption!
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When to adopt a standard?

● Early adoption
● Benefits

● Improved ability to influence the standard
◆ Get your own goals incorporated; exclude competitors

● Early to market
◆ If standard becomes successful, early marketers will 

profit
● Early experience

◆ Leverage enhanced experience to your benefit
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When to adopt a standard? 
(cont’d)
● Early adoption

● Drawbacks
● Risk of failure

◆ Standard may not be successful for reasons out of your 
control

● Moving target
◆ Early standards tend to evolve and ‘churn’ more than 

mature ones, and may be ‘buggy’
● Lack of support

◆ Early standards tend to have immature (or no) support 
from tool and solution vendors
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When to adopt a standard? 
(cont’d)
● Late adoption

● Benefits
● Maturity of standard
● Better support

● Drawbacks
● Inability to influence the standard
● Restriction of innovation
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IEEE 1471

● Recommended practice for architecture description
● Often mandated for use in government projects

● Scope is limited to architecture descriptions (as opposed 
to processes, etc.)

● Does not prescribe a particular notation for models
● Does prescribe a minimal amount of content that 

should be contained in models
● Identifies the importance of stakeholders and advocates 

models that are tailored to stakeholder needs
● A notion of views and viewpoints similar to the ones 

used in this course
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IEEE 1471 (cont’d)

● Very high level
● Purposefully light on specification
● Does not advocate any specific notation or process

● Useful as a starting point for thinking about architecture
● Defines key terms
● Advocates focus on stakeholders

● Being compliant does NOT ensure that you are doing 
good architecture-centric development
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Department of Defense Architecture 
Framework
● DoDAF, evolved from C4ISR

● Has some other international analogs (MoDAF)
● ‘Framework’ here refers to a process or set of 

viewpoints that should be used in capturing an 
architecture

● Not necessarily an architecture implementation 
framework

● Identifies specific viewpoints that should be captured
● Includes what kinds of information should be 

captured
● Does not prescribe a particular notation for doing the 

capture
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DoDAF (cont’d)

● Some vocabulary inconsistency with our terms (and IEEE 
1471 among others)

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission. 
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DoDAF (cont’d)
● Three views (in our terms: viewpoint sets)

● Operational View (OV)
● “Identifies what needs to be accomplished and 

who does it”
● Defines processes and activities, the operational 

elements that participate in those activities, and 
the information exchanges between the elements

● Systems View (SV)
● Describe the systems that provide or support 

operational functions and the interconnections 
between them

● Systems in SV associated with elements in OV
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DoDAF (cont’d)

● Three views (in our terms: viewpoint sets) – continued
● Technical Standards View (TV)

● Identify standards, (engineering) guidelines, rules, 
conventions, and other documents

● To ensure that implemented systems meet their 
requirements and are consistent with respect to 
the fact that they are implemented according to a 
common set of rules

● Also a few products address cross cutting concerns that 
affect All Views (AV)
● E.g., dictionary of terms
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DoDAF Examples

OV-1
“High-Level Operational Concept Graphic”

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission. 
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DoDAF Examples (cont’d)

OV-4
“Organizational Relationships”

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission. 
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DoDAF Examples (cont’d)

SV-1
“Systems Interface Description”

Note implied correspondence
with OV-1 entities

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission. 
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DoDAF Examples (cont’d)

SV-3
“Systems-Systems Matrix”

One of several “N2” views
in DoDAF

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission. 
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DoDAF Examples (cont’d)

TV-1
“Technical
Standards 
Profile ”

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission. 
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DoDAF Takeaways

● Extremely comprehensive standard advocating capture of 
many views
● Takes a high-level organizational perspective
● OV views tend to deal with human and systems 

organizations
● SV views tend to deal with technical aspects of systems 

(most like the architectural descriptions we have been 
talking about)

● TV views tend to deal with practical issues of reuse and 
leveraging existing technology

● Tells us a lot about WHAT to model, but nearly nothing 
about HOW to model it
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The Open Group Architecture 
Framework
● TOGAF – an “enterprise architecture” framework

● Focuses beyond hardware/software
● How can enterprises build systems to achieve business goals?

