# LECTURE 4 SEQUENTIAL GAMES

#### Introduction

- Lecture 1-3: Simultaneous games:
  - Prisoner's dilemma (Ad, No Ad):
    - Unique PSNE, both players defect.
  - ☐ Games without PSNE (shirk/monitor):
    - MSNE is the intuitive outcome.
  - Coordination games:
    - 2 PSNE & 1 MSNE. Players may try to coordinate.

#### Introduction

- Lecture 4-5: Sequential games.
  - Games where players move one after another.
     Sequential games are asymmetric.
  - Games we play: chess
  - Games businesses play: entry, pricing...
- L4: Subgame perfect equilibrium.
- L5: Experimental evidence, and an application to bargaining.

### Sequential games

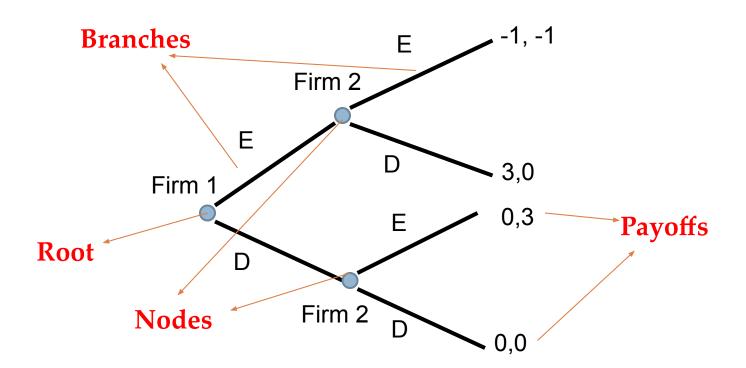
- Looking forward: Players, when make moves, have to consider how other players will react.
- Reasoning backward: Given other players' reaction, what is my optimal strategy?
- Asymmetry in order of play causes asymmetry in payoffs. It matters who plays first and who plays second.

### Entry game

Two restaurant chains must choose whether to open or no to open a restaurant in a new shopping area.

Firm 2

Enter Don't

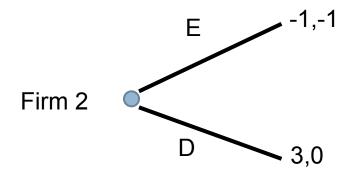

Enter -1, -1 3,0

Don't 0,3 0,0

If the game is simultaneous: 2 PSNE, 1 MSNE.

#### Entry game

- □ What if Firm 1 is first mover, and Firm 2 the follower?
- Game Trees: all possible moves, and all possible outcome and payoffs.

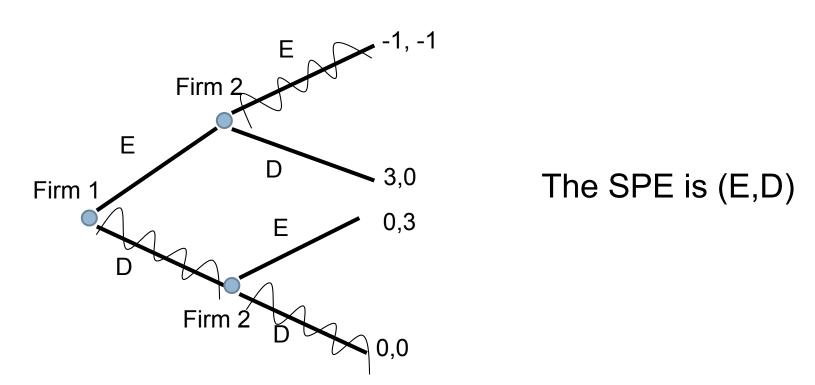



#### Solving the Game Tree

- Method use to solve game tree:
  - Backward Induction, or rollback
  - Start from the end, and rollback until the root
- Difference with simultaneous game
  - Drop the concept of joint best response
  - There is a hierarchy of actions, of players

#### Solving the Game Tree

Subgame: any node with all subsequent nodes:



