
2007 NIPS Tutorial on:
Deep Belief Nets

Geoffrey Hinton
Canadian Institute for Advanced Research

&
Department of Computer Science

University of Toronto

Some things you will learn in this tutorial

• How to learn multi-layer generative models of unlabelled
data by learning one layer of features at a time.
– How to add Markov Random Fields in each hidden layer.

• How to use generative models to make discriminative
training methods work much better for classification and
regression.
– How to extend this approach to Gaussian Processes and

how to learn complex, domain-specific kernels for a
Gaussian Process.

• How to perform non-linear dimensionality reduction on very
large datasets
– How to learn binary, low-dimensional codes and how to

use them for very fast document retrieval.
• How to learn multilayer generative models of

high-dimensional sequential data.

A spectrum of machine learning tasks

• Low-dimensional data (e.g.
less than 100 dimensions)

• Lots of noise in the data

• There is not much structure in
the data, and what structure
there is, can be represented by
a fairly simple model.

• The main problem is
distinguishing true structure
from noise.

• High-dimensional data (e.g.
more than 100 dimensions)

• The noise is not sufficient to
obscure the structure in the
data if we process it right.

• There is a huge amount of
structure in the data, but the
structure is too complicated to
be represented by a simple
model.

• The main problem is figuring
out a way to represent the
complicated structure so that it
can be learned.

Typical Statistics------------Artificial Intelligence

Historical background:
First generation neural networks

• Perceptrons (~1960)
used a layer of
hand-coded features and
tried to recognize objects
by learning how to weight
these features.
– There was a neat

learning algorithm for
adjusting the weights.

– But perceptrons are
fundamentally limited
in what they can learn
to do.

non-adaptive
hand-coded
features

output units
e.g. class labels

input units
e.g. pixels

Sketch of a typical
perceptron from the 1960’s

Bomb Toy

Second generation neural networks (~1985)

input vector

hidden
layers

outputs

Back-propagate
error signal to
get derivatives
for learning

Compare outputs with
correct answer to get
error signal

A temporary digression

• Vapnik and his co-workers developed a very clever type
of perceptron called a Support Vector Machine.
– Instead of hand-coding the layer of non-adaptive

features, each training example is used to create a
new feature using a fixed recipe.

• The feature computes how similar a test example is to that
training example.

– Then a clever optimization technique is used to select
the best subset of the features and to decide how to
weight each feature when classifying a test case.

• But its just a perceptron and has all the same limitations.
• In the 1990’s, many researchers abandoned neural

networks with multiple adaptive hidden layers because
Support Vector Machines worked better.

What is wrong with back-propagation?

• It requires labeled training data.
– Almost all data is unlabeled.

• The learning time does not scale well
– It is very slow in networks with multiple

hidden layers.
• It can get stuck in poor local optima.

Overcoming the limitations of
back-propagation

• Keep the efficiency and simplicity of using a
gradient method for adjusting the weights, but use
it for modeling the structure of the sensory input.
– Adjust the weights to maximize the probability

that a generative model would have produced
the sensory input.

– Learn p(image) not p(label | image)
• If you want to do computer vision, first learn

computer graphics
• What kind of generative model should we learn?

 Belief Nets
• A belief net is a directed

acyclic graph composed of
stochastic variables.

• We get to observe some of
the variables and we would
like to solve two problems:

• The inference problem: Infer
the states of the unobserved
variables.

• The learning problem: Adjust
the interactions between
variables to make the
network more likely to
generate the observed data.

stochastic
hidden
cause

visible
effect

We will use nets composed of
layers of stochastic binary variables
with weighted connections. Later,
we will generalize to other types of
variable.

Stochastic binary units
(Bernoulli variables)

• These have a state of 1
or 0.

• The probability of
turning on is determined
by the weighted input
from other units (plus a
bias)

0
0

1

 Learning Deep Belief Nets
• It is easy to generate an

unbiased example at the
leaf nodes, so we can see
what kinds of data the
network believes in.

• It is hard to infer the
posterior distribution over all
possible configurations of
hidden causes.

• It is hard to even get a
sample from the posterior.

• So how can we learn deep
belief nets that have
millions of parameters?

stochastic
hidden
cause

visible
effect

The learning rule for sigmoid belief nets

• Learning is easy if we can
get an unbiased sample
from the posterior
distribution over hidden
states given the observed
data.