● Four key areas addressed
● Business concerns, which address business strategies, 

organizations, and processes;
● Application concerns, which address applications to be 

deployed, their interactions, and their relationships to 
business processes;

● Data concerns, which address the structure of physical and 
logical data assets of an organization and the resources that 
manage these assets; and

● Technology concerns, which address issues of 
infrastructure and middleware.
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TOGAF Part 1: ADM
● An iterative process for 

architecture-centric 
development

● Each step in the 
proceses associated 
with views to be 
captured

● Early phases focus on 
conceptual issues; later 
phases move toward 
reduction to practice

Redrawn from the TOGAF Specification

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission. 
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TOGAF Part 2: Enterprise Continuum

● Taxonomizes different kinds of architectures and the 
solutions that are supported by those
● Left side is more technical and concrete
● Right side is more organizational

● TOGAF Technical Reference Model and Standards 
Information Base identifies and taxonomizes many 
solution elements

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission. 
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TOGAF Part 3: TOGAF Resource 
Base
● A collection of useful information and resources that can 

be employed in following the ADM process
● Includes

● advice on how to set up boards and contracts for 
managing architecture

● checklists for various phases of the ADM process
● a catalog of different models that exist for evaluating 

architectures
● how to identify and prioritize different skills needed to 

develop architectures
● ....
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TOGAF Takeaways

● Large size and broad scope looks at systems 
development from an enterprise perspective

● More suited to developing entire organizational 
information systems rather than indivdiual applications

● A collection and clearinghouse for IT “best practices” of 
all sorts
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RM-ODP
● Another standard for viewpoints, similar to DoDAF but 

more limited in scope; resemble DoDAF SV
● Prescribes 5 viewpoints for distributed systems

● Enterprise – system, environment, context
● Information – information processing
● Computational – architectural structure and 

component distribution
● Engineering – distribution infrastructure
● Technology – technology choices available

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission. 
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RM-ODP
● Another standard for viewpoints, similar to DoDAF but 

more limited in scope; resemble DoDAF SV

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission. 

Enterprise View
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RM-ODP
● Another standard for viewpoints, similar to DoDAF but 

more limited in scope; resemble DoDAF SV

Engineering View

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission. 
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UML
● As a standard, primarily prescribes a syntax
● Some semantics with purposeful ambiguity
● Encourages specialization of the standard through the 

use of profiles, which are mini-standards

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission. 
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UML Takeaways

● Provide a common syntactic framework to express many 
common types of design decisions

● Profiles are needed to improve rigor
● But profiles can only specialize existing UML diagram 

types, not create new ones
● Documenting a system in UML does not ensure overall 

system quality
● You can document a bad architecture in UML as easily 

as a good one
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SysML

● An extended version of UML
● Developed by a large consortium of organizations 

(mainly large system integrators and developers)
● Intended to mitigate UML’s “software bias”

● SysML group found UML standard insufficient and 
profiles not enough to resolve this
● Developed new diagram types to capture 

system-engineering specific views
● Limited momentum among tool vendors; focus 

shifting to more heavily use UML profiles
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SysML Diagrams
SysML
Requirement 
Diagram

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission. 
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SysML Diagrams
SysML

Parametric 
Diagram

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission. 
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Standard UML Tools

● E.g., Rational Rose, ArgoUML, Microsoft Visio
● These are de facto standards
● All support drawing UML diagrams
● Vary along several dimensions

● Support for built-in UML extension mechanisms
● Profiles, stereotypes, tagged values, constraints

● Support for UML consistency checking
● Ability to generate other artifacts
● Generation of UML from other artifacts
● Traceability to other systems
● Support for capturing non-UML information



Foundations, Theory, and PracticeSoftware Architecture

46

ArgoUML – a UML tool

Screenshot from the Argo/UML Website and Documentation
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Telelogic System Architect

● Formerly Popkin System Architect; popular among architects
● Supports 50+ different diagram types

● UML, IDEF, OMT, generic flowcharting, even GUI 
design

● Variants for DoDAF, service-oriented architectures, 
enterprise resource planning

● Effectively generic diagram editor specialized for many 
different diagram types with different symbols, connections
● Very little understanding of diagram semantics
● Specialized variants have some understanding of semantics 

but generally less than notation-specific editors
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Rational Unified Process

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission. 

