
Copyright © Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy. All rights reserved.

Architectural
Standards

Infosys, Mysore
December 16

Foundations, Theory, and PracticeSoftware Architecture

2

Objectives
● Concepts

● What are standards?
● Why use standards?

● And why not? (drawbacks)
● Deciding when to adopt a standard

● Prevalent Architectural Standards
● Conceptual standards
● Notational standards
● Standard tools
● Process standards

Foundations, Theory, and PracticeSoftware Architecture

3

Objectives
● Concepts

● What are standards?
● Why use standards?

● And why not? (drawbacks)
● Deciding when to adopt a standard

● Prevalent Architectural Standards
● Conceptual standards
● Notational standards
● Standard tools
● Process standards

Foundations, Theory, and PracticeSoftware Architecture

4

What are standards?

● Definition: a standard is a form of agreement between
parties

● Many kinds of standards
● For notations, tools, processes, organizations,

domains

● There is a prevalent view that complying to standard ‘X’
ensures that a constructed system has high quality
● This is almost never strictly true
● But that doesn’t mean standards are worthless!
● Here, we will attempt to put standards in perspective

Foundations, Theory, and PracticeSoftware Architecture

5

De jure and de facto standards

● Some standards are controlled by a body considered
authoritative
● ANSI, ISO, ECMA, W3C, IETF

● These standards are called de jure (“from law”)
● De jure standards usually

● are formally defined and documented
● are evolved through a rigorous, well-known process
● are managed by an independent body, governmental

agency, or multi-organizational coalition rather than a
single individual or company

Foundations, Theory, and PracticeSoftware Architecture

6

De jure and de facto standards
(cont’d)
● Some standards emerge through widespread awareness and use
● These standards are called de facto (“in practice”)
● De facto standards usually

● are created by a single individual organization to address a
particular need

● are adopted due to technical superiority or market dominance of
the creating organization

● evolve through an emergent, market-driven process
● are managed by the creating organization or the users

themselves, rather than through a formal custodial body

Foundations, Theory, and PracticeSoftware Architecture

7

Examples of de jure and de facto

● De jure standards
● UML (managed by OMG)
● CORBA (also managed by OMG)
● HTTP protocol (managed by IETF)

● De facto standards
● PDF format (managed by Adobe)

● May become de jure through ISO
● Windows (managed by Microsoft)

● There is a substantial gray area between these two

Foundations, Theory, and PracticeSoftware Architecture

8

Gray-area Standards

● HTML
● Officially standardized by W3C, indicating de jure
● Flavors and browser-specific extensions developed by

Microsoft, Netscape, and others, creating de facto variants
● None of these has power to force users to use standard

● JavaScript
● Developed by Netscape; copied (as JScript) by Microsoft
● After substantial adoption and possibly under threat of

forking/splintering, Netscape submits it to ECMA
● Now standardized as ECMAScript (de jure)
● JavaScript and variants continue to be developed as

compatible extensions of ECMAScript

Foundations, Theory, and PracticeSoftware Architecture

9

Another spectrum

● Standards (whether de jure or de facto) can be:
● Open

● Allow public participation in the standardization
process

● Anyone can submit ideas or changes for review
● Closed (a.k.a. proprietary)

● Only the custodians of a standard can participate
in its evolution

Foundations, Theory, and PracticeSoftware Architecture

10

Open vs. closed standards

● Another spectrum with a gray area
● Some standards bodies have high barriers to entry

(e.g., steep membership fees, vote of existing
membership)

● Some standards (e.g., Java) have aspects of both
● Sun Microsystems is effectively in control of Java

as a de facto standard
● There is an open “community process” by which

external parties can participate in a limited way

Foundations, Theory, and PracticeSoftware Architecture

11

Why use standards?
● Standards are an excellent way to create and exploit

network effects
● A network effect exists if the value of participation

increases as the number of users of the standard
increases

● Other network effects:
● TCP/IP, HTTP & HTML, UML…

🡪 versus 🡪

Foundations, Theory, and PracticeSoftware Architecture

12

Why use standards? (cont’d)

● To ensure interoperability between products developed
by different organizations
● Usually in the interest of fostering a network effect

