

Генетический контроль пола

Подготовила ст.гр БГ-41 Вакуленко Мария Пол – совокупность морфологических и физиологических особенностей организма, обеспечивающих половое размножение, сущность которого сводится к оплодотворению, то есть слиянию мужских и женских половых клеток (гамет) в зиготу, из которой развивается новый организм.

Пол

дифференциация пола (фенотипический пол), то есть появление внешних гениталий, вторичных половых признаков

первичное определение пола: появление гонады (репродуктивного органа соматической природы) самки или самца – яичника или тестиса

Таблица 1. Принципиальная схема определения пола у некоторых представителей животного мира

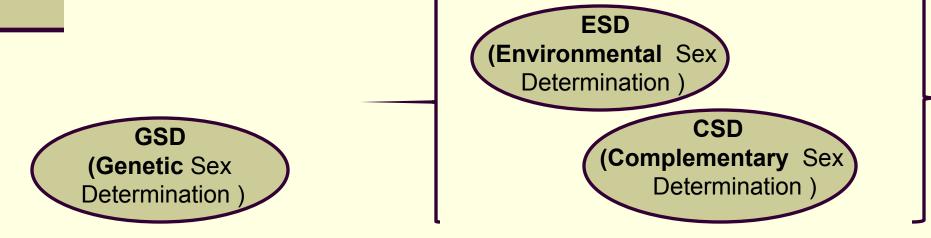
	Saccharomyces cerevisiae	Caenorhabditis elegans	Drosophila melanogaster	Alligator missippiensis	Mammalia
Контролирующий сигнал	Транскрипция НО-гена	Соотношение и аутосом	Х-хромосом	Внешняя температура	Ү-хромосома
Ключевой ген	MAT (α/a)	her (+/-)	Sxl (+/-)	TDF	TDF-SRY
Гены, контролирующие гонадогенез (полопределяющие)		xol1 sdc1, sdc2 her1 tra2, tra3 fem1, fem2, fem3, tra1	sis-a, sis-b da, liz fl(2)d Sxl tra, tra2 dsx, ix	Эффекторные молекулы, гормоны	Гормоны
Гены, контролирующие по- ловую дифференцировку	+/-	+/-	+/-	+/-	+/-

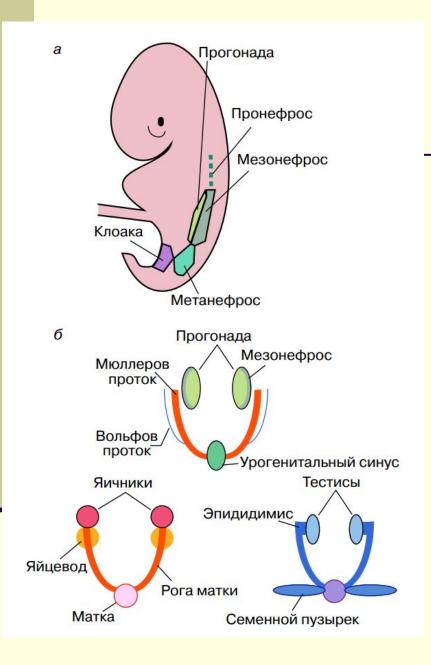
Примечание. + и - означают альтернативу включения или выключения соответствующего гена.

Детерминация пола у млекопитающих

"Специализация развивающихся гонад в тестис или яичник определяет последующую половую дифференциацию эмбриона" (Альфред Жост, 60-е гг.)

"Y-хромосома несет генетическую информацию, требуемую для детерминации пола у самцов" (1959 г.)


Тестостерон


MIS

У

Принцип Жоста

"Хромосомный пол, связанный с присутствием или отсутствием Y-хромосомы, определяет дифференциацию эмбриональной гонады, которая, в свою очередь, контролирует фенотипический пол организма"

Рис. 1. Развитие гонад у млекопитающих:

- а плод с недифференцированно й прогонадой;
- б схема мочеполовой системы самцов и самок у такого плода. Первые половые различия между развивающими гонадами наблюдаются у человека через 6 недель после зачатия, у мышей на 12,5-й день.