• For each unit, maximize
the log probability that its
binary state in the sample
from the posterior would be
generated by the sampled
binary states of its parents.

j

i

learning
rate

Explaining away (Judea Pearl)

• Even if two hidden causes are independent, they can
become dependent when we observe an effect that they can
both influence.
– If we learn that there was an earthquake it reduces the

probability that the house jumped because of a truck.

truck hits house earthquake

house jumps

20 20

-20

-10 -10

p(1,1)=.0001
p(1,0)=.4999
p(0,1)=.4999
p(0,0)=.0001

posterior

Why it is usually very hard to learn
sigmoid belief nets one layer at a time

• To learn W, we need the posterior
distribution in the first hidden layer.

• Problem 1: The posterior is typically
complicated because of “explaining
away”.

• Problem 2: The posterior depends
on the prior as well as the likelihood.
– So to learn W, we need to know

the weights in higher layers, even
if we are only approximating the
posterior. All the weights interact.

• Problem 3: We need to integrate
over all possible configurations of
the higher variables to get the prior
for first hidden layer. Yuk!

 data

hidden variables

hidden variables

hidden variables

 likelihood W

prior

Two types of generative neural network

• If we connect binary stochastic neurons in a
directed acyclic graph we get a Sigmoid Belief
Net (Radford Neal 1992).

• If we connect binary stochastic neurons using
symmetric connections we get a Boltzmann
Machine (Hinton & Sejnowski, 1983).
– If we restrict the connectivity in a special way,

it is easy to learn a Boltzmann machine.

Restricted Boltzmann Machines
(Smolensky ,1986, called them “harmoniums”)

• We restrict the connectivity to make
learning easier.
– Only one layer of hidden units.

• We will deal with more layers later
– No connections between hidden units.

• In an RBM, the hidden units are
conditionally independent given the
visible states.
– So we can quickly get an unbiased

sample from the posterior distribution
when given a data-vector.

– This is a big advantage over directed
belief nets

hidden

i

j

visible

The Energy of a joint configuration
(ignoring terms to do with biases)

weight between
units i and j

Energy with configuration
v on the visible units and
h on the hidden units

binary state of
visible unit i

binary state of
hidden unit j

Weights 🡪 Energies 🡪 Probabilities

• Each possible joint configuration of the visible
and hidden units has an energy
– The energy is determined by the weights and

biases (as in a Hopfield net).
• The energy of a joint configuration of the visible

and hidden units determines its probability:

• The probability of a configuration over the visible
units is found by summing the probabilities of all
the joint configurations that contain it.

Using energies to define probabilities

• The probability of a joint
configuration over both visible
and hidden units depends on
the energy of that joint
configuration compared with
the energy of all other joint
configurations.

• The probability of a
configuration of the visible
units is the sum of the
probabilities of all the joint
configurations that contain it.

partition
function

A picture of the maximum likelihood learning
algorithm for an RBM

i

j

i

j

i

j

i

j

t = 0 t = 1 t = 2 t = infinity

Start with a training vector on the visible units.

Then alternate between updating all the hidden units in
parallel and updating all the visible units in parallel.

a fantasy

A quick way to learn an RBM

i

j

i

j

t = 0 t = 1

Start with a training vector on the
visible units.

Update all the hidden units in
parallel

Update the all the visible units in
parallel to get a “reconstruction”.

Update the hidden units again.

This is not following the gradient of the log likelihood. But it
works well. It is approximately following the gradient of another
objective function (Carreira-Perpinan & Hinton, 2005).

reconstructiondata

How to learn a set of features that are good for
reconstructing images of the digit 2

50 binary
feature
neurons

16 x 16
pixel
image

50 binary
feature
neurons

16 x 16
pixel
image

Increment weights
between an active
pixel and an active
feature

Decrement weights
between an active
pixel and an active
feature

 data
(reality)

 reconstruction
(better than reality)

The final 50 x 256 weights

Each neuron grabs a different feature.

Reconstruction
from activated
binary featuresData

Reconstruction
from activated
binary featuresData

How well can we reconstruct the digit images
from the binary feature activations?

New test images from
the digit class that the
model was trained on

Images from an
unfamiliar digit class
(the network tries to see
every image as a 2)

Three ways to combine probability density
models (an underlying theme of the tutorial)

• Mixture: Take a weighted average of the distributions.
– It can never be sharper than the individual distributions.