● To carry hard-won engineering knowledge from one
project to another
● To take advantage of hard-won engineering

knowledge created by others
● As an effort to attract tool vendors

● To create economies of scale in tools
● To attempt to control the standard’s evolution in your

favor

Foundations, Theory, and PracticeSoftware Architecture

13

Drawbacks of standards

● Limits your agility
● Remember that doing ‘good’ architecture-based

development means identifying what is important in
your project

● Standards often attempt to apply the same techniques to
a too-broad variety of situations

● The most widely adopted standards are often the most
general

Foundations, Theory, and PracticeSoftware Architecture

14

Overspecification vs.
underspecification
● A perennial tension in standards use and development
● Overspecification

● A standard prescribes too much and therefore limits
its applicability too much

● Underspecification
● A standard prescribes too little and therefore doesn’t

provide enough guidance
● Possibly in an effort to broaden adoption

Foundations, Theory, and PracticeSoftware Architecture

15

Two different kinds of
underspecification
● Two compromises often made in negotiation when

disagreements occur
● Leave the disagreeable part of the standard

unspecified or purposefully ambiguous
● Include both opinions in the standard but make them

both optional
● Both of these weaken the standard’s value

● Consider the different kinds of reduction in
interoperability imposed by these strategies

● Although they may improve adoption!

Foundations, Theory, and PracticeSoftware Architecture

16

When to adopt a standard?

● Early adoption
● Benefits

● Improved ability to influence the standard
◆ Get your own goals incorporated; exclude competitors

● Early to market
◆ If standard becomes successful, early marketers will

profit
● Early experience

◆ Leverage enhanced experience to your benefit

Foundations, Theory, and PracticeSoftware Architecture

17

When to adopt a standard?
(cont’d)
● Early adoption

● Drawbacks
● Risk of failure

◆ Standard may not be successful for reasons out of your
control

● Moving target
◆ Early standards tend to evolve and ‘churn’ more than

mature ones, and may be ‘buggy’
● Lack of support

◆ Early standards tend to have immature (or no) support
from tool and solution vendors

Foundations, Theory, and PracticeSoftware Architecture

18

When to adopt a standard?
(cont’d)
● Late adoption

● Benefits
● Maturity of standard
● Better support

● Drawbacks
● Inability to influence the standard
● Restriction of innovation

Foundations, Theory, and PracticeSoftware Architecture

19

Objectives
● Concepts

● What are standards?
● Why use standards?

● And why not? (drawbacks)
● Deciding when to adopt a standard

● Prevalent Architectural Standards
● Conceptual standards
● Notational standards
● Standard tools
● Process standards

Foundations, Theory, and PracticeSoftware Architecture

20

IEEE 1471

● Recommended practice for architecture description
● Often mandated for use in government projects

● Scope is limited to architecture descriptions (as opposed
to processes, etc.)

● Does not prescribe a particular notation for models
● Does prescribe a minimal amount of content that

should be contained in models
● Identifies the importance of stakeholders and advocates

models that are tailored to stakeholder needs
● A notion of views and viewpoints similar to the ones

used in this course

Foundations, Theory, and PracticeSoftware Architecture

21

IEEE 1471 (cont’d)

● Very high level
● Purposefully light on specification
● Does not advocate any specific notation or process

● Useful as a starting point for thinking about architecture
● Defines key terms
● Advocates focus on stakeholders

● Being compliant does NOT ensure that you are doing
good architecture-centric development

Foundations, Theory, and PracticeSoftware Architecture

22

Department of Defense Architecture
Framework
● DoDAF, evolved from C4ISR

● Has some other international analogs (MoDAF)
● ‘Framework’ here refers to a process or set of

viewpoints that should be used in capturing an
architecture

● Not necessarily an architecture implementation
framework

● Identifies specific viewpoints that should be captured
● Includes what kinds of information should be

captured
● Does not prescribe a particular notation for doing the

capture

Foundations, Theory, and PracticeSoftware Architecture

23

DoDAF (cont’d)

● Some vocabulary inconsistency with our terms (and IEEE
1471 among others)

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Foundations, Theory, and PracticeSoftware Architecture

24

DoDAF (cont’d)
● Three views (in our terms: viewpoint sets)