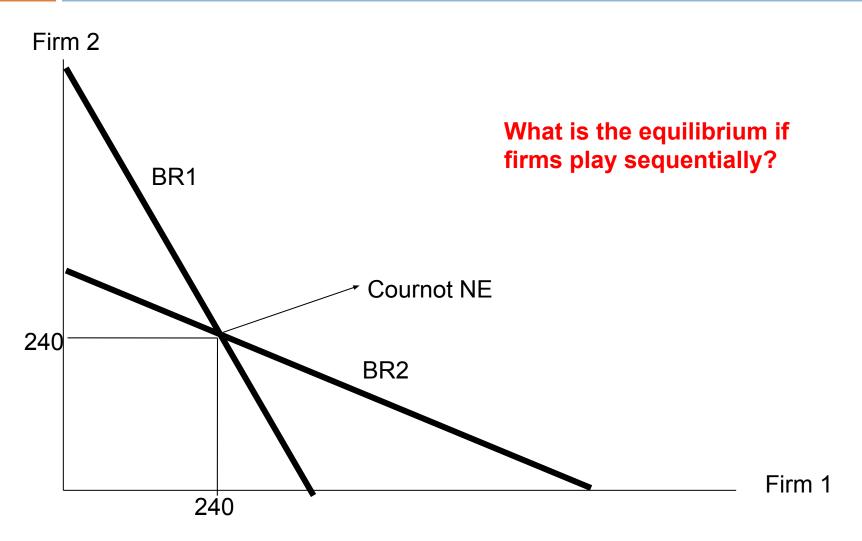

#### Subgame perfect equilibrium (SPE):

- The SPE is the equilibrium in sequential games.
- The SPE is such that players' strategies constitute a Nash equilibrium in every subgame of the original game
- Start with terminal nodes and eliminate dominated actions from the game

# Looking Forward... And Reasoning Back

Firm 1 makes the first move, and must take into account how the response of Firm 2:




#### Discussion

- Compared to the simultaneous version of the game,
  - □ Firm 1 can obtain the outcome that yields the highest payoff (3), whereas Firm 2 obtains a low payoff (0)
- First-mover advantage:
  - Ability to commit oneself to an advantageous position
  - ☐ Firm 1 benefits from taking an irreversible action
- Note: not all games have a first-mover advantage
  - e.g. some bargaining games may have a second-mover advantage (see lecture 5).

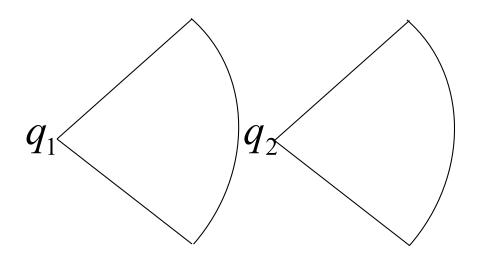
#### Sequential games and oligopoly

- Cournot model of oligopoly:
  - Simultaneous game.
  - □ Producers have market power (profits>0), but less than the monopolist.
  - Producers would be better off if they could cooperate (e.g. OPEC oil cartel), however cooperation is not a stable outcome.
- Decisions of how much to produce can also be sequential
   Stackelberg model of oligopoly

# Sequential games and oligopoly



A Cournot game with sequential actions


- Two producers, Firm 1 and Firm 2.
  - □ Produce the same goods, and sell on the same market.

$$P(q_1 + q_2) = 1 - 0.001(q_1 + q_2)$$

$$C_1(q_1) = 0.28 \times q_1$$

$$C_2(q_2) = 0.28 \times q_2$$

- Rather than assuming that producers choose quantity simultaneously, the Stackelberg model identifies a leader (who chooses quantity first), and a follower.
- The follower will observe the leader's quantity level before choosing his own quantity.



The leader can predict the follower's choice, and will take it into account when making its decision.

