
LECTURE 1: Introduction

Course Information

❑ Textbooks (see more on the course website)
– Bruegge & Dutoit: Object-Oriented Software Engineering: Using UML, Patterns and

Java, Third Edition, Prentice Hall, 2010. | ISBN 0-13-6061257
– Miles & Hamilton: Learning UML 2.0, O’Reilly Media, 2006. ISBN: 0-596-00982-8

2

Introduction: Software is Complex

❑ Complex ≠ complicated

❑ Complex = composed of many simple parts

 related to one another

❑ Complicated = not well understood, or explained

Complexity Example:
Scheduling Fence Construction Tasks

Setting posts
[3 time units]

Cutting wood
[2 time units]

Painting
[5 time units for uncut wood;

4 time units otherwise]

Nailing
[2 time units for unpainted;

3 time units otherwise]

Setting posts < Nailing,
Painting
Cutting <
Nailing

…shortest possible completion time = ?

4[⇒ “simple” problem, but hard to solve without a pen and paper
]

More Complexity

Suppose today is Tuesday, November 29

What day will be on January 3?

[To answer, we need to bring the day names and the day numbers
into coordination, and for that we may need again a pen and paper]

The Frog in Boiling Water

❑ Small problems tolerate
complacency—lack of immediate
penalty leads to inaction

❑ Negative feedback accumulates
subtly and by the time it becomes
painful, the problem is too big to
address

❑ Frog in gradually heated water
analogy:
– The problem with little things is that

none of them is big enough to scare
you into action, but they keep
creeping up and by the time you get
alarmed the problem is too difficult to
handle

– Consequently, “design smells”
accumulate, “technical debt” grows,
and the result is “software rot”

6

https://en.wikipedia.org/wiki/Design_smell
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Software_rot

The Role of Software Engg. (1)

Customer

Programmer

A bridge from customer needs to programming implementation

First law of software engineering
Software engineer is willing to learn the problem domain
(problem cannot be solved without understanding it first) 7

The Role of Software Engg. (2)

8

Example: ATM Machine

Understanding the money-machine problem:

9

Problem-solving Strategy

Divide-and-conquer:
❑Identify logical parts of the system that each solves a

part of the problem
❑Easiest done with the help of a domain expert who

already knows the steps in the process (“how it is
currently done”)

❑Result:
A Model of the Problem Domain
(or “domain model”)

10

How ATM Machine Might Work

11

Cartoon Strip: How ATM Machine
Works

12

Software Engineering Blueprints

Specifying software problems and solutions is like
cartoon strip writing

Unfortunately, most of us are not artists, so we will
use something less exciting:
UML symbols

However …

13

Second Law of Software Engineering

❑ Software should be written for people first

– (Computers run software, but hardware quickly

becomes outdated)

– Useful + good software lives long

– To nurture software, people must be able to understand

it

14

Software Development Methods

Method = work strategy
▪ The Feynman Problem-Solving Algorithm:

(i) Write down the problem (ii) think very hard, and
(iii) write down the answer.

Waterfall
▪ Unidirectional, finish this step before moving to the next

Iterative + Incremental
▪ Develop increment of functionality, repeat in a feedback loop

Agile
▪ Continuous user feedback essential; feedback loops on several levels

of granularity

15

Waterfall Method

16

Each activity confined to its “phase”.
Unidirectional, no way back;
finish this phase before moving to the next

UML – Language of Symbols

17

UML = Unified Modeling Language

Online information:
http://www.uml.org

How Much Diagramming?

❑ Use informal, ad-hoc, hand-drawn, scruffy diagrams during
early stages and within the development team
– Hand-drawing forces economizing and leads to low emotional

investment
• Economizing focuses on the essential, most important considerations

– Prioritize substance over the form
• Not being invested facilitates critique and suggested modifications

– Always take snapshot to preserve records for future
❑ Use standardized, neat, computer-generated diagrams

when consensus reached and designs have “stabilized”
– Standards like UML facilitate communication with broad range of

stakeholders
– But, invest effort to make neat and polished diagrams only when

there is an agreement about the design, so this effort is worth doing
• Invest in the form, only when the substance is worth such an investment

18

Understanding the Problem Domain

❑ System to be developed

❑ Actors

– Agents external to the system that interact with it

❑ Concepts/ Objects

– Agents working inside the system to make it function

❑ Use Cases

– Scenarios for using the system

19

ATM: Gallery of Players

Actors (Easy to identify because they are visible!)
20

Gallery of Workers + Tools

Concepts (Hard to identify because they are invisible/imaginary!)
21

Use Case: Withdraw Cash

22

How ATM Machine Works (2)
Domain Model (2)

Alternative
solution

How ATM Machine Works (3)
Domain Model (3)

Alternative
solution

Which solution is the best or even feasible?