● Phased iterative 
process 
framework/meta-pr
ocess

● Like spiral model, 
focus on iteration 
and risk 
management

● Tends to view 
architecture as an 
artifact rather than 
a pervasive 
discipline
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Model-Driven Architecture
● Also known as MDA
● Core idea: specify your architecture in detailed enough terms that

implementations can
be auto-generated
entirely from models

● This vision is hard to
achieve in general
● May be more 

successful in a
strong DSSE
context

Redrawn from the MDA documentation

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission. 
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Overall Takeaways

● Standards confer many benefits
● Network effects, reusable engineering knowledge, 

interoperability, common vocabulary and understanding
● But are not a panacea!

● Knowledge of a breadth of standards is needed to be a good 
architect, but it is critical to maintain perspective

● Caveats
● This has been a very quick tour through complex standards; 

many standards are hundreds of pages and can’t adequately be 
explained in five minutes

● Most available online – investigate yourself!
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Some More on UML

● UML combines several visual specification techniques
● use case diagrams, component diagrams, package 

diagrams, deployment diagrams, class diagrams, 
sequence diagrams, collaboration diagrams, state 
diagrams, activity diagrams + OCL

● Semi-formal
● Precise syntax but no formal semantics
● There are efforts in formalizing UML semantics

● OMG defines the UML standard
● The current UML language specification is available 

at: http://www.uml.org/
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UML Class Diagrams

● Class diagram describes
● Types of objects in the system
● Static relationships among them 

● Two principal kinds of static relationships
● Associations between classes
● Subtype relationships between classes

● Class descriptions show
● Attributes
● Operations
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Example Class 
Diagram

Order

dateReceived
isPrepaid
number: String
price: Money

dispatch()
close()

Product Order

quantity: Int
price: Money
isSatisfied: Bool

1

1..*

Ordered
Product

Constraint
for order class

Product
1..* 1

Corporate
Customer

contactName
creditRating
creditLimit

remind()
billForMonth(Int)

Customer

name
address

creditRating():String

Personal
Customer

creditCardNumber

indicates
generalization

11..*

Employee

0..1

1..*
Sales
Rep

{creditRating()=“poor”}

indicates that credit 
rating is always 
set to poor for a 
Personal Customer

{  if  Order.customer.creditRating() = “poor” 
    then  Order.isPrepaid = true }
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Sequence Diagrams

● A sequence diagram shows a particular sequence of 
messages exchanged between a number of objects 

● Sequence diagrams also show behavior by showing the 
ordering of message exchange

● A sequence diagram shows some particular 
communication sequences in some run of the system 
● it is not characterizing all possible runs



Foundations, Theory, and PracticeSoftware Architecture

Example Sequence Diagram
:ProductOr

der
:StockItem

check()

:Order

*prepare()

[check=“true”]
remove()

:OrderEntryWindo
w

prepare()

:ReorderItem

:DeliveryItem

needsToReorder()

<<create>>

[check=“true”]
<<create>>

[needsToReorder=“true”]
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Collaboration Diagrams 
● Collaboration diagrams show a particular sequence of 

messages exchanged between a number of objects
● this is what sequence diagrams do too!

● Use sequence diagrams to model flows of control by 
time ordering
● sequence diagrams can be better for demonstrating 

the ordering of the messages
● not suitable for complex iteration and branching 

● Use collaboration diagrams to model flows of control by 
organization
● collaboration diagrams are good at showing the static 

connections among the objects while also 
demonstrating a particular sequence of messages
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Example Collaboration Diagram

:ProductOr
der

:StockItem

:Order

:OrderEntryWindo
w

:ReorderItem

:DeliveryItem

1:prepare()

1.1:*prepare()

1.1.1:check() 
1.1.2:[check==true]remove()

1.1.2.1:needsToReorder()

1.1.2.2:new

1.1.3:[check==true]new

message

object

link sequence number

Sequence numbers are 
used
to show the time 
ordering among
the messages



Foundations, Theory, and PracticeSoftware Architecture

State Diagrams

● State diagrams are used to show possible states a single 
object can get into

● How object changes state in response to events
● shows transitions between states

