
Расчет числовых характеристик случайных процессов

В таблицу заносятся значения моментов времени и величины ординат по каждой реализации

	Таблица №1																			
t,c	0,5	1	1,5	2	2,5	3	3,5	4	4,5	5	5,5	6	6,5	7	7,5	8	8,5	9	9,5	10
$X(t)_1$	1	4,7	4,2	3,5	9,1	5,8	8,5	8	2,5	6	4,4	3,2	3,2	5,8	3,3	0,5	1,4	5,7	9	5,5
$X(t)_2$	4,7	7,5	8,7	4	7,4	8,7	5	0,8	3,4	2	5	7,4	2,4	4,2	7,9	3,7	5,2	8,1	5,5	1,6
$X(t)_3$	7,5	5,7	2,6	2,6	5,3	2,7	5,2	5,4	7,2	1,6	7,8	6,4	3,6	3,4	3,4	3,6	0,6	3,5	3,7	5,6
$X(t)_4$	5,7	8,4	9,5	7,6	4,4	8,6	7,3	7,8	2,7	0,6	1,9	3	4,6	3,8	9,3	1,5	3,5	7,4	4,4	1,4
$X(t)_5$	9	9,4	2	5,6	4,8	6,9	7,8	3,5	3,2	0,6	2,9	8	9	5,7	7,6	4,4	3,8	6	1,1	3,3
$m_x(t)$	5,58	7,14	5,4	4,66	6,2	6,54	6,76	5,1	3,8	2,16	4,4	5,6	4,56	4,58	6,3	2,74	2,9	6,14	4,74	3,48

Расчет дисперсии случайного процесса.

- Для расчета дисперсии составляется таблица №2. В нее заносятся значения моментов времени.
- Для каждой реализации рассчитываются значения квадратов разности между значением случайного процесса и математическим ожиданием для фиксированных моментов времени.
- Рассчитывается среднее значение квадратов разности (дисперсии) и их значение заносится в таблицу №2.

Расчет дисперсии случайного процесса

t,c	0,5	1	1,5	2	2,5	3	3,5	4	4,5	5	5,5	6	6,5	7	7,5	8	8,5	9	9,5	10
$(X(t) - m_{x}(t)_{1})2$	20,9764	5,9536	1,44	1,35	8,41	0,55	3,03	8,41	1,69	14,7	0	5,76	1,85	1,49	9	5,02	2,25	0,19	18,1	4,08
$(X(t) - m_x(t)_2)2$	0,7744	0,1296	10,9	0,44	1,44	4,67	3,1	18,5	0,16	0,03	0,36	3,24	4,67	0,14	2,56	0,92	5,29	3,84	0,58	3,53
$(X(t) - m_{x}(t)_{3})2$	3,6864	2,0736	7,84	4,24	0,81	14,7	2,43	0,09	11,6	0,31	11,6	0,64	0,92	1,39	8,41	0,74	5,29	6,97	1,08	4,49
$(X(t) - m_x(t)_4)2$	0,0144	1,5876	16,8	8,64	3,24	4,24	0,29	7,29	1,21	2,43	6,25	6,76	0	0,61	9	1,54	0,36	1,59	0,12	4,33
$(X(t)-m_{x}(t)_{5})2$	11,6964	5,1076	11,6	0,88	1,96	0,13	1,08	2,56	0,36	2,43	2,25	5,76	19,7	1,25	1,69	2,76	0,81	0,02	13,2	0,03
$D_{x}(t)$	7,4296	2,9704	9,71	3,11	3,17	4,87	1,99	7,37	3	3,99	4,08	4,43	5,43	0,98	6,13	2,19	2,8	2,52	6,63	3,29

Расчет автокорреляционной функции.