● Operational View (OV)
● “Identifies what needs to be accomplished and

who does it”
● Defines processes and activities, the operational

elements that participate in those activities, and
the information exchanges between the elements

● Systems View (SV)
● Describe the systems that provide or support

operational functions and the interconnections
between them

● Systems in SV associated with elements in OV

Foundations, Theory, and PracticeSoftware Architecture

25

DoDAF (cont’d)

● Three views (in our terms: viewpoint sets) – continued
● Technical Standards View (TV)

● Identify standards, (engineering) guidelines, rules,
conventions, and other documents

● To ensure that implemented systems meet their
requirements and are consistent with respect to
the fact that they are implemented according to a
common set of rules

● Also a few products address cross cutting concerns that
affect All Views (AV)
● E.g., dictionary of terms

Foundations, Theory, and PracticeSoftware Architecture

26

DoDAF Examples

OV-1
“High-Level Operational Concept Graphic”

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Foundations, Theory, and PracticeSoftware Architecture

27

DoDAF Examples (cont’d)

OV-4
“Organizational Relationships”

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Foundations, Theory, and PracticeSoftware Architecture

28

DoDAF Examples (cont’d)

SV-1
“Systems Interface Description”

Note implied correspondence
with OV-1 entities

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Foundations, Theory, and PracticeSoftware Architecture

29

DoDAF Examples (cont’d)

SV-3
“Systems-Systems Matrix”

One of several “N2” views
in DoDAF

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Foundations, Theory, and PracticeSoftware Architecture

30

DoDAF Examples (cont’d)

TV-1
“Technical
Standards
Profile ”

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Foundations, Theory, and PracticeSoftware Architecture

31

DoDAF Takeaways

● Extremely comprehensive standard advocating capture of
many views
● Takes a high-level organizational perspective
● OV views tend to deal with human and systems

organizations
● SV views tend to deal with technical aspects of systems

(most like the architectural descriptions we have been
talking about)

● TV views tend to deal with practical issues of reuse and
leveraging existing technology

● Tells us a lot about WHAT to model, but nearly nothing
about HOW to model it

Foundations, Theory, and PracticeSoftware Architecture

32

The Open Group Architecture
Framework
● TOGAF – an “enterprise architecture” framework

● Focuses beyond hardware/software
● How can enterprises build systems to achieve business goals?

● Four key areas addressed
● Business concerns, which address business strategies,

organizations, and processes;
● Application concerns, which address applications to be

deployed, their interactions, and their relationships to
business processes;

● Data concerns, which address the structure of physical and
logical data assets of an organization and the resources that
manage these assets; and

● Technology concerns, which address issues of
infrastructure and middleware.

Foundations, Theory, and PracticeSoftware Architecture

33

TOGAF Part 1: ADM
● An iterative process for

architecture-centric
development

● Each step in the
proceses associated
with views to be
captured

● Early phases focus on
conceptual issues; later
phases move toward
reduction to practice

Redrawn from the TOGAF Specification

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Foundations, Theory, and PracticeSoftware Architecture

34

TOGAF Part 2: Enterprise Continuum

● Taxonomizes different kinds of architectures and the
solutions that are supported by those
● Left side is more technical and concrete
● Right side is more organizational

● TOGAF Technical Reference Model and Standards
Information Base identifies and taxonomizes many
solution elements

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Foundations, Theory, and PracticeSoftware Architecture

35

TOGAF Part 3: TOGAF Resource
Base
● A collection of useful information and resources that can

be employed in following the ADM process
● Includes

● advice on how to set up boards and contracts for
managing architecture

● checklists for various phases of the ADM process
● a catalog of different models that exist for evaluating

architectures
● how to identify and prioritize different skills needed to

develop architectures
●

Foundations, Theory, and PracticeSoftware Architecture

36

TOGAF Takeaways

● Large size and broad scope looks at systems
development from an enterprise perspective

● More suited to developing entire organizational
information systems rather than indivdiual applications

● A collection and clearinghouse for IT “best practices” of
all sorts

Foundations, Theory, and PracticeSoftware Architecture

37

RM-ODP
● Another standard for viewpoints, similar to DoDAF but

more limited in scope; resemble DoDAF SV
● Prescribes 5 viewpoints for distributed systems

