Chapter

Descrintive Statistics

Elementary Statistics
Larson Farber

Frequency Distributions

Make a frequency distribution table with five classes.
Key values:

Freauency Distrihutions

Decide on the number of classes (For this problem use 5)
Calculate the Class Width

- (125-67) / 5 = 11.6 Round up to 12

Determine Class Limits
Mark a tally in appropriate class for each data value

Other Information

Midpoint: (lower limit + upper limit) / 2
Relative frequency: class frequency/total frequency
Cumulative frequency: Number of values in that class or in lower one.

Class	f	Midpoint	Relative frequency	Cumulative frequency
		$(67+78) / 2$	$3 / 30$	
$\mathbf{6 7 - 7 8}$	3	$\mathbf{7 2 . 5}$	$\mathbf{0 . 1 0}$	$\mathbf{3}$
$\mathbf{7 9 - 9 0}$	5	$\mathbf{8 4 . 5}$	$\mathbf{0 . 1 7}$	$\mathbf{8}$
$\mathbf{9 1 - 1 0 2}$	8	$\mathbf{9 6 . 5}$	$\mathbf{0 . 2 7}$	$\mathbf{1 6}$
$\mathbf{1 0 3 - 1 1 4}$	9	$\mathbf{1 0 8 . 5}$	$\mathbf{0 . 3 0}$	$\mathbf{2 5}$
$\mathbf{1 1 5 - 1 2 6}$	5	$\mathbf{1 2 0 . 5}$	$\mathbf{0 . 1 7}$	$\mathbf{3 0}$

Frequency Histogram

Class
67-78
79-90
91-102
103-114
115-126

今 Boundaries
$\begin{array}{ll} & 66.5-78.5 \\ 5 & 78.5-90.5 \\ 8 & 90.5-102.5\end{array}$
9 102.5-114.5
5 115,5-126.5

Time on Phone

Frequency Polygon

Class
67-78
79-90
91-102
103-114
115-126

今

Relative Frequency Histogram

Time on Phone

Relative frequency on vertical scale

Ogive

An ogive reports the number of values in the data set that are less than or equal to the given value, x.

Minutes on Phone

Stem-and-Leaf Plot

Lowest value is 67 and highest value is 125 , so list stems from 6 to 12.

Stem Leaf

$$
\begin{array}{cc|ccc}
6 & \mid & & & \\
7 & \mid & & & \\
8 & \mid & 6 & 2 & \\
9 & \mid & & & \\
10 & \mid & 2 & 8 & 3 \\
11 & \mid & & & \\
12 & 4 & &
\end{array}
$$

Stem-and-Leaf Plot

$6 \mid 7$
Key: $6 \mid 7$ means 67
$7 \mid 18$
$8 \mid 25677$
9 |2 5799
$10 \mid 01233455789$
$11 \mid 268$
$12 \mid 245$

Stem-and-Leaf with two lines per stem

Key: $6 \mid 7$ means 67

1st line digits 01234
2nd line digits 56789

$7 \mid 1$
$7 \mid 8$
\longrightarrow
$\longrightarrow \mid 2$
\longrightarrow
$\longrightarrow \mid 5677$
$9 \mid 2$
$9 \mid 5799$
$10 \mid 012334$
$10 \mid 55789$

1st line digits 01234
2nd line digits 56789

Dotplot

Phone

minutes

- Used to describe parts of a whole
- Central Angle for each segment

number in category

$\times 360^{\circ}$

 total numberThe 1995 NASA budget (billions of \$) divided among 3 categories.

	Billions of \$
Human Space Flight	5.7
Technology	5.9
Mission Support	2.7

Construct a pie chart for the data.

Billions of $\$$ Angle(deg.)
 Human Space Flight
 143 5.9149
 2.7
 14.3

 NASA Budget $\quad 5.9 / 14.3^{*} 360^{\circ}=149^{\circ}$
 (Billions of \$)

Mission
Support
19\%
Human
Space Flight 40\%

Technology

Measures of Central Tendency

Mean: The sum of all data values divided by the number of values

For a population:

$$
\mu=\frac{\Sigma x}{N}
$$

For a sample:

$$
\bar{x}=\frac{\Sigma x}{n}
$$

Median: The point at which an equal number of values fall above and fall below

Mode: The value with the highest frequency

An instructor recorded the average number of absences for his students in one semester. For a random sample the data are:

$\begin{array}{lllllllll}2 & 4 & 2 & 0 & 40 & 2 & 4 & 3 & 6\end{array}$

Calculate the mean, the median, and the mode
Mean:

$$
\bar{x}=\frac{\Sigma x}{n} \quad \Sigma x=63 \quad \bar{x}=9 \quad \frac{63}{9}=7
$$

Median: Sort data in order

$$
\begin{array}{llllllllll}
0 & 2 & 2 & 2 & 4 & 4 & 4 & 6 & 40
\end{array}
$$

The middle value is 3 , so the median is 3 .
Mode: The mode is 2 since it occurs the most times.