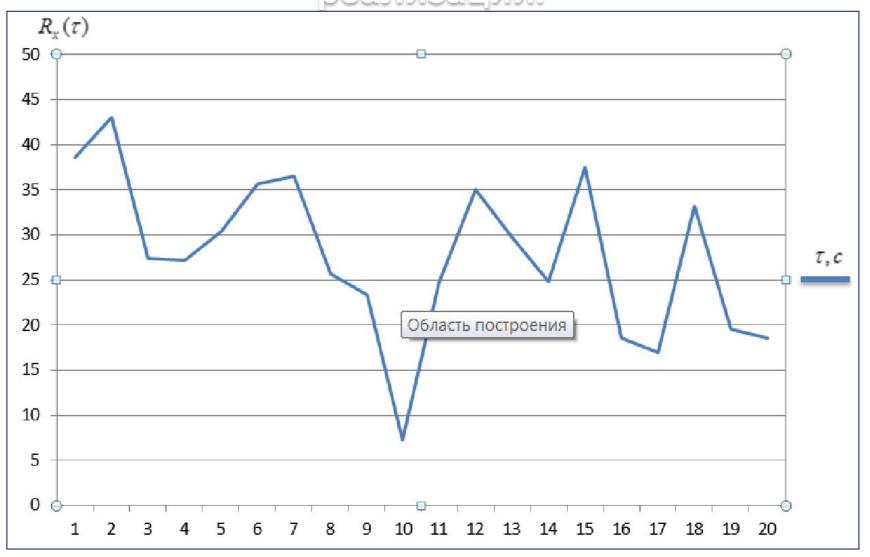
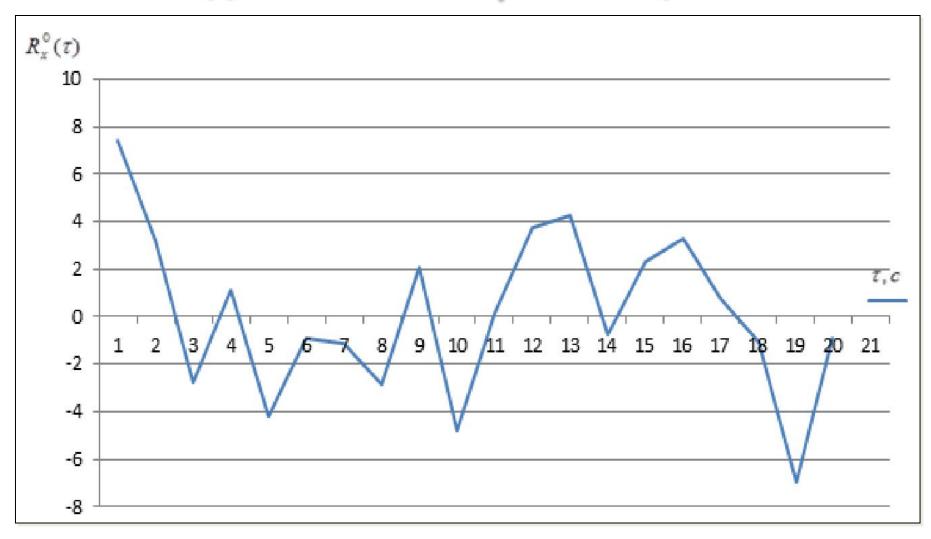

Для каждой реализации рассчитывается произведение значений случайных величин для моментов времени t и t + т. Для множества реализации рассчитывается средние значение произведений по множеству реализаций для фиксированных моментов времени. Это и есть автокорреляционная функция.

Таблица 3. Расчет автокорреляционной функции

	au, c	0,5	1	1,5	2	2,5	3	3,5	4	4,5	5	5,5	6	6,5	7	7,5	8	8,5	9	9,5	10
(X(i	$(t)\cdot X(t+ au))_1$	1	4,7	4,2	3,5	9,1	5,8	8,5	8	2,5	6	4,4	3,2	3,2	5,8	3,3	0,5	1,4	5,7	9	5,5
(X(t	$(t)\cdot X(t+ au))_2$	22,09	35,25	40,9	18,8	34,8	40,9	23,5	3,76	16	9,4	23,5	34,8	11,3	19,7	37,1	17,4	24,4	38,1	25,9	7,52
(X(t	$(t)\cdot X(t+ au))_3$	56,25	42,75	19,5	19,5	39,8	20,3	39	40,5	54	12	58,5	48	27	25,5	25,5	27	4,5	26,3	27,8	42
(X(t	$(t)\cdot X(t+ au))_4$	32,49	47,88	54,2	43,3	25,1	49	41,6	44,5	15,4	3,42	10,8	17,1	26,2	21,7	53	8,55	20	42,2	25,1	7,98
(X(t	$(t)\cdot X(t+ au))_5$	81	84,6	18	50,4	43,2	62,1	70,2	31,5	28,8	5,4	26,1	72	81	51,3	68,4	39,6	34,2	54	9,9	29,7
	$R_{x}(\tau)$	38,566	43,036	27,3	27,1	30,4	35,6	36,6	25,6	23,3	7,24	24,7	35	29,7	24,8	37,5	18,6	16,9	33,2	19,5	18,5

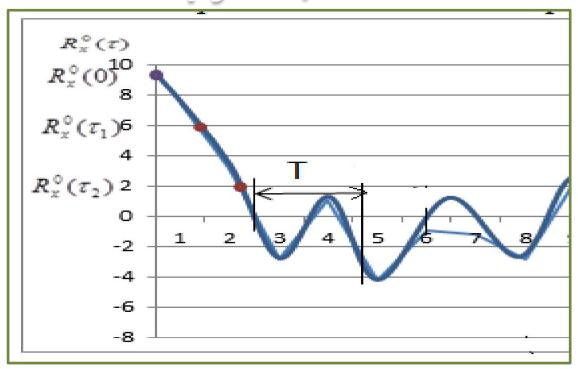
График зависимости автокорреляционной функции от времени для данного множества



Расчет центрированной автокорреляционной функции

- Для каждой реализации рассчитывается произведение разностей между значениями случайных величин и математическим ожиданием для моментов времени t и t + т.
 - Для множества реализаций рассчитывается средние значение произведение разностей между значениями случайных величин и математическим ожиданием для фиксированных моментов времени.