$$\Rightarrow \pi_1 = q_1 \times (1 - 0.001 \times (q_1 + q_2)) - 0.28q_1$$

$$\Rightarrow \pi_1 = 0.72q_1 - 0.001q_1^2 - 0.001q_1q_2$$

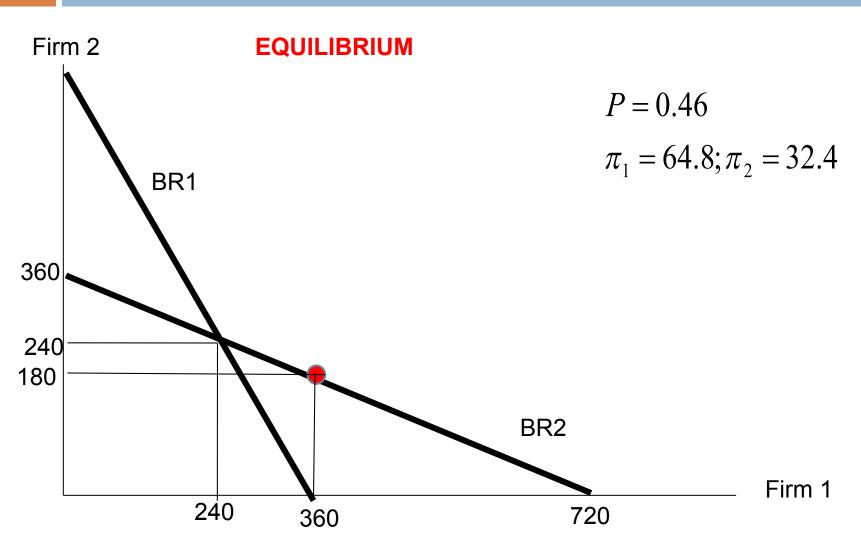
$$\pi_2 = 0.72q_2 - 0.001q_2^2 - 0.001q_1q_2$$

#### **Backward** induction

In a sequential game, Firm 2's output will be its best response to Firm 1's output decision. Best response of Firm 2:

$$q_2 = 360 - 0.5q_1$$

Substitute into Firm 1's profit function:


$$\pi_1 = 0.72q_1 - 0.001q_1^2 - 0.001q_1(360 - 0.5q_1)$$
$$= 0.36q_1 - 0.0005q_1^2$$

Derive the optimal output for Firm 1:

$$\frac{\partial \pi_1}{\partial q_1} = 0.36 - 0.001 q_1 = 0 \Rightarrow q_1 = 360$$

For Firm 2, substitute q1 in the best response function:

