
eleks.com

Multithreading/Multitasking.
Task Parallel Library. Patterns.

by Oleksandr Kravchuk, JR .NET Developer

What is the Multithreading?

An ability that allows you to run several
sections of code simultaneously.

Or pretend like. //For 1 CPU core

>So, why does modern OS supports threads?

Because with this approach ‘RESET’ button is
pressed less often

Process
Executing instance of a
program. Virtual memory and no
direct communication. Threads
container

Thread
Basic unit to which the operating
system allocates processor time.
Executes within the context of a
process and shares the same
resources allotted to the process by
the kernel.

On an Operating System level

Insides:
• PID
• Memory (Code and Data, Stack, Heap,
Shared Memory…)
• File Descriptors
• Registers
• Kernel State (Process State, Priority,
Statistics)

Insides:
• Thread Kernel Object
• Thread Environment Block (TEB)
• Stacks (User-mode and Kernel-mode)

Thread in numbers
• Kernel State (Kernel Object)

- 700 bytes for x86
- 1240 bytes for x64

• Thread environment block
- 1 memory page (4 Kb)

• User-mode stack
- 1+ Mb

• Kernel-mode stack
- 12 Kb for x86
- 24 Kb for x64

Note: Also, whenever a thread is created in a process, all
unmanaged DLLs loaded in that process have their
DllMain method called. Similarly, whenever a thread
dies.

Hardware trends

CPU development:

● Single-core
● Multi-socket motherboards
● Single-core with Hyper-threading
● Multi-core
● Multi-core with Hyper-threading

Context switches
• Kernel-level scheduler responsibility
• Schedule applies to threads, not to processes
• Relies on the priority (process priority + thread priority)

Process and Thread Priority
Relations

Relative Thread
Priority

Process priority Class

Idle Below Normal Normal Above Normal High Real-time

Time-Critical 15 15 15 15 15 31

Highest 6 8 10 10 12 26

Above Normal 5 7 9 9 11 25

Normal 4 6 8 8 10 24

Below Normal 3 5 7 7 9 23

Lowest 2 4 6 6 8 22

Idle 1 1 1 1 1 16

Where should I use
Threads?

• Client-side GUI applications where
responsiveness is important.

• Client-side and server-side
applications where non-sequentially
execution is possible. For
performance improvements

Thread usage example.

Briefly about Thread class

• Return type is void
• Constructors:
- Thread(ThreadStart)
- Thread(ParameterizedThreadStart)
- Thread(ThreadStart, Int32)
- Thread(ParameterizedThreadStart, Int32)
, where ThreadStart and ParameterizedThreadStart
are the delegates, lambdas, closures, Action<T>,
Func<T>, etc. Also, you may limit thread stack size
By passing second parameter.
• Start() method to run the thread
• Use IsAlive property to wait for the thread start
• Join() method to wait till thread ends
• Use closures to simplify value return

• Set thread IsBackground property to true for
immediately suspension when parent foreground
thread ends
• Exceptions can be caught only on the same

thread

Producer/Consumer Pattern

• BlockingCollection<T> as queue

• Variable number of producer/consumer threads

P/C Pattern implementation
 public class Producer : IDisposable {
 private volatile bool _isRunning;
 private Thread _commandGetThread;
 private object _commandGetterLocker = new object();
 private int _sleepInterval;
 private Consumer _executor;

 public Producer(Consumer executor, int sleepInterval) {
 … //Set defaults
 _isRunning = true;
 _commandGetThread = new Thread(CommandRequestSend);
 _commandGetThread.Start();
 }

 private void CommandRequestSend() {
 while (_isRunning) {
 lock (_commandGetterLocker) {
 … //GetCommands code goes here
 _executor.EnqueueCommands(webCommands);
 }
 Thread.Sleep(_sleepInterval);
 }
 }

 public void Dispose() { … } //use Join() instead of Abort()
 }

 public class Consumer : IDisposable {
 private volatile bool _isRunning;
 private object locker = new object();
 private Thread[] executants;
 private ICommandRepository _commandsRepo = new CommandListRepository();