Suppose the student with 40 absences is dropped from the course. Calculate the mean, median and mode of the remaining values. Compare the effect of the change to each type of average.

$$
\begin{array}{llllllll}
2 & 4 & 2 & 0 & 2 & 4 & 3 & 6
\end{array}
$$

Calculate the mean, the median, and the mode
Mean:

$$
\bar{x}=\frac{\Sigma x}{n} \quad \Sigma x=23 \quad \mathrm{n}=8 \quad \bar{x}=\frac{23}{8}=2.875
$$

Median: Sort data in order

$$
\begin{array}{llllllll}
0 & 2 & 2 & 2 & 3 & 4 & 4 & 6
\end{array}
$$

The middle values are 2 and 3 , so the median is 2.5
Mode: The mode is 2 since it occurs the most.

Shapes of Distributions

Symmetric

Mean $=$ median

Uniform

Skewed right

Mean $>$ median

Skewed left

Mean $<$ medianl 8

Descriptive Statistics

Closing prices for two stocks were recorded on ten successive Fridays. Calculate the mean, median and mode for each.

Stock A 56

 $56 \quad 42$ $57 \quad 48$ $58 \quad 52$ $61 \quad 57$63
63
67
Mean $=61.5$
Median $=62$
67
Mode $=67$
67

77
67
67

82
90

Stock B

Mean $=61.5$
Median $=62$
Modg $=67$

Measures of Variation

Range $=$ Maximum value - Minimum value

Range for $A=67-56=\$ 11$
Range for $\mathbf{B = 9 0 - 3 3 = \$ 5 7}$
The range only uses 2 numbers from a data set.
The deviation for each value x is the difference between the value of x and the mean of the data set. In a population, the deviation for each value x is: $\boldsymbol{x}-\boldsymbol{\mu}$

In a sample, the deviation for each value x is: $\boldsymbol{X}-\overline{\mathcal{X}}$ 20

Deviations

Stock A Deviation

The sum of the deviations is always zero.

Population Variance

Population Variance: The sum of the squares of the deviations, divided by N .
Stock $A^{x-\mu}(x-\mu)^{2}$

56	-5.5	30.25	$\sigma^{2}=\Sigma(x-\mu)^{2}$
56	-5.5	30.25	$=\frac{\sum(x)}{N}$
57	-4.5	20.25	
58	-3.5	12.25	
61	-0.5	0.25	$\sigma^{2}=\frac{188.50}{10}=18.85$
63	1.5	2.25	$\sigma=\frac{10}{10}=18.8$
63	1.5	2.25	
67	5.5	30.25	,
67	5.5	30.25	
67	5.5	$\begin{array}{r} 30.25 \\ 188.50 \end{array}$	Sum of squares

Population Standard Deviation

Population Standard Deviation The square root of the population variance.

$$
\begin{gathered}
\sigma=\sqrt{\sigma^{2}} \\
\sigma=\sqrt{18.85}=4.34
\end{gathered}
$$

The population standard deviation is $\$ 4.34$

Sample Standard Deviation

To calculate a sample variance divide the sum of squares by $\mathrm{n}-1$.

$$
s^{2}=\frac{\Sigma(x-\bar{x})^{2}}{n-1}
$$

$$
s^{2}=\frac{188.50}{9}=20.94
$$

The sample standard deviation, s is found by taking the square root of the sample variance.

$$
\begin{gathered}
s=\sqrt{s^{2}} \\
s=\sqrt{20.94}=4.58
\end{gathered}
$$

Calculate the measures of variation for Stock B

Summary

Range $=$ Maximum value - Minimum value
Population Variance $\sigma^{2}=\frac{\sum(x-\mu)^{2}}{N}$
Population Standard Deviation $\sigma=\sqrt{\sigma^{2}}$
Sample Variance

$$
s^{2}=\frac{\Sigma(x-\bar{x})^{2}}{n-1}
$$

Sample Standard Deviation

$$
s=\sqrt{s^{2}}
$$

Empiricl Rule 68-95-99.7\% rule

Data with symmetric bell-shaped distribution has the

 following characteristics.

About 68% of the data lies winin 1 standard deviation of the mean
About 95% of the dat $\%$ lies within 2 standard deviations of the mean
About 99.7% of the data lies within 3 standard deviations of the mean 26

Using the Empirical Rule

The mean value of homes on a street is $\$ 125$ thousand with a standard deviation of $\$ 5$ thousand. The data set has a bell shaped distribution. Estimate the percent of homes between \$120 and \$135 thousand

$\$ 120$ is 1 standard deviation below the mean and $\$ 135$ thousand is 2 standard deviation above the mean. $68 \%+13.5 \%=81.5 \%$

So, 81.5% of the homes have a value between $\$ 120$ and $\$ 135$ thousand .