● Enterprise – system, environment, context
● Information – information processing
● Computational – architectural structure and

component distribution
● Engineering – distribution infrastructure
● Technology – technology choices available

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Foundations, Theory, and PracticeSoftware Architecture

38

RM-ODP
● Another standard for viewpoints, similar to DoDAF but

more limited in scope; resemble DoDAF SV

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Enterprise View

Foundations, Theory, and PracticeSoftware Architecture

39

RM-ODP
● Another standard for viewpoints, similar to DoDAF but

more limited in scope; resemble DoDAF SV

Engineering View

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Foundations, Theory, and PracticeSoftware Architecture

40

UML
● As a standard, primarily prescribes a syntax
● Some semantics with purposeful ambiguity
● Encourages specialization of the standard through the

use of profiles, which are mini-standards

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Foundations, Theory, and PracticeSoftware Architecture

41

UML Takeaways

● Provide a common syntactic framework to express many
common types of design decisions

● Profiles are needed to improve rigor
● But profiles can only specialize existing UML diagram

types, not create new ones
● Documenting a system in UML does not ensure overall

system quality
● You can document a bad architecture in UML as easily

as a good one

Foundations, Theory, and PracticeSoftware Architecture

42

SysML

● An extended version of UML
● Developed by a large consortium of organizations

(mainly large system integrators and developers)
● Intended to mitigate UML’s “software bias”

● SysML group found UML standard insufficient and
profiles not enough to resolve this
● Developed new diagram types to capture

system-engineering specific views
● Limited momentum among tool vendors; focus

shifting to more heavily use UML profiles

Foundations, Theory, and PracticeSoftware Architecture

43

SysML Diagrams
SysML
Requirement
Diagram

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Foundations, Theory, and PracticeSoftware Architecture

44

SysML Diagrams
SysML

Parametric
Diagram

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Foundations, Theory, and PracticeSoftware Architecture

45

Standard UML Tools

● E.g., Rational Rose, ArgoUML, Microsoft Visio
● These are de facto standards
● All support drawing UML diagrams
● Vary along several dimensions

● Support for built-in UML extension mechanisms
● Profiles, stereotypes, tagged values, constraints

● Support for UML consistency checking
● Ability to generate other artifacts
● Generation of UML from other artifacts
● Traceability to other systems
● Support for capturing non-UML information

Foundations, Theory, and PracticeSoftware Architecture

46

ArgoUML – a UML tool

Screenshot from the Argo/UML Website and Documentation

Foundations, Theory, and PracticeSoftware Architecture

47

Telelogic System Architect

● Formerly Popkin System Architect; popular among architects
● Supports 50+ different diagram types

● UML, IDEF, OMT, generic flowcharting, even GUI
design

● Variants for DoDAF, service-oriented architectures,
enterprise resource planning

● Effectively generic diagram editor specialized for many
different diagram types with different symbols, connections
● Very little understanding of diagram semantics
● Specialized variants have some understanding of semantics

but generally less than notation-specific editors

Foundations, Theory, and PracticeSoftware Architecture

48

Rational Unified Process

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

● Phased iterative
process
framework/meta-pr
ocess

● Like spiral model,
focus on iteration
and risk
management

● Tends to view
architecture as an
artifact rather than
a pervasive
discipline

Foundations, Theory, and PracticeSoftware Architecture

49

Model-Driven Architecture
● Also known as MDA
● Core idea: specify your architecture in detailed enough terms that

implementations can
be auto-generated
entirely from models

● This vision is hard to
achieve in general
● May be more

successful in a
strong DSSE
context

Redrawn from the MDA documentation

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Foundations, Theory, and PracticeSoftware Architecture

50

Overall Takeaways

● Standards confer many benefits
● Network effects, reusable engineering knowledge,

interoperability, common vocabulary and understanding
● But are not a panacea!

● Knowledge of a breadth of standards is needed to be a good
architect, but it is critical to maintain perspective

● Caveats
● This has been a very quick tour through complex standards;

many standards are hundreds of pages and can’t adequately be
explained in five minutes

● Most available online – investigate yourself!