It’s a very weak way to combine models.
• Product: Multiply the distributions at each point and then

renormalize.
– Exponentially more powerful than a mixture. The

normalization makes maximum likelihood learning
difficult, but approximations allow us to learn anyway.

• Composition: Use the values of the latent variables of one
model as the data for the next model.
– Works well for learning multiple layers of representation,

but only if the individual models are undirected.

Training a deep network
(the main reason RBM’s are interesting)

• First train a layer of features that receive input directly
from the pixels.

• Then treat the activations of the trained features as if
they were pixels and learn features of features in a
second hidden layer.

• It can be proved that each time we add another layer of
features we improve a variational lower bound on the log
probability of the training data.
– The proof is slightly complicated.
– But it is based on a neat equivalence between an

RBM and a deep directed model (described later)

The generative model after learning 3 layers

• To generate data:
1. Get an equilibrium sample

from the top-level RBM by
performing alternating Gibbs
sampling for a long time.

2. Perform a top-down pass to
get states for all the other
layers.

 So the lower level bottom-up
connections are not part of
the generative model. They
are just used for inference.

 h2

 data

 h1

 h3

Why does greedy learning work?
An aside: Averaging factorial distributions

• If you average some factorial distributions, you
do NOT get a factorial distribution.
– In an RBM, the posterior over the hidden units

is factorial for each visible vector.
– But the aggregated posterior over all training

cases is not factorial (even if the data was
generated by the RBM itself).

Why does greedy learning work?
• Each RBM converts its data distribution

into an aggregated posterior distribution
over its hidden units.

• This divides the task of modeling its
data into two tasks:
– Task 1: Learn generative weights

that can convert the aggregated
posterior distribution over the hidden
units back into the data distribution.

– Task 2: Learn to model the
aggregated posterior distribution
over the hidden units.

– The RBM does a good job of task 1
and a moderately good job of task 2.

• Task 2 is easier (for the next RBM) than
modeling the original data because the
aggregated posterior distribution is
closer to a distribution that an RBM can
model perfectly.

data distribution
on visible units

 aggregated
posterior distribution
on hidden units

Task 2

Task 1

Why does greedy learning work?

The weights, W, in the bottom level RBM define
p(v|h) and they also, indirectly, define p(h).

So we can express the RBM model as

If we leave p(v|h) alone and improve p(h), we will
improve p(v).

To improve p(h), we need it to be a better model of
the aggregated posterior distribution over hidden
vectors produced by applying W to the data.

Which distributions are factorial in a
directed belief net?

• In a directed belief net with one hidden layer, the
posterior over the hidden units for each visible
vector is non-factorial (due to explaining away).
– The aggregated posterior is factorial if the

data was generated by the directed model.
• It’s the opposite way round from an undirected

model.
• The intuitions that people have from using directed

models are very misleading for undirected models.

Why does greedy learning fail in a directed module?

• A directed module also converts its data
distribution into an aggregated posterior
– Task 1 is now harder because the

posterior for each training case is
non-factorial.

– Task 2 is performed using an
independent prior. This is a bad
approximation unless the aggregated
posterior is close to factorial.

• A directed module attempts to make the
aggregated posterior factorial in one step.
– This is too difficult and leads to a bad

compromise. There is no guarantee
that the aggregated posterior is easier
to model than the data distribution.

data distribution
on visible units

Task 2

Task 1

 aggregated
posterior distribution
on hidden units

A model of digit recognition

2000 top-level neurons

500 neurons

500 neurons

28 x 28
pixel
image

10 label
neurons

The model learns to generate
combinations of labels and images.

To perform recognition we start with a
neutral state of the label units and do
an up-pass from the image followed
by a few iterations of the top-level
associative memory.

The top two layers form an
associative memory whose
energy landscape models the low
dimensional manifolds of the
digits.

The energy valleys have names

Fine-tuning with a contrastive version of the
“wake-sleep” algorithm

 After learning many layers of features, we can fine-tune
the features to improve generation.

1. Do a stochastic bottom-up pass
– Adjust the top-down weights to be good at

reconstructing the feature activities in the layer below.
3. Do a few iterations of sampling in the top level RBM

-- Adjust the weights in the top-level RBM.
4. Do a stochastic top-down pass

– Adjust the bottom-up weights to be good at
reconstructing the feature activities in the layer above.

Show the movie of the network
generating digits

 (available at www.cs.toronto/~hinton)

Samples generated by letting the associative
memory run with one label clamped. There are
1000 iterations of alternating Gibbs sampling

between samples.