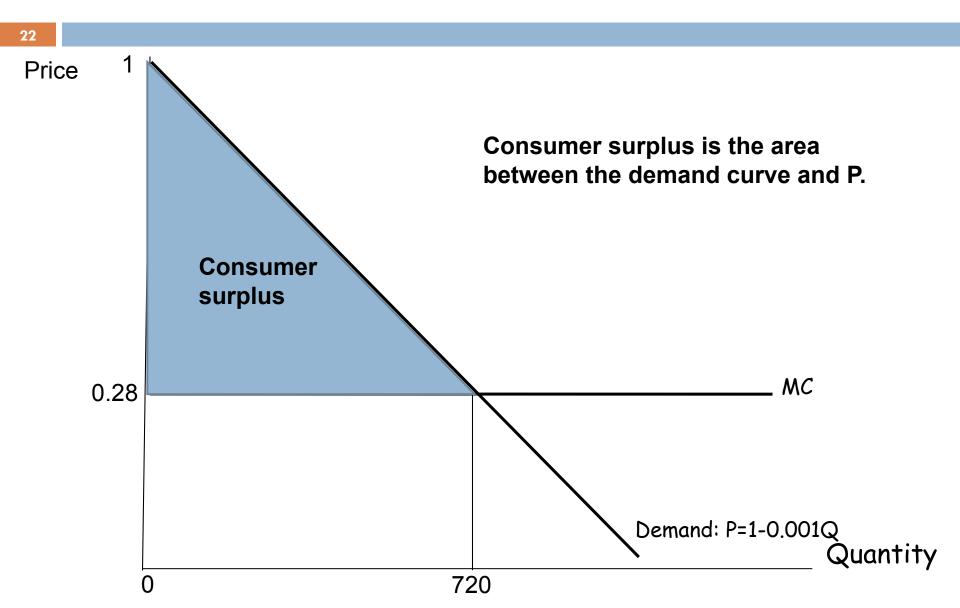
$$q_2 = 360 - 0.5 * 360 = 180$$



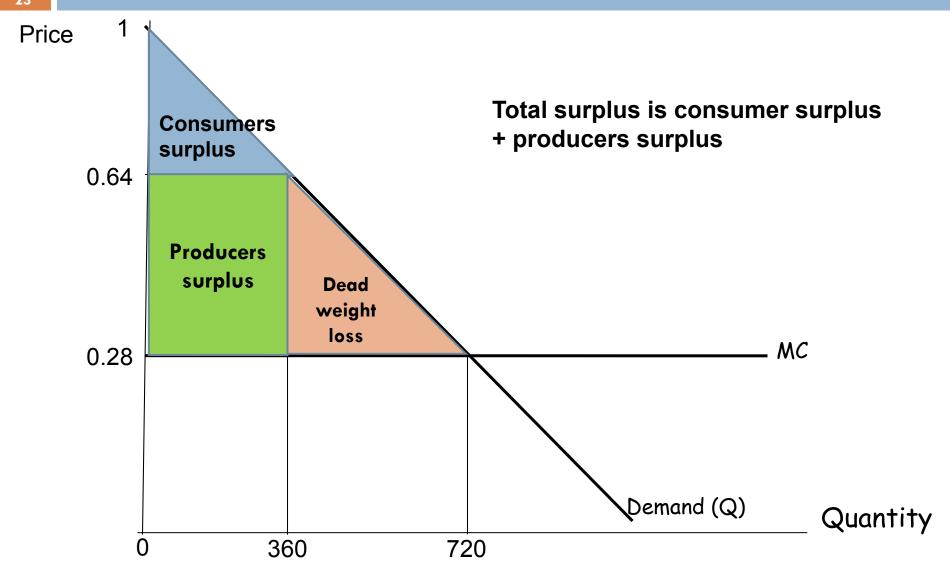
- Note that the equilibrium is <u>not</u> on Firm 1's Cournot best response function.
  - By playing first, Firm 1 can select the point on Firm 2's best response function that maximizes its own payoff
- First-mover advantage: By committing to a high quantity, Firm 1 can force Firm 2 to produce a low quantity.
- The first-mover has the advantage because his action is irreversible. The Stackelberg leader is the player that makes an irreversible decision first.