Foundations, Theory, and PracticeSoftware Architecture

Some More on UML

● UML combines several visual specification techniques
● use case diagrams, component diagrams, package

diagrams, deployment diagrams, class diagrams,
sequence diagrams, collaboration diagrams, state
diagrams, activity diagrams + OCL

● Semi-formal
● Precise syntax but no formal semantics
● There are efforts in formalizing UML semantics

● OMG defines the UML standard
● The current UML language specification is available

at: http://www.uml.org/

Foundations, Theory, and PracticeSoftware Architecture

UML Class Diagrams

● Class diagram describes
● Types of objects in the system
● Static relationships among them

● Two principal kinds of static relationships
● Associations between classes
● Subtype relationships between classes

● Class descriptions show
● Attributes
● Operations

Foundations, Theory, and PracticeSoftware Architecture

Example Class
Diagram

Order

dateReceived
isPrepaid
number: String
price: Money

dispatch()
close()

Product Order

quantity: Int
price: Money
isSatisfied: Bool

1

1..*

Ordered
Product

Constraint
for order class

Product
1..* 1

Corporate
Customer

contactName
creditRating
creditLimit

remind()
billForMonth(Int)

Customer

name
address

creditRating():String

Personal
Customer

creditCardNumber

indicates
generalization

11..*

Employee

0..1

1..*
Sales
Rep

{creditRating()=“poor”}

indicates that credit
rating is always
set to poor for a
Personal Customer

{ if Order.customer.creditRating() = “poor”
 then Order.isPrepaid = true }

Foundations, Theory, and PracticeSoftware Architecture

Sequence Diagrams

● A sequence diagram shows a particular sequence of
messages exchanged between a number of objects

● Sequence diagrams also show behavior by showing the
ordering of message exchange

● A sequence diagram shows some particular
communication sequences in some run of the system
● it is not characterizing all possible runs

Foundations, Theory, and PracticeSoftware Architecture

Example Sequence Diagram
:ProductOr

der
:StockItem

check()

:Order

*prepare()

[check=“true”]
remove()

:OrderEntryWindo
w

prepare()

:ReorderItem

:DeliveryItem

needsToReorder()

<<create>>

[check=“true”]
<<create>>

[needsToReorder=“true”]

Foundations, Theory, and PracticeSoftware Architecture

Collaboration Diagrams
● Collaboration diagrams show a particular sequence of

messages exchanged between a number of objects
● this is what sequence diagrams do too!

● Use sequence diagrams to model flows of control by
time ordering
● sequence diagrams can be better for demonstrating

the ordering of the messages
● not suitable for complex iteration and branching

● Use collaboration diagrams to model flows of control by
organization
● collaboration diagrams are good at showing the static

connections among the objects while also
demonstrating a particular sequence of messages

Foundations, Theory, and PracticeSoftware Architecture

Example Collaboration Diagram

:ProductOr
der

:StockItem

:Order

:OrderEntryWindo
w

:ReorderItem

:DeliveryItem

1:prepare()

1.1:*prepare()

1.1.1:check()
1.1.2:[check==true]remove()

1.1.2.1:needsToReorder()

1.1.2.2:new

1.1.3:[check==true]new

message

object

link sequence number

Sequence numbers are
used
to show the time
ordering among
the messages

Foundations, Theory, and PracticeSoftware Architecture

State Diagrams

● State diagrams are used to show possible states a single
object can get into

● How object changes state in response to events
● shows transitions between states

● Uses ideas from statecharts and adds some concepts
such as internal transitions, deferred events etc.
● “A Visual Formalism for Complex Systems,” David

Harel, Science of Computer Programming, 1987
● hierarchical state machines with formal semantics

Foundations, Theory, and PracticeSoftware Architecture

State Diagrams

● Hierarchical grouping of states
● composite states are formed by grouping other states
● A composite state has a set of sub-states

● Concurrent composite states can be used to express
concurrency
● When the system is in a concurrent composite state,

it is in all of its substates at the same time
● When the system is in a normal (non-concurrrent)

composite state, it is in only one of its substates
● If a state has no substates it is an atomic state

● Synchronization and communication between different
parts of the system is achieved using events

Foundations, Theory, and PracticeSoftware Architecture

Superstates

Checking

do/checkItem

/ getFirstItem

getNextItem
[not all items checked]

