Architectural
Standards

Infosys, Mysore
December 16

Copyright © Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy. All rights reserved.

Software Architecture | Foundations, Theory, and Practice

Objectives

e Concepts
What are standards?
Why use standards?

o And why not? (drawbacks)
Deciding when to adopt a standard
le Prevalent Architectural Standards
Conceptual standards
Notational standards
Standard tools
Process standards

Software Architecture Foundations, Theory, and Practice

Objectives

o Concepts
What are standards?
Why use standards?
o And why not? (drawbacks)
Deciding when to adopt a standard

Software Architecture Foundations, Theory, and Practice

What are standards?

o Definition: a standard is a form of agreement between
parties

o Many kinds of standards

For notations, tools, processes, organizations,
domains

o There is a prevalent view that complying to standard ‘X’
ensures that a constructed system has high quality

This is almost never strictly true
But that doesn’t mean standards are worthless!
Here, we will attempt to put standards in perspective

Software Architecture Foundations, Theory, and Practice

De jure and de facto standards

o Some standards are controlled by a body considered
authoritative

ANSI, ISO, ECMA, W3C, IETF
o These standards are called de jure (“from law")
e De jure standards usually
are formally defined and documented
are evolved through a rigorous, well-known process

are managed by an independent body, governmental
agency, or multi-organizational coalition rather than a
single individual or company

Software Architecture Foundations, Theory, and Practice

De jure and de facto standards
(cont’'d)

o Some standards emerge through widespread awareness and use
o These standards are called de facto (*in practice”)
o De facto standards usually

are created by a single individual organization to address a
particular need

are adopted due to technical superiority or market dominance of
the creating organization

evolve through an emergent, market-driven process

are managed by the creating organization or the users
themselves, rather than through a formal custodial body

Software Architecture Foundations, Theory, and Practice

Examples of de jure and de facto

e De jure standards
UML (managed by OMG)
CORBA (also managed by OMG)
HTTP protocol (managed by IETF)
o De facto standards
PDF format (managed by Adobe)
o May become de jure through ISO
Windows (managed by Microsoft)
o There is a substantial gray area between these two

Software Architecture Foundations, Theory, and Practice

Gray-area Standards

e HTML
Officially standardized by W3C, indicating de jure

Flavors and browser-specific extensions developed by
Microsoft, Netscape, and others, creating de facto variants

None of these has power to force users to use standard
o JavaScript
Developed by Netscape; copied (as JScript) by Microsoft

After substantial adoption and possibly under threat of
forking/splintering, Netscape submits it to ECMA

Now standardized as ECMAScript (de jure)

JavaScript and variants continue to be developed as
compatible extensions of ECMAScript

Software Architecture Foundations, Theory, and Practice

Another spectrum

o Standards (whether de jure or de facto) can be:
Open
o Allow public participation in the standardization
process
o Anyone can submit ideas or changes for review
Closed (a.k.a. proprietary)

o Only the custodians of a standard can participate
in its evolution

Software Architecture Foundations, Theory, and Practice

Open vs. closed standards

o Another spectrum with a gray area

Some standards bodies have high barriers to entry
(e.g., steep membership fees, vote of existing
membership)

Some standards (e.qg., Java) have aspects of both

o Sun Microsystems is effectively in control of Java
as a de facto standard

o There is an open “community process” by which
external parties can participate in a limited way

10

Software Architecture Foundations, Theory, and Practice

Why use standards?

o Standards are an excellent way to create and exploit
network effects

o A network effect exists if the value of participation
increases as the number of users of the standard
InCreases

E "] versus [

o Other network effects:
TCP/IP, HTTP & HTML, UML...