Examples of correctly recognized handwritten digits
that the neural network had never seen before

Its very
good

How well does it discriminate on MNIST test set with
no extra information about geometric distortions?

• Generative model based on RBM’s 1.25%
• Support Vector Machine (Decoste et. al.) 1.4%
• Backprop with 1000 hiddens (Platt) ~1.6%
• Backprop with 500 -->300 hiddens ~1.6%
• K-Nearest Neighbor ~ 3.3%
• See Le Cun et. al. 1998 for more results

• Its better than backprop and much more neurally plausible
because the neurons only need to send one kind of signal,
and the teacher can be another sensory input.

Unsupervised “pre-training” also helps for
models that have more data and better priors

• Ranzato et. al. (NIPS 2006) used an additional
600,000 distorted digits.

• They also used convolutional multilayer neural
networks that have some built-in, local
translational invariance.

Back-propagation alone: 0.49%

Unsupervised layer-by-layer
pre-training followed by backprop: 0.39% (record)

Another view of why layer-by-layer
learning works

• There is an unexpected equivalence between
RBM’s and directed networks with many layers
that all use the same weights.
– This equivalence also gives insight into why

contrastive divergence learning works.

An infinite sigmoid belief net
that is equivalent to an RBM

• The distribution generated by this
infinite directed net with replicated
weights is the equilibrium distribution
for a compatible pair of conditional
distributions: p(v|h) and p(h|v) that
are both defined by W
– A top-down pass of the directed

net is exactly equivalent to letting
a Restricted Boltzmann Machine
settle to equilibrium.

– So this infinite directed net
defines the same distribution as
an RBM.

 v1

 h1

 v0

 h0

 v2

 h2

etc.

• The variables in h0 are conditionally
independent given v0.
– Inference is trivial. We just

multiply v0 by W transpose.
– The model above h0 implements

a complementary prior.
– Multiplying v0 by W transpose

gives the product of the likelihood
term and the prior term.

• Inference in the directed net is
exactly equivalent to letting a
Restricted Boltzmann Machine settle
to equilibrium starting at the data.

Inference in a directed net
with replicated weights

 v1

 h1

 v0

 h0

 v2

 h2

etc.

+

+

+

+

• The learning rule for a sigmoid belief
net is:

• With replicated weights this becomes:

 v1

 h1

 v0

 h0

 v2

 h2

etc.

• First learn with all the weights tied
– This is exactly equivalent to

learning an RBM
– Contrastive divergence learning

is equivalent to ignoring the small
derivatives contributed by the tied
weights between deeper layers.

Learning a deep directed
network

 v1

 h1

 v0

 h0

 v2

 h2

etc.

 v0

 h0

• Then freeze the first layer of weights
in both directions and learn the
remaining weights (still tied
together).
– This is equivalent to learning

another RBM, using the
aggregated posterior distribution
of h0 as the data.

 v1

 h1

 v0

 h0

 v2

 h2

etc.

 v1

 h0

How many layers should we use and how
wide should they be?

(I am indebted to Karl Rove for this slide)

• How many lines of code should an AI program use and how
long should each line be?
– This is obviously a silly question.

• Deep belief nets give the creator a lot of freedom.
– How best to make use of that freedom depends on the

task.
– With enough narrow layers we can model any distribution

over binary vectors (Sutskever & Hinton, 2007)
• If freedom scares you, stick to convex optimization of

shallow models that are obviously inadequate for doing
Artificial Intelligence.

What happens when the weights in higher layers
become different from the weights in the first layer?

• The higher layers no longer implement a complementary
prior.
– So performing inference using the frozen weights in

the first layer is no longer correct.
– Using this incorrect inference procedure gives a

variational lower bound on the log probability of the
data.

• We lose by the slackness of the bound.

• The higher layers learn a prior that is closer to the
aggregated posterior distribution of the first hidden layer.
– This improves the network’s model of the data.

• Hinton, Osindero and Teh (2006) prove that this improvement
is always bigger than the loss.

A stack of RBM’s
(Yee-Whye Teh’s idea)

• Each RBM has the same subscript as
its hidden layer.

• Each RBM defines its own distribution
over its visible vectors

• Each RBM defines its own distribution
over its hidden vectors

 v

 h1

 h2

 hL

The variational bound

Now we cancel out all of the partition functions except the top one
and replace log probabilities by goodnesses using the fact that:

This has simple derivatives that give a more justifiable

fine-tuning algorithm than contrastive wake-sleep.