Dispatching

do/initiate
 Delivery

Waiting

Cancelled Delivered

itemsReceived
[some items not in stock]

[all items checked and
some items not in stock]

itemReceived
[all items available]

[all items checked and
 all items available]

cancelled

Active

Active is a superstate
with substates Checking,
Waiting and Dispatching

Foundations, Theory, and PracticeSoftware Architecture

Concurrent States

Checking Dispatching

Waiting

Authorizing Authorized

Delivered

Cancelled

Rejected[payment not OK]

cancelled

this transition
can only be taken
after both concurrent
states reach their
final states

Foundations, Theory, and PracticeSoftware Architecture

Activity Diagrams

● Activity diagrams show the flow among activities and
actions associated with a given object using:
● activity and actions
● transitions
● branches
● merges
● forks
● Joins

● Activity diagrams are basically an advanced version of
flowcharts

Foundations, Theory, and PracticeSoftware Architecture

Receive Order

Check Order
Item

Dispatch
Order

Authorize
Payment

Cancel Order

Add Remainder
to Stock

[succeeded]

[failed]
Assign to Order

ReceiveSupply

Choose Outstanding
Order Items

Assign to
Order

* for each
chosen
order item

[in stock]

*for each
order item

[need to reorder]

Reorder
item

[all outstanding order
items filled]

[stock assigned to all order items
and payment authorized]

Order
Processing

Finance Stock
Manager

vertical lines
are used to separate
“swimlanes”
to show which
activities are handled
by which part of the
system

Foundations, Theory, and PracticeSoftware Architecture

UML Diagrams
● Functionality, requirements

● use case diagrams
● Architecture, modularization, decomposition

● class diagrams (class structure)
● component diagrams, package diagrams,

deployment diagrams (architecture)
● Behavior

● state diagrams, activity diagrams
● Communication, interaction

● sequence diagrams, collaboration diagrams

Foundations, Theory, and PracticeSoftware Architecture

How do they all fit together?
● Requirements analysis and specification

● use-cases, use-case diagrams, sequence diagrams
● Design and Implementation

● Class diagrams show decomposition of the design
● Activity diagrams specify behaviors described in use

cases
● State diagrams specify behavior of individual objects
● Sequence and collaboration diagrams show

interaction among different objects
● Component, package, and deployment diagrams show

the high level architecture
● Use cases and sequence diagrams can help derive

test cases

Foundations, Theory, and PracticeSoftware Architecture

Object Constraint Language
● Object Constraint Language (OCL) is part of UML
● OCL was developed at IBM by Jos Warmer as a language

for business modeling within IBM
● OCL specification is available here:
http://www.omg.org/technology/documents/formal/ocl.htm
● More information:

● “The Object Constraint Language: Precise Modeling
with UML”, by Jos Warmer and Anneke Kleppe

Foundations, Theory, and PracticeSoftware Architecture

Object Constraint Language (OCL)

● OCL provides a way to develop more precise models
using UML

● What is a constraint in Object Constraint Language?
● A constraint is a restriction on one or more values of

(part of) an object-oriented model or system

Foundations, Theory, and PracticeSoftware Architecture

OCL Constraints

● OCL constraints are declarative
● They specify what must be true not what must be

done

● OCL constraints have no side effects
● Evaluating an OCL expression does not change the

state of the system

● OCL constraints have formal syntax and semantics
● their interpretation is unambiguous

Foundations, Theory, and PracticeSoftware Architecture

An Example
● Loyalty programs are used by companies to offer their

customers bonuses (e.g., frequent flier miles)
● There may be more than one company participating in a

loyalty program (“program partners”)
● A loyalty program customer gets a membership card
● Program partners provide services to customers in their

loyalty programs
● A loyalty program account can be used to save the

points accumulated by a customer. Each transaction on a
loyalty program account either earns or burns some
points.