Software Architecture
Why use standards? (cont’'d)

o T0 ensure interoperability between products developed
by different organizations

Usually in the interest of fostering a network effect

o To carry hard-won engineering knowledge from one
project to another

To take advantage of hard-won engineering
knowledge created by others

e As an effort to attract tool vendors
To create economies of scale in tools

o To attempt to control the standard’s evolution in your
favor

12

Software Architecture Foundations, Theory, and Practice

Drawbacks of standards

o Limits your agility
Remember that doing ‘good’ architecture-based
development means identifying what is important in
your project
o Standards often attempt to apply the same techniques to
a too-broad variety of situations

o The most widely adopted standards are often the most
general

13

Software Architecture Foundations, Theory, and Practice

Overspecification vs.
underspecification

o A perennial tension in standards use and development
o Overspecification

A standard prescribes too much and therefore limits
its applicability too much

o Underspecification

A standard prescribes too little and therefore doesn't
provide enough guidance

 Possibly in an effort to broaden adoption

14

Software Architecture Foundations, Theory, and Practice

Two different kinds of
underspecification

o Two compromises often made in negotiation when
disagreements occur

Leave the disagreeable part of the standard
unspecified or purposefully ambiguous

Include both opinions in the standard but make them
both optional

o Both of these weaken the standard’s value

Consider the different kinds of reduction in
interoperability imposed by these strategies

o Although they may improve adoption!

15

Software Architecture
When to adopt a standard?

o Early adoption
Benefits
o Improved ability to influence the standard
Get your own goals incorporated; exclude competitors

o Early to market

If standard becomes successful, early marketers will
profit

o Early experience
Leverage enhanced experience to your benefit

16

Software Architecture Foundations, Theory, and Practice

When to adopt a standard?
(cont’'d)

o Early adoption
Drawbacks

e Risk of failure

Standard may not be successful for reasons out of your
control

» Moving target

Early standards tend to evolve and ‘churn” more than
mature ones, and may be ‘buggy’

o Lack of support

Early standards tend to have immature (or no) support
from tool and solution vendors

17

Software Architecture Foundations, Theory, and Practice

When to adopt a standard?
(cont’'d)

o Late adoption
Benefits
o Maturity of standard
o Better support
Drawbacks
o Inability to influence the standard
o Restriction of innovation

18

Software Architecture

Objectives

o Prevalent Architectural Standards

Conceptual standards
Notational standards
Standard tools
Process standards

Foundations, Theory, and Practice

19

Software Architecture
IEEE 1471

o« Recommended practice for architecture description
Often mandated for use in government projects

o Scope is limited to architecture descriptions (as opposed
to processes, etc.)
o Does not prescribe a particular notation for models

Does prescribe a minimal amount of content that
should be contained in models

» Identifies the importance of stakeholders and advocates
models that are tailored to stakeholder needs

o A notion of views and viewpoints similar to the ones
used in this course

20

IEEE 1471 (cont'd)

o Very high level
Purposefully light on specification
Does not advocate any specific notation or process
o Useful as a starting point for thinking about architecture

Defines key terms
Advocates focus on stakeholders

o Being compliant does NOT ensure that you are doing
good architecture-centric development

21

Software Architecture Foundations, Theory, and Practice

Department of Defense Architecture
Framework

o DoDAF, evolved from C4ISR
Has some other international analogs (MoDAF)

‘Framework’ here refers to a process or set of
viewpoints that should be used in capturing an
architecture

o Not necessarily an architecture implementation
framework

o Identifies specific viewpoints that should be captured

Includes what kinds of information should be
captured

Does not prescribe a particular notation for doing the
capture 22

Software Architecture

DoDAF (cont'd)

Foundations, Theory, and Practice

Concept Our Term DoDAF Term
A set of perspectives from which | Viewpoint set View
descriptions are developed

A perspective from which Viewpoint (Kind of)
descriptions are developed product

An artifact describing a system View Product

from a particular perspective

1471 among others)

o Some vocabulary inconsistency with our terms (and IEEE

23
B

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture
DoDAF (cont'd)

o Three views (in our terms: viewpoint sets)
Operational View (OV)

o "Identifies what needs to be accomplished and
who does it”

o Defines processes and activities, the operational
elements that participate in those activities, and
the information exchanges between the elements

Systems View (SV)

o Describe the systems that provide or support
operational functions and the interconnections
between them

o Systems in SV associated with elements in OV

24

Software Architecture
DoDAF (cont'd)

o Three views (in our terms: viewpoint sets) — continued
Technical Standards View (TV)

o Identify standards, (engineering) guidelines, rules,
conventions, and other documents

o T0 ensure that implemented systems meet their
requirements and are consistent with respect to
the fact that they are implemented according to a
common set of rules

o Also a few products address cross cutting concerns that
affect All Views (AV)