Each time we replace the prior over the hidden units by a better
prior, we win by the difference in the probability assigned

Summary so far

• Restricted Boltzmann Machines provide a simple way to
learn a layer of features without any supervision.
– Maximum likelihood learning is computationally

expensive because of the normalization term, but
contrastive divergence learning is fast and usually
works well.

• Many layers of representation can be learned by treating
the hidden states of one RBM as the visible data for
training the next RBM (a composition of experts).

• This creates good generative models that can then be
fine-tuned.
– Contrastive wake-sleep can fine-tune generation.

Overview of the rest of the tutorial
• How to fine-tune a greedily trained generative model to

be better at discrimination.

• How to learn a kernel for a Gaussian process.

• How to use deep belief nets for non-linear dimensionality
reduction and document retrieval.

• How to use deep belief nets for sequential data.

• How to learn a generative hierarchy of conditional
random fields.

BREAK

Fine-tuning for discrimination

• First learn one layer at a time greedily.
• Then treat this as “pre-training” that finds a good

initial set of weights which can be fine-tuned by
a local search procedure.
– Contrastive wake-sleep is one way of

fine-tuning the model to be better at
generation.

• Backpropagation can be used to fine-tune the
model for better discrimination.
– This overcomes many of the limitations of

standard backpropagation.

Why backpropagation works better after
greedy pre-training

• Greedily learning one layer at a time scales well to really
big networks, especially if we have locality in each layer.

• We do not start backpropagation until we already have
sensible weights that already do well at the task.
– So the initial gradients are sensible and backprop only

needs to perform a local search.
• Most of the information in the final weights comes from

modeling the distribution of input vectors.
– The precious information in the labels is only used for

the final fine-tuning. It slightly modifies the features. It
does not need to discover features.

– This type of backpropagation works well even if most of
the training data is unlabeled. The unlabeled data is still
very useful for discovering good features.

First, model the distribution of digit images

2000 units

500 units

500 units

28 x 28
pixel
image

The network learns a density model for
unlabeled digit images. When we generate
from the model we get things that look like
real digits of all classes.

But do the hidden features really help with
digit discrimination?

Add 10 softmaxed units to the top and do
backpropagation.

The top two layers form a restricted
Boltzmann machine whose free energy
landscape should model the low
dimensional manifolds of the digits.

Results on permutation-invariant MNIST task

• Very carefully trained backprop net with 1.6%
one or two hidden layers (Platt; Hinton)

• SVM (Decoste & Schoelkopf, 2002) 1.4%

• Generative model of joint density of 1.25%
images and labels (+ generative fine-tuning)

• Generative model of unlabelled digits 1.15%
followed by gentle backpropagation
(Hinton & Salakhutdinov, Science 2006)

Combining deep belief nets with Gaussian processes

• Deep belief nets can benefit a lot from unlabeled data
when labeled data is scarce.
– They just use the labeled data for fine-tuning.

• Kernel methods, like Gaussian processes, work well on
small labeled training sets but are slow for large training
sets.

• So when there is a lot of unlabeled data and only a little
labeled data, combine the two approaches:
– First learn a deep belief net without using the labels.
– Then apply Gaussian process models to the deepest

layer of features. This works better than using the raw
data.

– Then use GP’s to get the derivatives that are
back-propagated through the deep belief net. This is a
further win. It allows GP’s to fine-tune complicated
domain-specific kernels.

Learning to extract the orientation of a face patch
(Salakhutdinov & Hinton, NIPS 2007)

The training and test sets

11,000 unlabeled cases100, 500, or 1000 labeled cases

face patches from new people

The root mean squared error in the orientation
when combining GP’s with deep belief nets

22.2 17.9 15.2

17.2 12.7 7.2

16.3 11.2 6.4

GP on
the
pixels

GP on
top-level
features

GP on top-level
features with
fine-tuning

 100 labels

 500 labels

1000 labels

Conclusion: The deep features are much better
than the pixels. Fine-tuning helps a lot.

Modeling real-valued data

• For images of digits it is possible to represent
intermediate intensities as if they were probabilities by
using “mean-field” logistic units.
– We can treat intermediate values as the probability

that the pixel is inked.
• This will not work for real images.

– In a real image, the intensity of a pixel is almost
always almost exactly the average of the neighboring
pixels.