График зависимости центрированной автокорреляционной функции от времени для множества реализаций


Опишем полученную центрированную автокорреляционную функцию следующим выражением:

$$R_*^0(\tau) = R(0)e^{-\alpha \tau} \cos \beta \tau,$$

$$\beta = \frac{2\pi}{T}$$

Найдем период колебания центрированной автокорреляционной

функции:

$$T = 4.5 - 2.5 = 2, c,$$

$$\beta = \frac{2\pi}{T} = \frac{2 \cdot 3,14}{2,0} = 3,14c^{-1}$$

На кривой центрированной автокорреляционной функции берем произвольно две точки и для них составляем систему уравнений:

$$\begin{cases} R_x^0(\tau_1) = 9.4e^{-\alpha \cdot 0.9}\cos 3.14 \cdot 0.9 = 9.4e^{-0.9\alpha}\cos 2.82; \\ R_x^0(\tau_1) = 9.4e^{-\alpha \cdot 1.8}\cos 3.14 \cdot 1.8 = 9.4e^{-1.8\alpha}\cos 5.6. \end{cases}$$

$$\begin{cases} e^{-0.9\alpha} = \frac{R_x^0(\tau_1)}{9.4 \cdot \cos 1.62}; \\ e^{-1.8\alpha} = \frac{R_x^0(\tau_2)}{9.4 \cdot \cos 3.24}. \end{cases}$$

• После вычисления получим:

$$\begin{cases} e^{-0.9\alpha} = \frac{6}{9,4 \cdot \cos 1,62}; \\ e^{-1.8\alpha} = \frac{2}{9,4 \cdot \cos 3,24}. \end{cases}$$
$$\begin{cases} e^{-0.9\alpha} = 0,6385; \\ e^{-1.8\alpha} = 0,2131. \end{cases}$$

• Прологарифмируем:

$$\begin{cases} \ln e^{-0.9\alpha} = \ln(0,6385); \\ \ln e^{-1.8\alpha} = \ln(0,2131). \end{cases}$$
$$\begin{cases} -0.9\alpha = -0.448634; \\ -1.8\alpha = -1.545994. \end{cases}$$

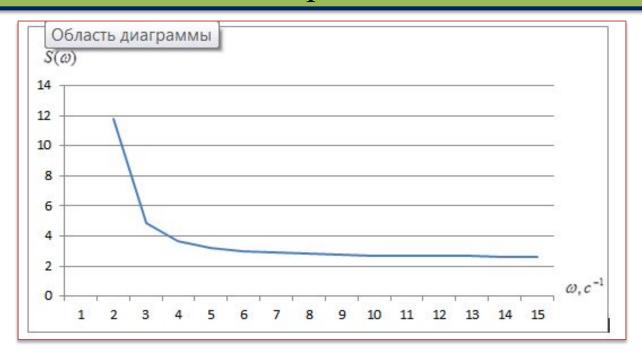
Находим среднее значение α

$$\begin{bmatrix} \alpha_1 = \frac{-0,448634}{-0,9} = 0,4985; \\ \alpha_2 = \frac{-1,545994}{-1,8} = 0,8589; \\ \alpha_{cp} = \frac{0,4985 + 0,8589}{2} = 0,679; \end{bmatrix}$$

Записываем уравнение центрированной автокорреляционной функции:

$$R_x^0(\tau) = 9.4)e^{-0.679\tau}\cos 3.14\tau$$

Расчет спектральной плотности случайных процессов


• Определяем спектральную плотность:

$$S(\omega) = \frac{2\alpha R(0) \cdot (\omega^2 + \alpha^2 + \beta^2)}{\pi(\omega^2 - \alpha^2 - \beta^2) + 4\alpha^2 \omega^2} = \frac{2 \cdot 0,679 \cdot 9,4(\omega^2 + 0,679^2 + 1,8^2)}{3,14(\omega^2 - 0,679^2 - 1,8^2) + 4 \cdot 0,679^2 \omega^2} = \frac{12,7652(\omega^2 + 3,701)}{3,14(\omega^2 - 3,701) + 1,844\omega^2} = \frac{12,7652(\omega^2 + 3,701)}{4,984\omega^2 - 11,621} = \frac{12,7652\omega^2 + 47,244}{4,984\omega^2 - 11,621};$$

гасчетные значения спектральной плотности

ω, c^{-1}	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
S(a)	-9,04	11,82	4,88	3,69	3,24	3,02	2,89	2,81	2,76	2,72	2,69	2,67	2,65	2,64	2,63

На основе данных расчетов строим график зависимости спектральной плотности