E.g., dictionary of terms

25

DoDAF Examples

| Lunar Lander Concept |

Relay
Satellite

Lunar Lander

Ground System
Network O

X
|

Satellite
Station

OV-1 - —
“High-Level Operational Concept Graphic”

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

DoDAF Examples (cont’'d)

Space
Agency

Oversight
Organization

I l

Satellite

Ground Lander Crew

Systems Group

Systems Group

Command Lunar Module
Module Pilot Pilot

Mission

Commander

OovV-4
“Organizational Relationships”

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture
DoDAF Examples (cont’'d)

Lunar
Lander

Process Local Commands

Communicate with Ground

Sate!lite I Sraca
Station Link

Encode/Decode

Transmit/Receive

Ground

/
Station 4 Local Fiber Command

Network

Note implied correspondence
with OV-1 entities

Track Telemetry

Provide Feedback

SV-1
“Systems Interface Description” 28

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture
DoDAF Examples (cont’'d)

to .
\ Ground Station Sate!llte Lunar Lander
Station
f

rom

Ground Ground Feedback
Station (TCP/IP)
. Lander
Satellite o Ground Feedback
. Transmissions

Station (TCP/IP) (Space Protocol)

Lander
Lunar Lander Transmissions

(Space Protocol)

J

ne of severa "views
SV-3 in DoDAF

“Systems-Systems Matrix” 29

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture

TV-1
“Technical
Standards
Profile ”

DoDAF Examples (cont’'d)

fS;fg(\i::ds Ground Satellite Lunar
Station Station Lander
Systems
Service Bafvice Standard
Area
ISO/IEC 9945-
1:1996,
Information
Technology -
Information Operating Portabl_e Baseline: .
Operating ' Baseline
Technology System 1 Jan Baseline
Standards | Standard System Interface | ;5 AL
(POSIX) - Part 1:
System
Application
Program
Interface (API)
Extensible
Markup
Information Language (XML) . .
Transfer BZI\?/;'I?W 1.0 (Fourth ?a;igls ?aés;h::
Standards Edition) W3C
Recommendation
16 August 2006
FDDI / ANSI
Physical);2'13??;5:8& Baseline Baseline
Layer y y + 3 mos + 3 mos

Protocol (PHY) --
also 1ISO 9314-1

30

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

DoDAF Takeaways

o Extremely comprehensive standard advocating capture of
many views

Takes a high-level organizational perspective

OV views tend to deal with human and systems
organizations

SV views tend to deal with technical aspects of systems
(most like the architectural descriptions we have been
talking about)

TV views tend to deal with practical issues of reuse and
leveraging existing technology

o Tells us a lot about WHAT to model, but nearly nothing
about HOW to model it

31

Software Architecture Foundations, Theory, and Practice

The Open Group Architecture
Framework

o TOGAF — an “enterprise architecture” framework

Focuses beyond hardware/software

How can enterprises build systems to achieve business goals?
o Four key areas addressed

Business concerns, which address business strategies,
organizations, and processes;

Application concerns, which address applications to be
deployed, their interactions, and their relationships to
business processes;

Data concerns, which address the structure of physical and
logical data assets of an organization and the resources that
manage these assets; and

Technology concerns, which address issues of
infrastructure and middleware.

32

Software Architecture

[o

An iterative process for
architecture-centric
development

Each step in the
proceses associated
with views to be
captured

Early phases focus on
conceptual issues; later
phases move toward
reduction to practice

Foundations, Theory, and Practice

TOGAF Part 1: ADM

Architecture
Vision

Architecture
Change
Management

Business
Architecture

Information
System
Architecture

Requirements
Management

Implementation
Governance

Technology

Migration
Architecture

Planning

Opportunities
and Solutions

Redrawn from the TOGAF Specificatieg3 ‘

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture Foundations, Theory, and Practice

TOGAF Part 2: Enterprise Continuum

Architecture Continuum

Foundation
Architectures

Common System
Architectures

Industry
Architectures

Organization
Architectures

Guides &
Supports

Guides &
Supports

Guides &
Supports

Guides &
Supports

‘ Products & \ o System O Industry o ‘ Organization \
Services Solutions Solutions Solutions