– Mean-field logistic units cannot represent precise
intermediate values.

The free-energy of a mean-field logistic unit

• In a mean-field logistic unit, the
total input provides a linear
energy-gradient and the negative
entropy provides a containment
function with fixed curvature.

• So it is impossible for the value
0.7 to have much lower free
energy than both 0.8 and 0.6.
This is no good for modeling
real-valued data.

0 output-> 1

F🡪

energy

- entropy

An RBM with real-valued visible units

• Using Gaussian visible
units we can get much
sharper predictions and
alternating Gibbs
sampling is still easy,
though learning is
slower.

E
 🡪

energy-gradient
produced by the total
input to a visible unit

parabolic
containment
function

Welling et. al. (2005) show how to extend RBM’s to the
exponential family. See also Bengio et. al. 2007)

Deep Autoencoders
(Hinton & Salakhutdinov, 2006)

• They always looked like a really
nice way to do non-linear
dimensionality reduction:
– But it is very difficult to

optimize deep autoencoders
using backpropagation.

• We now have a much better way
to optimize them:
– First train a stack of 4 RBM’s
– Then “unroll” them.
– Then fine-tune with backprop.

 1000 neurons

500 neurons

500 neurons

250 neurons

250 neurons

30

 1000 neurons

28x28

28x28

linear
units

A comparison of methods for compressing
digit images to 30 real numbers.

real
data

30-D
deep auto

30-D logistic
PCA

30-D
PCA

Do the 30-D codes found by the deep
autoencoder preserve the class

structure of the data?

• Take the 30-D activity patterns in the code layer
and display them in 2-D using a new form of
non-linear multi-dimensional scaling
– The method is called UNI-SNE (Cook et. al.

2007).
– It keeps similar patterns close together and

tries to push dissimilar ones far apart.
• Does the learning find the natural classes?

entirely
unsupervised
except for the
colors

Retrieving documents that are similar to
a query document

• We can use an autoencoder to find
low-dimensional codes for documents that
allow fast and accurate retrieval of similar
documents from a large set.

• We start by converting each document into a
“bag of words”. This a 2000 dimensional
vector that contains the counts for each of the
2000 commonest words.

How to compress the count vector

• We train the neural
network to reproduce its
input vector as its output

• This forces it to
compress as much
information as possible
into the 10 numbers in
the central bottleneck.

• These 10 numbers are
then a good way to
compare documents.

 2000 reconstructed counts

500 neurons

 2000 word counts

500 neurons

250 neurons

250 neurons

10

input
vector

output
vector

Performance of the autoencoder at
document retrieval

• Train on bags of 2000 words for 400,000 training cases
of business documents.
– First train a stack of RBM’s. Then fine-tune with

backprop.
• Test on a separate 400,000 documents.

– Pick one test document as a query. Rank order all the
other test documents by using the cosine of the angle
between codes.

– Repeat this using each of the 400,000 test documents
as the query (requires 0.16 trillion comparisons).

• Plot the number of retrieved documents against the
proportion that are in the same hand-labeled class as the
query document.

Proportion of retrieved documents in same class as query

Number of documents retrieved

First compress all documents to 2 numbers using a type of PCA
Then use different colors for different document categories

 First compress all documents to 2 numbers.
Then use different colors for different document categories

Finding binary codes for documents

• Train an auto-encoder using 30
logistic units for the code layer.

• During the fine-tuning stage,
add noise to the inputs to the
code units.
– The “noise” vector for each

training case is fixed. So we
still get a deterministic
gradient.

– The noise forces their
activities to become bimodal
in order to resist the effects
of the noise.

– Then we simply round the
activities of the 30 code units
to 1 or 0.

 2000 reconstructed counts

500 neurons

 2000 word counts

500 neurons

250 neurons

250 neurons

30
noise

Semantic hashing: Using a deep autoencoder as a
hash-function for finding approximate matches

(Salakhutdinov & Hinton, 2007)

hash
function

“supermarket search”

How good is a shortlist found this way?

• We have only implemented it for a million
documents with 20-bit codes --- but what could
possibly go wrong?
– A 20-D hypercube allows us to capture enough

of the similarity structure of our document set.
• The shortlist found using binary codes actually

improves the precision-recall curves of TF-IDF.
– Locality sensitive hashing (the fastest other

method) is 50 times slower and has worse
precision-recall curves.