Rube Goldberg Design

25

Garage door opener

Actual Design

26

Feasibility & Quality of Designs

❑ Judging feasibility or quality of a design requires
great deal of domain knowledge
(and commonsense knowledge!)

27

Software Measurement

❑ What to measure?

– Project (developer’s work),

for budgeting and scheduling

– Product,

for quality assessment

28

Formal hedge pruning

29

Work Estimation Strategy

1. Make initial guess for a little part of the work

2. Do a little work to find out how fast you can go

3. Make correction on your initial estimate

4. Repeat until no corrections are needed
or work is completed

30

Sizing the Problem (1)

Size(③) =
10

Size(②) =
7

Size(①) =
4

Size(④) =
3Size(⑤) =
4Size(⑥) =
2Size(⑦) =
4Size(⑧) =
7

Step 2:
Estimate relative
sizes of all parts

Step 1: Divide the problem into small & similar parts

Sizing the Problem (2)

❑ Step 3: Estimate the size of the total work

Total size = Σ points-for-section i (i = 1..N)
❑ Step 4: Estimate speed of work (velocity)

❑ Step 5: Estimate the work duration

 Travel duration = Path size

Travel velocity

Sizing the Problem (3)

❑ Assumptions:
– Relative size estimates are accurate

• That’s why parts should be small & similar-size!

❑ Advantages:
– Velocity estimate may need to be adjusted (based on

observed progress)
– However, the total duration can be recomputed quickly

• Provided that the relative size estimates of parts are accurate
—accuracy easier achieved if the parts are small and similar-size

Unfortunately:
❑ Unlike hedges, software is mostly invisible and

does not exist when project is started
🡺 The initial estimate hugely depends on experience and imagination

Exponential Cost of Estimation

Estimation cost

E
st

im
at

io
n

ac
cu

ra
cy

100
%

❑ Improving accuracy of estimation beyond a certain point requires huge
cost and effort (known as the law of diminishing returns)

❑ In the beginning of the curve, a modest effort investment yields huge
gains in accuracy

34

Estimation Error Over Time

Time

Estimatio
n
error

Completio
n

Star
t

Waterfall method cone of uncertainty starts high and gradually
converges to zero as the project approaches completion.

Requirement
s

Desig
n

Implementatio
n

Waterfall Method

Estimation Error Over Time

Time

Estimatio
n
error

Project
Completion

Star
t

Agile method cone of uncertainty starts high and in leaps
converges to zero as the project approaches completion.

Requirements
Design
Implementation

Agile Method

Leaps in estimation accuracy
caused by insight about the overall
project, gained through completion
of parts of work

Requirements
Design
Implementation

Requirements
Design
Implementation

Part 1 completion

Part 2 completion

Agile Project Effort Estimation

37

Measuring Quality of Work

38

Concept Maps

Proposition Concept Relation Concept

1. I have friend

2. friend engages in coding

3. coding constructs a program

4. program is new

SENTENCE: “My friend is coding a new program”
translated into propositions

Search the Web for Concept Maps
39

Useful tool for problem domain description

Case Study: Home Access Control

❑ Objective: Design an electronic system for:
– Home access control

• Locks and lighting operation
– Intrusion detection and warning

40

Case Study – More Details

41

Know Your Problem
Mortise Lock Parts

42

Concept Map for Home Access
Control

43

States and Transition Rules

locked unlocked

IF validKey THEN unlock

IF pushLockButton THEN lock

IF timeAfterUnlock ≥ max{ autoLockInterval, holdOpenInterval } THEN lock

IF validKey AND holdOpenInterval THEN unlock

44… what seemed a simple problem, now is becoming complex