Solutions Continuum

o Taxonomizes different kinds of architectures and the
solutions that are supported by those

Left side is more technical and concrete
Right side is more organizational

e TOGAF Technical Reference Model and Standards
Information Base identifies and taxonomizes many
solution elements

34

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture Foundations, Theory, and Practice

TOGAF Part 3: TOGAF Resource
Base

o A collection of useful information and resources that can
be employed in following the ADM process

e Includes

advice on how to set up boards and contracts for
managing architecture

checklists for various phases of the ADM process

a catalog of different models that exist for evaluating
architectures

how to identify and prioritize different skills needed to
develop architectures

35

TOGAF Takeaways

o Large size and broad scope looks at systems
development from an enterprise perspective

o More suited to developing entire organizational
information systems rather than indivdiual applications

o A collection and clearinghouse for IT “best practices” of
all sorts

36

Software Architecture Foundations, Theory, and Practice

RM-ODP

o Another standard for viewpoints, similar to DoDAF but
more limited in scope; resemble DoDAF SV

o Prescribes 5 viewpoints for distributed systems
Enterprise — system, environment, context
Information — information processing

Computational — architectural structure and
component distribution

Engineering — distribution infrastructure
Technology — technology choices available

37
D]
Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture

RM-ODP

Ground
Station

Ground
Comm

Flight

Director "
Station

Enterprise View

o Another standard for viewpoints, similar to DoDAF but
more limited in scope; resemble DoDAF SV

Foundations, Theory, and Practice

Lunar
Module

Mission
Commander

Lunar
Module
Comm

Lunar
Module
Pilot

38
e

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

.
Software Architecture Foundations, Theory, and Practice

e Another stanc
more limited

Command
Receiver

Command

Interface

Application
Layer
Protocol

Application

Layer
Protocol

TCP/IP
Protocol

TCP/IP
Protocol

Engineering View

39

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture Foundations, Theory, and Practice

o As a standard, primarily prescribes a syntax
o Some semantics with purposeful ambiguity

o Encourages specialization of the standard through the
use of profiles, which are mini-standards

ication &
FAPRIERToR == <<needs-to-build>>
Component ;
Bootstrapper <---»<<is—instantia{ted-by» Header Files
<<plugs-into>> <<calls>> <<needs-to-build>>
Runtime $:| Off-the-shelf $:\

Environment

Library

0

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

UML Takeaways

o Provide a common syntactic framework to express many
common types of design decisions
o Profiles are needed to improve rigor
But profiles can only specialize existing UML diagram
types, not create new ones
o Documenting a system in UML does not ensure overall
system quality
You can document a bad architecture in UML as easily
as a good one

41

Software Architecture Foundations, Theory, and Practice
SysML

o An extended version of UML

o Developed by a large consortium of organizations
(mainly large system integrators and developers)

o Intended to mitigate UML’s “software bias”

o SysML group found UML standard insufficient and
profiles not enough to resolve this

Developed new diagram types to capture
system-engineering specific views
Limited momentum among tool vendors; focus
shifting to more heavily use UML profiles

42

Software Architecture

SysML Diagra

SysML
Requirement
Diagram

Foundations, Theory, and Practice

Req [package] LunarLanderRequirements [Requirement Derivationy

<<rationale>>
Burn rate must not
exceed remaining fuel

<<requirement>>
ValidateBurnRate

<<derivéReqt>>

<<deriveReqt>>
<<requirement>>
AdjustBurnRate SN
Sensor <<requirement>>
f\ Requirements TrackRemainingFuel

S

<<requirement>>
DetectCurrentVelocity

<<requirement>>
DetectCurrentAltitude

’<derivéReqt>> <<derﬁveRéqt>§

<<derivéReqt>> <<requirement>>
| TrackTime
<deriyeReqt>
<<requirement>> g
DisplayStatus
i <<deriveReqt>>
<<deriveReqt>> '
<<requirement>>
CalculateNextState 43

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture Foundations, Theory, and Practice

SysML Diagrams

SysML
Pa ram etrl C | par LunarLandeQ
Diagram

J
J

E fuel j
altitude fuel
L] o altitude u newBurnRate
Next State velocity Lander
Equation l: velocity :| State [Userinput
] burnRate N newBurnRate
. burnRate
|:tlme
gravity
gravity
time currentTime
Environment B Clock currentTime