Chebychev's Theorem

For any distribution regardless of shape the portion of data lying within k standard deviations $(\mathrm{k}>1)$ of the mean is at least $1-1 / k^{2}$.

$$
\begin{aligned}
& \mu=6 \\
& \sigma=3.84
\end{aligned}
$$

For $\mathrm{k}=2$, at least $1-1 / 4=3 / 4$ or 75% of the data lies within 2 standard deviation of the mean.

For $\mathrm{k}=3$, at least $1-1 / 9=8 / 9=88.9 \%$ of the data lies within 3 standard deviation of the mean.

Chebychev's Theorem

The mean time in a women's 400 -meter dash is 52.4 seconds with a standard deviation of 2.2 sec . Apply Chebychev's theorem for $\mathrm{k}=2$.

At least 75% of the women's $400-$ meter dash times will fall between 48 and 56.8 seconds.

Grouped Data

To approximate the mean of data in a frequency distribution, treat each value as if it occurs at the midpoint of its class. $x=$ Class midpoint.

$$
\bar{x}=\frac{\Sigma(x \cdot f)}{n}
$$

Grouped Data

To approximate the standard deviation of data in a frequency distribution, use $x=$ class midpoint.

$$
s=\sqrt{\frac{\sum(x-\bar{x})^{2} \cdot f}{n-1}}
$$

$$
\bar{x}=99.7
$$

Class	\mathbf{f}	Midpoin	$(x-\bar{x})^{2}$	$(x-\bar{x})^{2} * f$
$67-78$		\mathbf{t}	739.84	2219.52
$79-90$	3	72.5	231.04	1155.20
$91-102$	5	84.5		
$103-114$	8	968.5	10.24	81.92
$115-126$	9	120.5	7434.64	6966536.2
	$\$ 0$			6316.8
	$s=\sqrt{\frac{6316.8}{29}}=\sqrt{217.8207}=14.76$			
			31	

Quartiles

3 quartiles $\mathrm{Q}_{1}, \mathrm{Q}_{2}$ and Q_{3} divide the data into 4 equal parts.
Q_{2} is the same as the median.
Q_{1} is the median of the data below Q_{2}
Q_{3} is the median of the data above Q_{2}

You are managing a store. The average sale for each of 27 randomly selected days in the last year is given. Find $\mathrm{Q}_{1}, \mathrm{Q}_{2}$ and Q_{3}..
$\begin{array}{llllllllllllll}28 & 43 & 48 & 51 & 43 & 30 & 55 & 44 & 48 & 33 & 45 & 37 & 37 & 42\end{array}$
$\begin{array}{lllllllllllll}27 & 47 & 42 & 23 & 46 & 39 & 20 & 45 & 38 & 19 & 17 & 35 & 45\end{array}$
32

Quartiles

The data in ranked order $(\mathrm{n}=27)$ are:
$\begin{array}{lllllllllllllll}17 & 19 & 20 & 23 & 27 & 28 & 30 & 33 & 35 & 37 & 37 & 38 & 39 & 42 & 42\end{array}$
434344454545464748485155.

Median rank $(27+1) / 2=14$. The median $=Q_{2}=42$.
There are 13 values below the median.
Q_{1} rank $=7 . Q_{1}$ is 30 .
Q_{3} is rank 7 counting from the last value. Q_{3} is 45 .
The Interquartile Range is $\mathrm{Q}_{3}-\mathrm{Q}_{1}=45-30=15$

Box and Whisker Plot

A box and whisker plot uses 5 key values to describe a set of data. $\mathrm{Q}_{1}, \mathrm{Q}_{2}$ and Q_{3}, the minimum value and the maximum value.

Q_{1}	30
$\mathrm{Q}_{2}=$ the median	42
Q_{3}	45
Minimum value	17
Maximum value	55

Interquartile Range 34

Percentiles divide the data into 100 parts. There are 99 percentiles: $\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3} \ldots \mathrm{P}_{99}$.

$$
\mathrm{P}_{50}=\mathrm{Q}_{2}=\text { the median }
$$

$$
\mathrm{P}_{25}=\mathrm{Q}_{1}
$$

$$
\mathrm{P}_{75}=\mathrm{Q}_{3}
$$

A 63nd percentile score indicates that score is greater than or equal to 63% of the scores and less than or equal to 37% of the scores.

Percentiles

Cumulative distributions can be used to find percentiles.
114.5 falls on or above 25 of the 30 values.

$$
25 / 30=83.33 .
$$

So you can approximate $114=\mathrm{P}_{83}$