● Loyalty programs can have multiple service levels

Foundations, Theory, and PracticeSoftware Architecture

LoyaltyProgram

enroll(c:Customer)

Service

condition: Boolean
pointsEarned: Integer
pointsBurned: Integer
description: String

0..*deliveredServices

Membership

LoyaltyAccount

points: Integer

earn(i: Integer)
burn(i: Integer)
isEmpty(): Boolean

Customer

name: String
title:String
isMale: Boolean
dateOfBirth: Date

CustomerCard
valid: Boolean
validForm: Date
goodThru: Date
color: enum{silver,
 gold}
printedName: String

0..*

0..*

age(): Integer

program

owner

card0..*

card

ProgramPartner

numberOfCustomers: Integer

partners
1..*1..*

ServiceLevel

name: String

availableServices
0..*

{ordered} 1..*
0..1

0..*
actualLevel

Transaction
points: Integer
date:Date

program(): LoyaltyProgram

0..*transactions

card
transactions
0..*transactions

0..*

Burning Earning

Date

$now: Date

isBefore(t:Date): Boolean
isAfter(t:Date): Boolean
=(t:Date): Boolean

Foundations, Theory, and PracticeSoftware Architecture

Types and Instances

● OCL types are divided into following groups

● Predefined types
● Basic types: String, Integer, Real, Boolean
● Collection types: Collection, Set, Bag, Sequence

● User-defined model types
● User defined classes such as Customer, Date,

LoyaltyProgram

Foundations, Theory, and PracticeSoftware Architecture

Operations on Boolean Type

● Boolean operators that result in boolean values
a or b, a and b, a xor b, not a, a = b,
a <> b (not equal), a implies b

● Another operator that takes a boolean argument is
 if b then e1 else e2 endif

Customer
title = (if isMale = true
 then ‘Mr.’
 else ‘Ms.’
 endif)

Foundations, Theory, and PracticeSoftware Architecture

Operations on Integer and Real
Types
● Operation on Real and Integer with Boolean result type

a = b, a <> b , a < b, a > b, a <= b, a
>= b

● Operations on Real and Integer types with result type
Real or Integer
a + b, a − b, a * b, a / b, a.abs,
a.max(b), a.min(b)

● Operations on Real and Integer types with result type
Integer
a.mod(b), a.div(b), a.round, a.floor

Foundations, Theory, and PracticeSoftware Architecture

Operations on String Type

● Operations on String type with result type Boolean
s1 = s2, s1 <> s2

● Operations on String type with result type String
s1.concat(s2), s1.toLower, s1.toUpper,
s1.substring(int1, int2)

● Operations on String type with result type Integer
s1.size

Foundations, Theory, and PracticeSoftware Architecture

Model Types

● Model types are classes, subclasses, association classes,
interfaces, etc. defined in the model

● Properties of a model type are
● attributes
● operations and methods
● navigations that are derived from the associations
● enumerations defined as attribute types

● Properties of a model type can be referenced in OCL
expressions

Foundations, Theory, and PracticeSoftware Architecture

OCL expressions and constraints

● Each OCL expression has a result
● the value that results by evaluating the expression

● The type of an OCL expression is the type of the result
value
● either a predefined type or a model type

● An OCL constraint is an OCL expression of type Boolean

Foundations, Theory, and PracticeSoftware Architecture

Invariants

● Using OCL we can specify class invariants such as
Customer
age >= 18

● As a convention we will write the OCL expressions in the
following form:
OCLcontext
OCLexpression

● For the above example, the expression age >= 18 is an
invariant of the Customer class, i.e. it holds for every
instance of that class

Foundations, Theory, and PracticeSoftware Architecture

Invariants

● We can also write invariants on attributes of associated
classes

● Examples:

Membership
card.owner = customer

CustomerCard
printedName = owner.title.concat(owner.name)

Foundations, Theory, and PracticeSoftware Architecture

Writing Pre and Postconditions

● One can specify the pre and postcondition of an
operation of a class using OCL expressions

Type1::operation(arg: Type2) :
ReturnType

pre: arg.attr = true

post: result = arg.attr xor
self.attribute2

Foundations, Theory, and PracticeSoftware Architecture

Constructs for Postconditions

● One can refer to the value of an attribute at the
beginning operation in the postcondition using the @pre
syntax

LoyaltyProgram::enroll(c: Customer)
pre: not customer->includes(c)
post: customer = customer@pre->including(c)

● You can refer to the return value of the method using
the result keyword

LoyaltyAccount::isEmpty()
pre: -- none
post: result = (points = 0)