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture Foundations, Theory, and Practice

Standard UML Tools

o E.g., Rational Rose, ArgoUML, Microsoft Visio
o These are de facto standards
o All support drawing UML diagrams

o Vary along several dimensions
Support for built-in UML extension mechanisms

o Profiles, stereotypes, tagged values, constraints
Support for UML consistency checking
Ability to generate other artifacts
Generation of UML from other artifacts
Traceability to other systems
Support for capturing non-UML information

45
B

Software Architecture

Foundations, Theory, and Practice

ArgoUML - a UML tool

w2 The Shapes Project.zargo - shapes - ArgoUML *

File Edit Wiew Create Arrange Generation Critigue Tools Help
ReB2 XRAE<C Y AA- ERNERREE
. - 4
!Package-cemrlc v E L | Elg—v""';"}_,? EA EE R O~
{Order By Type, Natne V] R e
= 3 untitledmodel Al | Shape =|
shapes
[&) Use Case Diagram 1 newOper ationQ) - void This is a note. I
— (anon Association) | ZP ‘{P /
= &5 oneDimensianal 1 OneDim ensional TwoDim ensional
B getLength
= E Point getlengthl) : double getArea() : double =
E X 4 4& oin
= y % :int
® B polygon H | 2ot L T Jycint
[+ E Shape | > +Vertices +
@ B TwoDimensional 1 ccreates Polygon() : void v |
[This is a note. |88] ¥
9 double v [s Diagram ‘
hd S =
mBy Priority V]E 12|te1 -4 ToDo ftem [roperties || Documentation || Style || Source || Constrairts || Tagged Values || Checkiist |
[Add Instance Wari: & [:‘;5; Polygon has multiple base classes, but Java does not support o
[T Add Instance Vari Dﬂ ultiple inheritance. You must use interfaces instead.
[Add Instance Vari: L
9 @ is change is recquired before you can generate Java code.
[Add Operationsto —| L2
. ’ v
3. nse _the "Next:" hutton. or manuallw (11 remowe one
[Add Constructor te . D
e Net) [

Screenshot from the Argo/UML Website and Documentation

46

Software Architecture
Telelogic System Architect

o Formerly Popkin System Architect; popular among architects
Supports 50+ different diagram types
o UML, IDEF, OMT, generic flowcharting, even GUI
design
o Variants for DoDAF, service-oriented architectures,
enterprise resource planning

o Effectively generic diagram editor specialized for many
different diagram types with different symbols, connections

Very little understanding of diagram semantics

Specialized variants have some understanding of semantics
but generally less than notation-specific editors

47

Software Architecture

Phased iterative
process
framework/meta-pr
ocess

Like spiral model,
focus on iteration

Disciplines

Business Modeling

Requirements

and risk Analysis & Design
Mana g ement Implementation
Tends to view Test
architecture as an e

artifact rather than
a pervasive
discipline

Configuration &
Change Management

Project Management

Environment

Foundations, Theory, and Practice

Rational Unified Process

| Inception | | Elaboration |
/

Phases
| Construction | | Transition |

————————

.

y— .

/\/\

/\

L

ySS-
Initial Elab Elab Cons Cons Cons Tran Tran
1 2 1 2 N 1 2

Iterations

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture Foundations, Theory, and Practice

Model-Driven Architecture

o Also known as MDA
o Core idea: specify your architecture in detailed enough terms that

implementations can , ~

be aUtO'generatEd Platform-Independent (Partially-) automated

entirely from models outodel (PIM) \vecadng & sacgrd
« This vision is hard to ansiomisoe [@UT]

achieve in general /
May be more

Platform-Specific

successful in a el (S0
Strong DSSE (Partially) Executable System
context —\¢
Platform-Definition In an application-specific,
Model (PDM) domain-specifc, or general-purpose

Selects Middleware/Component programming language

Model

S—

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture Foundations, Theory, and Practice

Overall Takeaways

o Standards confer many benefits

Network effects, reusable engineering knowledge,
interoperability, common vocabulary and understanding
o But are not a panacea!