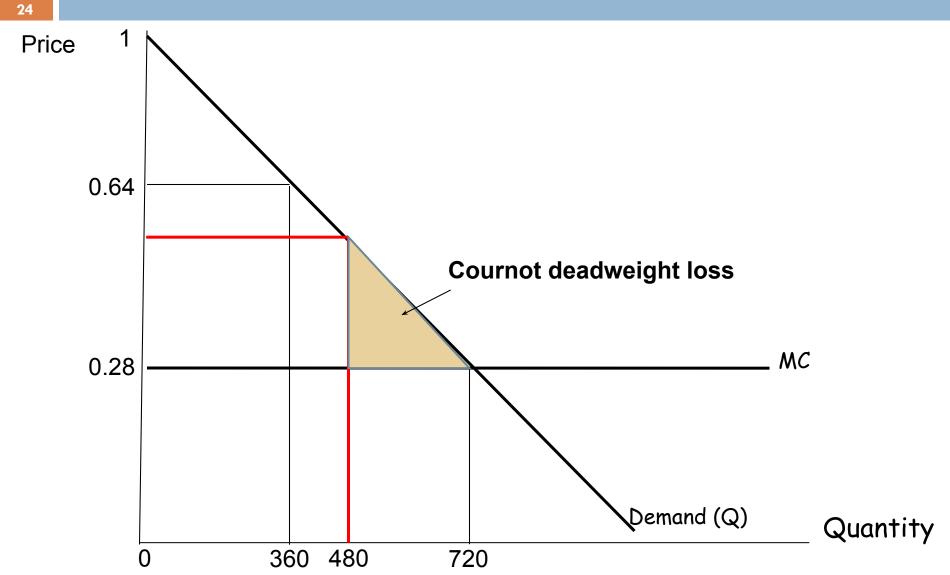
#### Stackelberg vs. Cournot

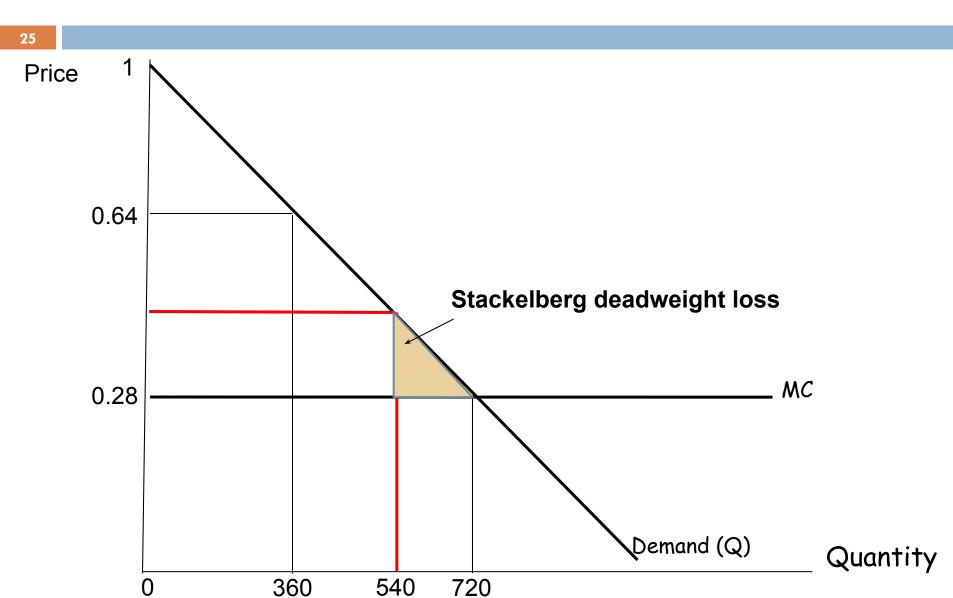
|                    | Monopoly | Cournot | Stackelberg | Perfect<br>competition |
|--------------------|----------|---------|-------------|------------------------|
| Industry<br>Output | 360      | 480     | 540         | 720                    |
| Price              | 0.64     | 0.52    | 0.46        | 0.28                   |
| Industry<br>Profit | 129.6    | 115.2   | 97.2        | 0                      |


Stackelberg yields a higher total quantity than Cournot.

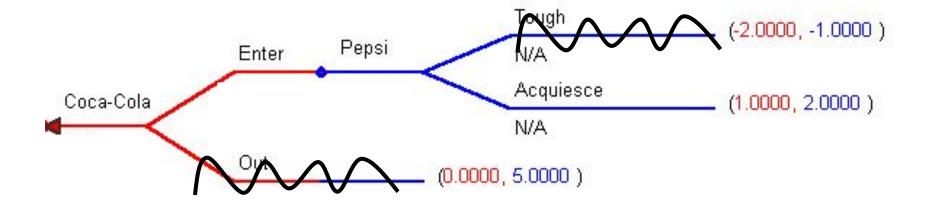
To exploit the first-mover advantage, the leader should produce more output than in Cournot. This results into higher total output, and a lower price.


# Stackelberg in the pharmaceutical industry


- Patents for new drugs last up to 20-30 years. During the patent period, the firm that invented the drug has a monopoly and can sell the drug at a high price.
- Once the patent expires, anyone is allowed to produce generic version of drug and sell at a low price.
- Just before the patent expires, brand name pharmaceutical companies enter into the generic drug competition by marketing their brand name drug with a pseudo-generic label before the generic drug manufacturers can enter the generic market.
- This allows the pseudo-generic drug to attain most of the market share and establish itself as the market leader.

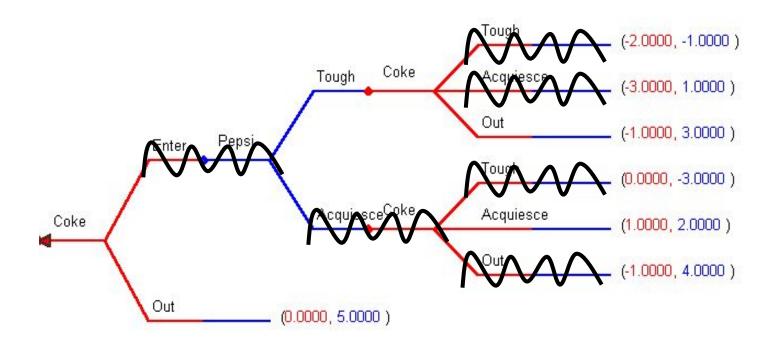

#### Welfare and perfect competition










- Suppose that Pepsi (the incumbent) is already in the local market, and Coca-Cola is deciding whether to Enter or stay Out.
- Pepsi: adopt a Tough defensive response or Acquiesce.
  - Tough: increase production, fight on prices, advertising campaign etc.
  - Acquiesce: no aggressive commercial war with Coca-Cola