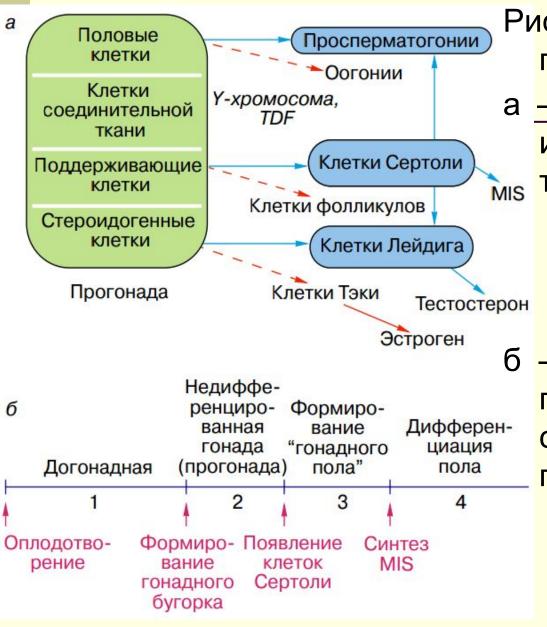
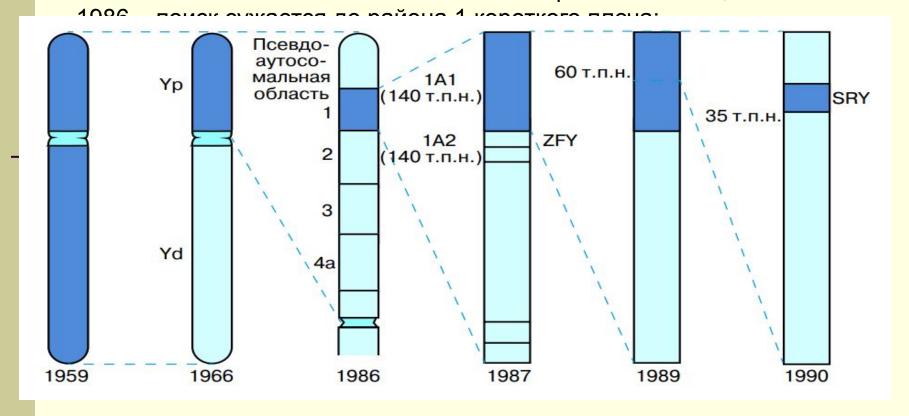



Рис. 2. Схема определения пола у млекопитающих:

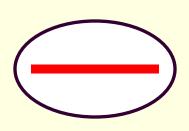
– определение тестисов из четырех клеточных типов прогонады;

временная диаграмма последовательных стадий определения пола.

1959 – вся Ү-хромосома (2–3% генома);

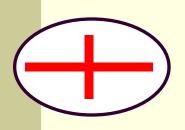
1966 – гипотетический TDF связывают с коротким плечом;

1986 – поиск сужается до района 1 короткого плеча;


1987 — дальнейшее ограничение поиска участком 1A1 и приграничных участков. Выявлен ген ZFY(Zinc Finger Protein, Y-Linked);

1989 – обнаружены мужчины, не обладающие ZFY;

1990 — идентифицирован вероятный TDF — ген SRY(sex-determining region Y). Мутации, связанные с инверсией пола, захватывают лишь небольшой консервативный мотив этого гена HMG-бокс (High-Mobility Group)(80 аминокислотных остатков, 320 п.н.)


Тестисопределяющие гены

ZFY(Zinc Finger Protein, Y-Linked)

- у млекопитающих для детерминации гонад не требуется присутствия половых клеток, которые ⊕ZFY (в последнее время необходимость наличия половых клеток для ⊕ ZFY опровергнута)
- ZFY аутосомно расположен у сумчатых

SRY (Sex determining Region Y gene)

- SRY расположен в полопределяющей области и содержит консервативный домен (HMG-бокс);
- его активность отмечена накануне периода дифференциации прогонады в тестис;
- специфические точковые мутации или делеции в HMG-боксе этого гена у женщин XY приводят к инверсии пола;
- перенос этого ген в оплодотворенную яйцеклетку гомогаметной особи с помощью микроинъекции привел к появлению "самца" с XX-кариотипом (дефектный сперматогенез);
- белок, кодируемый HMG-боксом SRY-гена, специфически связывается с ДНК, приводя к изгибанию ее молекулы, что играет важную роль в регуляции транскрипции, репликации и рекомбинации;
- имеется экспериментальный материал, свидетельствующий в пользу опосредованного положительного контроля SRYактивности со стороны белкового продукта MIS-гена и отрицательного гена ароматазы, контролирующего превращение мужских стероидных гормонов в женские.