Knowledge of a breadth of standards is needed to be a good
architect, but it is critical to maintain perspective
o Caveats

This has been a very quick tour through complex standards;

many standards are hundreds of pages and can‘t adequately be
explained in five minutes

Most available online — investigate yourself!

50

Software Architecture Foundations, Theory, and Practice

Some More on UML

o UML combines several visual specification techniques

use case diagrams, component diagrams, package
diagrams, deployment diagrams, class diagrams,
sequence diagrams, collaboration diagrams, state
diagrams, activity diagrams + OCL

o Semi-formal
Precise syntax but no formal semantics
There are efforts in formalizing UML semantics

o OMG defines the UML standard

The current UML language specification is available
at: http://www.uml.org/

UML Class Diagrams

o Class diagram describes
Types of objects in the system
Static relationships among them

o Two principal kinds of static relationships
Associations between classes
Subtype relationships between classes

o Class descriptions show
Attributes
Operations

Software Architecture

Diagram

Foundations, Theory, and Practice

Example Class

Order Customer
dateReceived 1% 1
isPrepaid nggne
number: String address
price: Money creditRating():String
dispatch() Constraint 1nd1cat§s .
close() for order class generalization |
1 / Corporate Personal
Customer Customer
{ if Order.customer.creditRating() = “poor” | .ot tName .
then Order.isPrepaid = true } creditRating creditCardNumber
Ordered creditLimit
Product
oduct |1 * remind()
Product Order billForMonth(Int) {creditRating()="podr”
e * I1..* indicates that creflit
qu.antlty. Int I.. 1 Product s -
price: Money - 0.1 g y
1sSatisfied: Bool cp i

Employee

set to poor for a
ersonal Customer

Software Architecture Foundations, Theory, and Practice

Sequence Diagrams

o A sequence diagram shows a particular sequence of
messages exchanged between a number of objects

o Sequence diagrams also show behavior by showing the
ordering of message exchange

o A sequence diagram shows some particular
communication sequences in some run of the system

it is not characterizing all possible runs

Software Architecture

Foundations, Theory, and Practice

[check="true”’]
remove()

:OrderEntryWindo 2 rocuctor
QOrderEntryWindo -Order ProductOr .StockItem
- p— der
prepare()
*prepare()
check()

Example Sequence Diagram

needsToReorder()

<

[needsToReorder="“true”]

<<create>>

A4

[check="true”’]
<<create>>

:Reorderltem

A4

:Deliveryltdm

Software Architecture Foundations, Theory, and Practice

Collaboration Diagrams

o Collaboration diagrams show a particular sequence of
messages exchanged between a number of objects

this is what sequence diagrams do too!

o Use sequence diagrams to model flows of control by
time ordering

sequence diagrams can be better for demonstrating
the ordering of the messages

not suitable for complex iteration and branching

o Use collaboration diagrams to model flows of control by
organization

collaboration diagrams are good at showing the static
connections among the objects while also
demonstrating a particular sequence of messages

Software Architecture ‘ Foundations, Theory, and Practice

Example Collaboration Diagram

Sequence numbers are

:OrderEntryWindo / object

w used
l:prepare() <—— messace to show the time
link — l Prepes s sequence number
orde:an among
:Order
— the messages

1.1.2.1:needsToReorder()

\/

{ 1.1:*prepare()

:ProductOr :StocklItem
der g
1.1.1:check()
1.1.2:[check==true]remove() \ 1.1.2.2:new
1.1.3:[check==true]new :Deliveryltem
:Reorderltem

Software Architecture Foundations, Theory, and Practice

State Diagrams

o State diagrams are used to show possible states a single
object can get into

o How object changes state in response to events
shows transitions between states

o Uses ideas from statecharts and adds some concepts
such as internal transitions, deferred events etc.