● Uses ideas from statecharts and adds some concepts 
such as internal transitions, deferred events etc.
● “A Visual Formalism for Complex Systems,” David 

Harel, Science of Computer Programming, 1987
● hierarchical state machines with formal semantics
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State Diagrams

● Hierarchical grouping of states 
● composite states are formed by grouping other states
● A composite state has a set of sub-states

● Concurrent composite states can be used to express 
concurrency
● When the system is in a concurrent composite state, 

it is in all of its substates at the same time
● When the system is in a normal (non-concurrrent) 

composite state, it is in only one of its substates
● If a state has no substates it is an atomic state

● Synchronization and communication between different 
parts of the system is achieved using events
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Superstates

Checking

do/checkItem

/ getFirstItem

getNextItem
[not all items checked]

Dispatching

do/initiate
    Delivery

Waiting

Cancelled Delivered

itemsReceived
[some items not in stock]

[all items checked and
some items not in stock]

itemReceived
[all items available]

[all items checked and
 all items available]

cancelled

Active

Active is a superstate
with substates Checking,
Waiting and Dispatching
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Concurrent States

Checking Dispatching

Waiting

Authorizing Authorized

Delivered

Cancelled

Rejected[payment not OK]

cancelled

this transition 
can only be taken
after both concurrent
states reach their
final states
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Activity Diagrams

● Activity diagrams show the flow among activities and 
actions associated with a given object using:
● activity and actions
● transitions
● branches
● merges
● forks
● Joins

● Activity diagrams are basically an advanced version of 
flowcharts
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Receive Order

Check Order
Item

Dispatch
Order

Authorize 
Payment

Cancel Order

Add Remainder
to Stock

[succeeded]

[failed]
Assign to Order

ReceiveSupply

Choose Outstanding 
Order Items

Assign to 
Order

* for each 
chosen
order item

[in stock]

*for each 
order item 

[need to reorder]

Reorder
item

[all outstanding order 
items filled]

[stock assigned to all order items
and payment authorized]

Order
Processing

Finance Stock
Manager

vertical lines
are used to separate
“swimlanes”
to show which 
activities are handled
by  which part of the
system
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UML Diagrams
● Functionality, requirements

● use case diagrams
● Architecture, modularization, decomposition

● class diagrams (class structure)
● component diagrams, package diagrams, 

deployment diagrams (architecture)
● Behavior

● state diagrams, activity diagrams
● Communication, interaction

● sequence diagrams, collaboration diagrams
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How do they all fit together?
● Requirements analysis and specification

● use-cases, use-case diagrams, sequence diagrams
● Design and Implementation

● Class diagrams show decomposition of the design
● Activity diagrams specify behaviors described in use 

cases
● State diagrams specify behavior of individual objects
● Sequence and collaboration diagrams show 

interaction among different objects
● Component, package, and deployment diagrams show 

the high level architecture
● Use cases and sequence diagrams can help derive 

test cases
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Object Constraint Language
● Object Constraint Language (OCL) is part of UML
● OCL was developed at IBM by Jos Warmer as a language 

for business modeling within IBM
● OCL specification is available here:  
http://www.omg.org/technology/documents/formal/ocl.htm
● More information:

● “The Object Constraint Language: Precise Modeling 
with UML”, by Jos Warmer and Anneke Kleppe
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Object Constraint Language (OCL)

● OCL provides a way to develop more precise models 
using UML

● What is a constraint in Object Constraint Language?
● A constraint is a restriction on one or more values of 

(part of) an object-oriented model or system
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OCL Constraints

● OCL constraints are declarative
● They specify what must be true not what must be 

done

● OCL constraints have no side effects
● Evaluating an OCL expression does not change the 

state of the system

● OCL constraints have formal syntax and semantics
● their interpretation is unambiguous
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An Example
● Loyalty programs are used by companies to offer their 

customers bonuses (e.g., frequent flier miles)
● There may be more than one company participating in a 

loyalty program (“program partners”)
● A loyalty program customer gets a membership card 
● Program partners provide services to customers in their 

loyalty programs
● A loyalty program  account can be used to save the 

points accumulated by a customer. Each transaction on a 
loyalty program account either earns or burns some 
points. 