- Pepsi will choose to acquiesce.
- Since Coca-Cola knows that Pepsi will Acquiesce, its best course of action is to Enter.
- ☐ First mover advantage

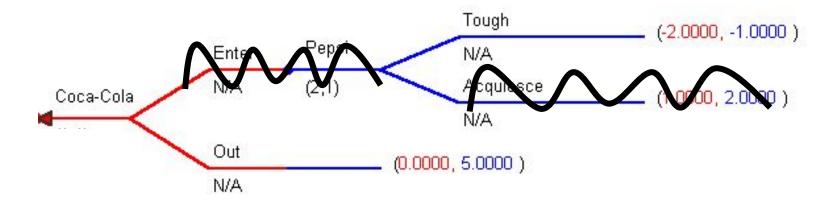
Sequential games may have more than two rounds. After observing Pepsi's stance, Coca-Cola can itself choose to be Tough, Acquiesce, or go Out of the market.



- Coca-Cola looks at Pepsi's Tough play and should choose to go Out of the market since it then only loses -\$1. If Coca-Cola sees Pepsi Acquiesce then it should itself Acquiesce and earn \$1.
- Pepsi knows that when it plays Tough Coca-Cola will exit. Its best choice is to act Tough to force Coca-Cola to go Out.
- Coca-Cola reasons backwards: if it enters, then Pepsi will play Tough and the best response is to go Out. Hence,
   Coca-Cola's best play is to Stay Out since it loses 0 instead of -1.

#### Strategic moves

- Players are rational and know how the game will be played and the subsequent payoff. What can player do to alter the predicted outcome?
  - Strategic moves: Commitment/threat/promise
  - Commitment: Commit to take a particular decision unconditionally on the other player's action.
  - Having fewer choices is typically worse than having many choices. In sequential games, however, having fewer choices can actually increase your payoff.


#### Strategic moves

Threat: A response rule that leads to a bad outcome for the other player if he acts contrary to your interests.

Promise: A response rule by which you offer to create a good outcome for the other player if he acts in a way that promotes your interests.

# Threat and entry

- Equilibrium without strategic moves: (Enter, Acquiesce)
- What could Pepsi do? Threaten to be tough if Coca-Cola enters:



Rollback: Coca-Cola stays out!

#### Threat and entry: Credibility problem

- If Coca-Cola enters, it is in Pepsi's best interest to acquiesce.
- Pepsi's threat to be tough if Coca-Cola enters is not credible.
- Coca-Cola, knowing that, will enter.
- "Talk is cheap"

#### Credible strategic move

How to make a credible strategic move?

- Binding contract between Pepsi and retailers.
  - We will sell you Pepsi at a lower price than Coca-Cola does.
  - "Tough" becomes credible.
- Decide to expand capacity, in order to reduce the marginal costs of increasing quantity.
- Keep innovating, in order to commit to improve quality and deter entry.

#### Credible strategic move

#### How to make a credible strategic move?

- Pepsi can also make threat credible by acquiring a reputation for toughness. By being tough towards potential entrants today, it may deter other firms from entering.
  - Being tough is not subgame perfect, however the entrant may think the incumbent will be tough if he has such a reputation.
  - If a threat is credible, other firms won't enter, and the threat to be tough is never materialized.

#### Credible strategic move

How to make a credible strategic move?

- Polaroid instant photography
  - Refused to diversify out of its core business. With all its chips in instant photography, it was committed to fight against any intruder in the market.
  - □ In 1976, after 28 years of a Polaroid monopoly on the instant photography market, Kodak entered the fray.
  - Edwin Land, Polaroid founder:
  - "This is our very soul we are involved with. This is our whole life...We will stay in our lot and protect that lot."

# Summary

- Sequential games
  - Game trees
  - Subgame perfect equilibrium
- Application to oligopoly
  - First mover advantage
- Strategic moves
  - Issue of credibility