“A Visual Formalism for Complex Systems,” David
Harel, Science of Computer Programming, 1987

hierarchical state machines with formal semantics

Software Architecture Foundations, Theory, and Practice

State Diagrams

o Hierarchical grouping of states
composite states are formed by grouping other states
A composite state has a set of sub-states

o Concurrent composite states can be used to express
concurrency

When the system is in a concurrent composite state,
it is in all of its substates at the same time

When the system is in @ nhormal (non-concurrrent)
composite state, it is in only one of its substates

If a state has no substates it is an atomic state

Software Architecture ‘ Foundations, Theory, and Practice

Active is a superstate

S U p e rSta te S with substates Checking,

/ Waiting and Dispatching

®

/ / getFirstltem Active \
getNextltem (" Che c"kin g \ / w

: [all items checked and Dispatching
[not all items checked] all items available] .
do/checkltem { do/ 1n1t.121te
> Delivery
N . . o
itemReceived

[all items checked and
some items not in stock]

[all items available]

A

itemsReceived >
[some items not in stock]

o

Waiting

/

Cancelled Delivered

cancelled

Y

Software Architecture

Concurrent States

Foundations, Theory, and Practice

Checking

Dispatching

A4

@& O)
@ —— Authorizing > Authorized —»@
N ./
[payment not OK]] Rejected

\ cancelled

Cancellel

Delivered

this transition
can only be tak

after both concIrent
states reach theif
final states

Software Architecture Foundations, Theory, and Practice

Activity Diagrams

o Activity diagrams show the flow among activities and
actions associated with a given object using:

activity and actions
transitions
branches

merges

forks

Joins

o Activity diagrams are basically an advanced version of
flowcharts

Software Architecture Foundations, Theory, and Practice

l inance ? s T -
Processing Manager
Geceive Order> @eoeivesuppla

*for each v

v | order item Ghoose Outstandi@ \

Authorize Check Order giies vertical lines
Payment Item are used to separgte

[in stock] * for each o
! failed : chosen to show which
e QSSign to Order> y order item activities are hanflled

Assign to by which part offthe
Order system

[need to reorder]
Reorder
item

[stock assigned to all order items

and payment authorized] Add Remainder
Dispatch IS

Order

[sdcceeded] Cancel Order

[all outstanding orddr
items filled]

UML Diagrams

o Functionality, requirements
use case diagrams

o Architecture, modularization, decomposition
class diagrams (class structure)

component diagrams, package diagrams,
deployment diagrams (architecture)

o Behavior
state diagrams, activity diagrams
o Communication, interaction
sequence diagrams, collaboration diagrams

Software Architecture
How do they all fit together?

o Requirements analysis and specification

use-cases, use-case diagrams, sequence diagrams
o Design and Implementation

Class diagrams show decomposition of the design

Activity diagrams specify behaviors described in use
cases

State diagrams specify behavior of individual objects

Sequence and collaboration diagrams show
interaction among different objects

Component, package, and deployment diagrams show
the high level architecture

Use cases and sequence diagrams can help derive

Software Architecture Foundations, Theory, and Practice

Object Constraint Language

o Object Constraint Language (OCL) is part of UML

o OCL was developed at IBM by Jos Warmer as a language
for business modeling within IBM

o OCL specification is available here:

http://www.omg.org/technology/documents/formal/ocl.htm

e More information:

“The Object Constraint Language: Precise Modeling
with UML", by Jos Warmer and Anneke Kleppe

Software Architecture
Object Constraint Language (OCL)

o OCL provides a way to develop more precise models
using UML

o What is a constraint in Object Constraint Language?

A constraint is a restriction on one or more values of
(part of) an object-oriented model or system

Software Architecture Foundations, Theory, and Practice

OCL Constraints

e OCL constraints are declarative

They specify what must be true not what must be
done

e OCL constraints have no side effects

Evaluating an OCL expression does not change the
state of the system

o OCL constraints have formal syntax and semantics
their interpretation is unambiguous

Software Architecture Foundations, Theory, and Practice

An Example

Loyalty programs are used by companies to offer their
customers bonuses (e.g., frequent flier miles)

There may be more than one company participating in a
loyalty program (“'program partners”)
A loyalty program customer gets a membership card

Program partners provide services to customers in their
loyalty programs

A loyalty program account can be used to save the
points accumulated by a customer. Each transaction on a
loyalty program account either earns or burns some
points.