Time series models

• Inference is difficult in directed models of time
series if we use non-linear distributed
representations in the hidden units.
– It is hard to fit Dynamic Bayes Nets to

high-dimensional sequences (e.g motion
capture data).

• So people tend to avoid distributed
representations and use much weaker methods
(e.g. HMM’s).

Time series models

• If we really need distributed representations (which we
nearly always do), we can make inference much simpler
by using three tricks:
– Use an RBM for the interactions between hidden and

visible variables. This ensures that the main source of
information wants the posterior to be factorial.

– Model short-range temporal information by allowing
several previous frames to provide input to the hidden
units and to the visible units.

• This leads to a temporal module that can be stacked
– So we can use greedy learning to learn deep models

of temporal structure.

The conditional RBM model
(Sutskever & Hinton 2007)

• Given the data and the previous hidden
state, the hidden units at time t are
conditionally independent.
– So online inference is very easy

• Learning can be done by using
contrastive divergence.
– Reconstruct the data at time t from

the inferred states of the hidden units
and the earlier states of the visibles.

– The temporal connections can be
learned as if they were additional
biases

t-2 t-1 t

t

Why the autoregressive connections do not cause
problems

• The autoregressive connections do not mess up
contrastive divergence learning because:
– We know the initial state of the visible units, so we

know the initial effect of the autoregressive
connections.

– It is not necessary for the reconstructions to be at
equilibrium with the hidden units.

– The important thing for contrastive divergence is to
ensure the hiddens are in equilibrium with the visibles
whenever statistics are measured.

Generating from a learned model

• The inputs from the earlier states
of the visible units create
dynamic biases for the hidden
and current visible units.

• Perform alternating Gibbs
sampling for a few iterations
between the hidden units and the
current visible units.
– This picks new hidden and

visible states that are
compatible with each other
and with the recent history.

t-2 t-1 t

t

Stacking temporal RBM’s
• Treat the hidden activities of the first level

TRBM as the data for the second-level
TRBM.
– So when we learn the second level, we

get connections across time in the first
hidden layer.

• After greedy learning, we can generate from
the composite model
– First, generate from the top-level model

by using alternating Gibbs sampling
between the current hiddens and
visibles of the top-level model, using the
dynamic biases created by the previous
top-level visibles.

– Then do a single top-down pass through
the lower layers, but using the
autoregressive inputs coming from
earlier states of each layer.

An application to modeling
motion capture data

(Taylor, Roweis & Hinton, 2007)

• Human motion can be captured by placing
reflective markers on the joints and then using
lots of infrared cameras to track the 3-D
positions of the markers.

• Given a skeletal model, the 3-D positions of the
markers can be converted into the joint angles
plus 6 parameters that describe the 3-D position
and the roll, pitch and yaw of the pelvis.
– We only represent changes in yaw because physics

doesn’t care about its value and we want to avoid
circular variables.

Modeling multiple types of motion

• We can easily learn to model walking and
running in a single model.
– This means we can share a lot of knowledge.
– It should also make it much easier to learn

nice transitions between walking and running.
• In a switching mixture of dynamical systems its

hard to get the latent variables to join up nicely
when we switch from one system to another.

• Because we can do online inference (slightly
incorrectly), we can fill in missing markers in real
time.

Show Graham Taylor’s movies

available at www.cs.toronto/~hinton

Generating the parts of an object

• One way to maintain the
constraints between the parts is
to generate each part very
accurately
– But this would require a lot of

communication bandwidth.
• Sloppy top-down specification of

the parts is less demanding
– but it messes up relationships

between features
– so use redundant features

and use lateral interactions to
clean up the mess.

• Each transformed feature helps
to locate the others
– This allows a noisy channel

sloppy top-down
activation of parts

clean-up using
known interactions

pose parameters

features with
top-down
support

“square” +

Its like soldiers on
a parade ground

Semi-restricted Boltzmann Machines
• We restrict the connectivity to make

learning easier.
• Contrastive divergence learning requires

the hidden units to be in conditional
equilibrium with the visibles.
– But it does not require the visible units

to be in conditional equilibrium with the
hiddens.

– All we require is that the visible units
are closer to equilibrium in the
reconstructions than in the data.

• So we can allow connections between
the visibles.

hidden

i

j

visible

Learning a semi-restricted Boltzmann Machine

i

j

i

j

t = 0 t = 1

1. Start with a training
vector on the visible
units.

2. Update all of the
hidden units in
parallel

3. Repeatedly update
all of the visible units
in parallel using
mean-field updates
(with the hiddens
fixed) to get a
“reconstruction”.