● Loyalty programs can have multiple service levels
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LoyaltyProgram

enroll(c:Customer)

Service

condition: Boolean
pointsEarned: Integer
pointsBurned: Integer
description: String

0..*deliveredServices

Membership

LoyaltyAccount

points: Integer

earn(i: Integer)
burn(i: Integer)
isEmpty(): Boolean

Customer

name: String
title:String
isMale: Boolean
dateOfBirth: Date

CustomerCard
valid: Boolean
validForm: Date
goodThru: Date
color: enum{silver, 
                       gold}
printedName: String

0..*

0..*

age(): Integer

program

owner

card0..*

card

ProgramPartner

numberOfCustomers: Integer

partners
1..*1..*

ServiceLevel

name: String

availableServices
0..*

{ordered} 1..*
0..1

0..*
actualLevel

Transaction
points: Integer
date:Date

program(): LoyaltyProgram

0..*transactions

card
transactions
0..*transactions

0..*

Burning Earning

Date

$now: Date

isBefore(t:Date): Boolean
isAfter(t:Date): Boolean
=(t:Date): Boolean
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Types and Instances

● OCL types are divided into following groups

● Predefined types
● Basic types: String, Integer, Real, Boolean
● Collection types: Collection, Set, Bag, Sequence

● User-defined model types
● User defined classes such as Customer, Date, 

LoyaltyProgram
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Operations on Boolean Type

● Boolean operators that result in boolean values
a or b, a and b, a xor b, not a, a = b, 
a <> b (not equal), a implies b

● Another operator that takes a boolean argument is
   if b then e1 else e2 endif

Customer
title = (if isMale = true
            then ‘Mr.’
            else ‘Ms.’
         endif)
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Operations on Integer and Real 
Types
● Operation on Real and Integer with Boolean result type

a = b, a <> b , a < b, a > b, a <= b, a 
>= b

● Operations on Real and Integer types with result type 
Real or Integer
a + b, a − b, a * b, a / b, a.abs, 
a.max(b), a.min(b)

● Operations on Real and Integer types with result type 
Integer
a.mod(b), a.div(b), a.round, a.floor
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Operations on String Type

● Operations on String type with result type Boolean
s1 = s2, s1 <> s2

● Operations on String type with result type String
s1.concat(s2), s1.toLower, s1.toUpper,
s1.substring(int1, int2)

●  Operations on String type with result type Integer
s1.size
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Model Types

● Model types are classes, subclasses, association classes, 
interfaces, etc. defined in the model

● Properties of a model type are
● attributes
● operations and methods
● navigations that are derived from the associations
● enumerations defined as attribute types

● Properties of a model type can be referenced in OCL 
expressions
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OCL expressions and constraints

● Each OCL expression has a result
● the value that results by evaluating the expression 

● The type of an OCL expression is the type of the result 
value
● either a predefined type or a model type

● An OCL constraint is an OCL expression of type Boolean
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Invariants

● Using OCL we can specify class invariants such as
Customer
age >= 18

● As a convention we will write the OCL expressions in the 
following form:
OCLcontext
OCLexpression

● For the above example, the expression age >= 18 is an 
invariant of the Customer class, i.e. it holds for every 
instance of that class
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Invariants

● We can also write invariants on attributes of associated 
classes

● Examples:

Membership
card.owner = customer

CustomerCard
printedName = owner.title.concat( owner.name )
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Writing Pre and Postconditions

● One can specify the pre and postcondition of an 
operation of a class using OCL expressions

 
Type1::operation(arg: Type2) : 
ReturnType

pre: arg.attr = true

post: result = arg.attr xor 
self.attribute2
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Constructs for Postconditions

● One can refer to the value of an attribute at the 
beginning operation in the postcondition using the @pre 
syntax 

LoyaltyProgram::enroll(c: Customer)
pre: not customer->includes(c)
post: customer = customer@pre->including(c)

● You can refer to the return value of the method using 
the result keyword 

LoyaltyAccount::isEmpty()
pre: -- none
post: result = (points = 0)