Loyalty programs can have multiple service levels

Software Architecture

Foundations, Theory, and Practice

1 % 1+ | LoyaltyProgram | program 0..* Customer
artners . :
2 | enroll(c:Customer)| 0..* name: String
PragramPartner title:String
numperOfCustomers: Integer 0..* Membership isMale: Boolean
dateOfBirth: Date
actualLevel 0..1
{ordered} | 1..* age(): Integer
- LoyaltyAccount owner
ServiceLevel
deliyeredServices | 0..* : points: Integer
Servi name: String 0..* | card
e.r.vwe 0. % earn(i': Integer) CustomerCard
COI.ldl'[lon. Boolean . pum(l: Integer) card [valid: Boolean
pointsEarned: Integer [availableServices isEmpty(): Boolean : ,

. validForm: Date
pointsBurned: Integer)
description: String . el e [Dae

: transactions | 0..* color: enum{silver,
0. | Transaction . gOlfi}

O pOlnts: Integer 0% prlntedName. Strlng

Date date:Date - . lcard

transactions

$now: Date program(): LoyaltyProgram

isBefore(t:Date): Boolean A

isAfter(t:Date): Boolean | |

=(t:Date): Boolean Burning Earning

Software Architecture | Foundations, Theory, and Practice

Types and Instances

o OCL types are divided into following groups

Predefined types
o Basic types: String, Integer, Real, Boolean
o Collection types: Collection, Set, Bag, Sequence

User-defined model types

o User defined classes such as Customer, Date,
LoyaltyProgram

Software Architecture Foundations, Theory, and Practice

Operations on Boolean Type

o Boolean operators that result in boolean values
a or b, a and b, a xor b, not a, a = b,
a <> b (notequal), a implies b

o Another operator that takes a boolean argument is
1f b then el else e2 endif

Customer
title = (1f 1sMale = true
then ‘Mr.’
else ‘Ms.'
endif)

Software Architecture Foundations, Theory, and Practice

Operations on Integer and Real
Types

o Operation on Real and Integer with Boolean result type
a =>Db, a<>b, a<b, a>b, a<=Db, a
>= Db
o Operations on Real and Integer types with result type
Real or Integer
a + b, a-b,a*Db, a/ b, a.abs,
a.max (b), a.min (b)

o Operations on Real and Integer types with result type
Integer

a.mod(b), a.div(b), a.round, a.floor

Software Architecture Foundations, Theory, and Practice

Operations on String Type

o Operations on String type with result type Boolean
sl = s2, sl <> s2

o Operations on String type with result type String
sl.concat(s2), sl.toLower, sl.toUpper,

sl.substring(intl, 1nt2)

o Operations on String type with result type Integer

sl.silze

Model Types

o Model types are classes, subclasses, association classes,
interfaces, etc. defined in the model

o Properties of a model type are
attributes
operations and methods
navigations that are derived from the associations
enumerations defined as attribute types

o Properties of a model type can be referenced in OCL
expressions

Software Architecture Foundations, Theory, and Practice

OCL expressions and constraints

o Each OCL expression has a result
the value that results by evaluating the expression

o The type of an OCL expression is the type of the result
value

either a predefined type or a model type

o An OCL constraint is an OCL expression of type Boolean

Software Architecture Foundations, Theory, and Practice

Invariants

o Using OCL we can specify class invariants such as

Customer
age >= 18

o As a convention we will write the OCL expressions in the
following form:
OCLcontext

OCLexpression

o For the above example, the expression age >= 18 is an

invariant of the Customer class, i.e. it holds for every
instance of that class

Software Architecture Foundations, Theory, and Practice

Invariants

o We can also write invariants on attributes of associated
classes

o Examples:

Membership
card.owner = customer

CustomerCard
printedName = owner.title.concat(owner.name)

Software Architecture Foundations, Theory, and Practice

Writing Pre and Postconditions

o One can specify the pre and postcondition of an
operation of a class using OCL expressions

Typel : :operation(arg: Tvyvpe?)

ReturnTvype
[EESS NG GIIERREE=— N T
post: result = arg.attr xor

self.attribute?

Software Architecture | Foundations, Theory, and Practice

Constructs for Postconditions

o One can refer to the value of an attribute at the
beginning operation in the postcondition using the cpre
syntax

LovaltvProgram: :enroll (c: Customer)
pre: not customer->includes (c)
post: customer = customer(@pre->including(c)

e You can refer to the return value of the method using
the result keyword

LovaltyAccount::isEmpty ()
pre: —- none

post: result = (points = 0)