4. Update all of the
hidden units again.

reconstructiondata

k i ik k k

update for a
lateral weight

Learning in Semi-restricted Boltzmann
Machines

• Method 1: To form a reconstruction, cycle
through the visible units updating each in turn
using the top-down input from the hiddens plus
the lateral input from the other visibles.

• Method 2: Use “mean field” visible units that
have real values. Update them all in parallel.
– Use damping to prevent oscillations

total input to idamping

Results on modeling natural image patches
using a stack of RBM’s (Osindero and Hinton)

• Stack of RBM’s learned one at a time.
• 400 Gaussian visible units that see

whitened image patches
– Derived from 100,000 Van Hateren

image patches, each 20x20
• The hidden units are all binary.

– The lateral connections are
learned when they are the visible
units of their RBM.

• Reconstruction involves letting the
visible units of each RBM settle using
mean-field dynamics.
– The already decided states in the

level above determine the effective
biases during mean-field settling.

Directed Connections

Directed Connections

Undirected Connections

400
Gaussian
units

Hidden
MRF with
2000 units

Hidden
MRF with
500 units

1000
top-level
units. No
MRF.

Without lateral connections
real data samples from model

With lateral connections
real data samples from model

A funny way to use an MRF

• The lateral connections form an MRF.
• The MRF is used during learning and generation.
• The MRF is not used for inference.

– This is a novel idea so vision researchers don’t like it.
• The MRF enforces constraints. During inference,

constraints do not need to be enforced because the data
obeys them.
– The constraints only need to be enforced during

generation.
• Unobserved hidden units cannot enforce constraints.

– This requires lateral connections or observed
descendants.

Why do we whiten data?

• Images typically have strong pair-wise correlations.
• Learning higher order statistics is difficult when there are

strong pair-wise correlations.
– Small changes in parameter values that improve the

modeling of higher order statistics may be rejected
because they form a slightly worse model of the much
stronger pair-wise statistics.

• So we often remove the second-order statistics before
trying to learn the higher-order statistics.

Whitening the learning signal instead
of the data

• Contrastive divergence learning can remove the effects
of the second-order statistics on the learning without
actually changing the data.
– The lateral connections model the second order

statistics
– If a pixel can be reconstructed correctly using second

order statistics, its will be the same in the
reconstruction as in the data.

– The hidden units can then focus on modeling
high-order structure that cannot be predicted by the
lateral connections.

• For example, a pixel close to an edge, where interpolation
from nearby pixels causes incorrect smoothing.

Towards a more powerful, multi-linear
stackable learning module

• So far, the states of the units in one layer have only been
used to determine the effective biases of the units in the
layer below.

• It would be much more powerful to modulate the pair-wise
interactions in the layer below. (A good way to design a
hierarchical system is to allow each level to determine the
objective function of the level below.)
– For example, a vertical edge represents a breakdown in

the usual correlational structure of the pixels: Horizontal
interpolation does not work, so it needs to be turned off,
but interpolation parallel to the edge is OK.

• To modulate pair-wise interactions we need higher-order
Boltzmann machines.

Higher order Boltzmann machines
(Sejnowski, ~1986)

• The usual energy function is quadratic in the states:

• But we could use higher order interactions:

• Unit k acts as a switch. When unit k is on, it switches
in the pairwise interaction between unit i and unit j.
– Units i and j can also be viewed as switches that

control the pairwise interactions between j and k
or between i and k.

A picture of a conditional,
 higher-order Boltzmann machine

(Hinton & Lang,1985)

retina-bas
ed
features

object-based
featuresviewing

transform

• We can view it as a
Boltzmann machine in
which the inputs create
interactions between the
other variables.
– This type of model is

now called a conditional
random field.

– It is hard to learn with
two hidden groups.

Using conditional higher-order Boltzmann
machines to model image transformations

(Memisevic and Hinton, 2007)

• A transformation unit specifies which pixel goes
to which other pixel.

• Conversely, each pair of similar intensity pixels,
one in each image, votes for all the compatible
transformation units.

image(t) image(t+1)

image transformation

Readings on deep belief nets

A reading list (that is still being updated) can be
found at

www.cs.toronto.edu/~hinton/csc2515/deeprefs.html