 public Consumer(int executorsCount) {
 _isRunning = true;
 executants = new Thread[executorsCount];
 for (int i = 0; i < executorsCount; i++)
 (executants[i] = new Thread(Execute)).Start();
 }

 public void EnqueueTask(List<BLCommand> commands) {
 lock (locker) {
 _commandsRepo.AddCommands(commands);
 Monitor.PulseAll(locker);
 }
 }

 void Execute() {
 while (_isRunning) {
 lock (locker) {
 while (_commandsRepo.IsEmpty()) Monitor.Wait(locker);
 commandClient = _commandsRepo.GetCommand();
 }
 if (commandClient == null) return;

 … //Execute Command Code (better wrap with try-catch)
 }
 }

 public void Dispose() { … } //enque null in each thread and join
 }

CLR ThreadPool

• Class ThreadPool was introduced
in .Net Framework 3.5. Later,
Task approach will use it in
4.0 version

• ThreadPool works on CLR level.
It has highly intelligent
algorithm for thread
management.

• Only busy threads in pool

• To perform asynchronous
operation: just call
ThreadPool.QueueUserWorkItem()

• What is ideal thread number?
• How queues are scheduled?
• What is Work-Stealing?
• How CLR manages thread

number?

How the Thread Pool Manages Its
Threads?

Thread Pool usage example.

Tasks concept
• Return value from asynchronous operation. Just call task.Result

• You know, when operation completes

• Task class for void and Task<T> generic for T object return

• No-headache with exception handling. Throws AggregateException
with inner exceptions tree that corresponds to Tasks tree

• Task start does not guarantee execution in separate thread!

ThreadPool.QueueUserWorkItem(SomeLongTermFunction);

var task = new Task(SomeLongTermFunction);
task.Start();

Tasks states

*Also, task can be in waiting (for activation, to run, for children’s completion) states

Waiting
• task.Wait() instead of while(!task.IsCompleted)

• Task.WaitAny() for response processing with best performance

• Task.WaitAll() if you need all results

Cancelling
1. Create CancellationTokenSource object and pass its Token property to task

constructor

2. Start task and call Cancel() method on CancellationTokenSource object
3. Task will stop and throw AggregateException

Continuations

In order to write scalable software, you must not have
your threads block.
Calling task.Wait() will pause current thread until
Result property became available

Its better for performance to start next task immediately
after previous.
For this case, there are .ContinueWith() extension for
task.

Usage sample:

var task = new Task(SomeLongTermFunction, cancelToken.Token);
task.ContinueWith(parentTask => AnotherLongTermFunction(),

TaskContinuationOptions.NotOnFaulted);
task.Start();

Factories
To create a bunch of tasks that
return void, then you will
construct a TaskFactory.
If you want to create a bunch of
tasks that have a specific return
type, then you will construct a
TaskFactory<TResult>

Schedulers
TaskScheduler object is responsible
for executing scheduled tasks and
also exposes task information
to the Visual Studio debugger
The FCL ships with two
TaskScheduler-derived types:
• the thread pool task scheduler
• synchronization context task

scheduler.

By default, all applications use the
thread pool task scheduler.

Tasks are very flexible

var factory =
 new TaskFactory<int>(TaskScheduler
 .FromCurrentSynchronizationContext());
factory.StartNew(() => GetFibonacciNumber(1));
factory.StartNew(() => GetFibonacciNumber(2));
factory.StartNew(() => GetFibonacciNumber(3));

To simplify writing code for parallel execution, there are:

The Parallel class

Parallel.For(fromInclusive, toConclusive, index => method(index));

Parallel.ForEach(IEnumerable, item => method(item));

Parallel.Invoke(method0(), method1(), method2()…);

They all have overloaded versions that takes ParallelOption object as parameter.
ParallelOption contains such settings:
 - MaxThreadNumbers
 - CancellationToken
 - TaskScheduler

Also, there is possibilty in TPL that allows interaction among parallel parts of
algorythm.
Use localInit and localFinal parameters.
Code sample:

Tasks interaction in Parallel

var files = Directory.EnumerateFiles(path, searchPattern, searchOption);
var masterTotal = 0;
var result = Parallel.ForEach<String, int>(
 files,
 () => { return 0; /* Set taskLocalTotal initial value to 0*/ },
 (file, loopState, index, taskLocalTotal) =>
 {
 // body: Invoked once per work item
 // Get this file's size and add it to this task's running total
 var fileLength = 0;
 FileStream fs = null;
 try
 {
 fs = File.OpenRead(file);
 fileLength = (int) fs.Length;
 }
 catch (IOException) { /* Ignore any files we can't access */ }
 finally
 {
 if (fs != null) fs.Dispose();
 }
 return taskLocalTotal + fileLength;
 },
 taskLocalTotal =>
 {
 // localFinally: Invoked once per task at end
 // Atomically add this task's total to the "master" total
 Interlocked.Add(ref masterTotal, taskLocalTotal);
 });

 Console.WriteLine(masterTotal);

Not every algorithm could be
parallel

PLINQ
• Parallel Language Integrated Query – set of extensions that allows

parallel processing of ParallelQuery<T> collection.
• To transform IEnumerable<T> into ParallelQuery<T> - just call

AsParallel() on it (AsSequential() for vice versa)
• Supports almost the same functionality, as the ordinar LINQ.

• Also, offers some additional ParallelEnumerable methods that you
can call to control how the query is processed:
- WithCancellation(CancellationToken)
- WithDegreeOfParalelism(Int32)
- WithExecutionMode(ParallelExecutionMode)
- WithMergeOptions(ParallelMergeOption)

Parallel and PLINQ usage example.

Allows you to perform a Periodic
Compute-Bound Operation.

Timers System.Threading.Timer usage example

To many timers in .Net:

1. System.Threading.Timer
2. System.Windows.Forms.Timer
3. System.Windows.Threading.DispatcherTimer

(Silverlight and WPF)
4. Windows.UI.Xaml’s DispatcherTimer (Windows

Store Apps)
5. System.Timers.Timer. Obsolete class. Wrapper

for System.Threading.Timer.

private static Timer s_timer;
public static void Main()
{
 Console.WriteLine("Checking status every 2 seconds");

 // Create the Timer ensuring that it never fires. This ensures
 // that s_timer refers to it BEFORE Status is invoked by a
 // thread pool thread
 s_timer = new Timer(Status, null, Timeout.Infinite,
Timeout.Infinite);

 // Now that s_timer is assigned to, we can let the timer fire
 // knowing that calling Change in Status will not throw a
 // NullReferenceException
 s_timer.Change(0, Timeout.Infinite);
 Console.ReadLine(); // Prevent the process from terminating
}

// This method's signature must match the TimerCallback delegate
private static void Status(Object state)
{
 // This method is executed by a thread pool thread
 Console.WriteLine("In Status at {0}", DateTime.Now);
 Thread.Sleep(1000); // Simulates other work (1 second)

 // Just before returning, have the Timer fire again in 2
seconds
 s_timer.Change(2000, Timeout.Infinite);

 // When this method returns, the thread goes back
 // to the pool and waits for another work item
}

• Object should have GetAwaiter()
method implemented to be available
for await

• Async method without awaits inside
will be executed synchronously

• Compiler will create continuations for
code after await

• There are a lot of async functions in
FCL that can be easily found by suffix
“Async”

Async/Await

• Exception can be catched from main
thread only if async method is awaited

• Using await with a Task, the first inner
exception is thrown instead of an
AggregateException

• “await” keyword inside of a catch{}
and a finally {} blocks are supported
from C# 6.0

Async/Await example.

• Asynchronous Programming Model (APM)
• Event-based Asynchronous Pattern (EAP)
• Task-based Asynchronous Pattern (TAP)

Asynchronous Programming
Patterns

APM to TAP conversion:

await Task.Factory.FromAsync(
stream.BeginRead, stream.EndRead, null);

Inspired by Technology.
Driven by Value.

Find us at eleks.com

Have a question? Write to eleksinfo@eleks.com

Продам гараж: + 38066 123 45 12