Гены, участвующие в детерминации пола

Gdy (growth and development)

Расположен в Sxr-участке Y-хромосомы мышей WT1(Wilms tumor), влияет на деление клеток прогонад

WT1(Wilms tumor)

Вызывающий ряд наследственных заболеваний: опухоль Вильмса, синдром Дэнис—Драма, экспрессирующийся на 9-й день эмбрионального развития и контролирующий развитие недифференцированной, бисексуальной гонады.

Sox9 (SRY type HMG box)

локализованный на хромосоме 11 мыши и имеющий гомолог на хромосоме 17 человека, помимо доминантного CD-синдрома, играет роль в аутосомальной инверсии пола, модификатор влияния SRY на экспрессию MIS (Mullerian-inhibiting substance), своеобразный ограничитель рамок его активности в раннем эмбриогенезе.

ген Z

отрицательный регулятором развития тестисов: в норме функционирует у самок, а у самцов его активность блокируется геном SRY. Предполагается существование аллели Zi, не чувствительной к такой супрессии.

DAX1 (dosage-sensitive sex reversal, adrenal hypoplasia critical region, on

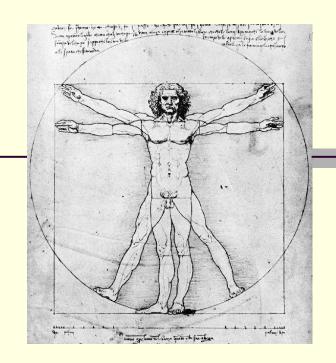
chromosome X, gene 1)

локализован на участке Хр21. При дупликации вызывает зависимую от дозы реверсию мужского пола к женскому, чувствителен к гормонам и в увеличенной дозе способен преодолеть сигнал SRY и сдвигать развитие гонад в направлении яичника. Этот ген рассматривается как реликт более примитивной Х- хромосомной системы детерминации пола.

Стероидогенный фактор SF1

Мутации по SF1-гену могут приводить к отсутствию гонад у обоих полов. Предполагается и его участие в контроле активности гена антимюллеровского гормона (MIS) в клетках Сертоли.

Аутосомный ген Tda1b (testis-determining autosomal)


взаимодействует с TDF(Testis determining factor), влияет на появление овотестиса или яичника у мышей с кариотипом XY.

Аутосомный ген Tas (Testis associated sex reversal gene)

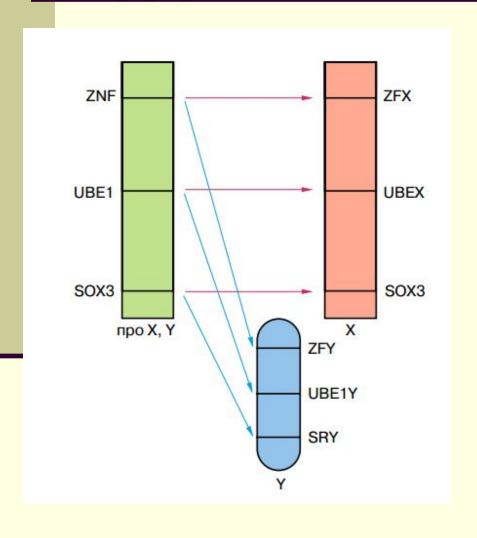
приводит к появлению ХҮ-самок и гермафродитов с овотестисами.

androgen receptor (AR)

феминизация

основной полопределяющий и ген (или гены)- модификатор

аутосомный ген – детерминатор инверсии пола у коккер-спаниэлей


Дополнительных генетические факторы контроля первичной детерминации пола

Генетический фактор	Участие в контроле детерминации пола			
Gpy	Контролирует скорость роста эмбрионов и прогонад			
WT1	Влияет на развитие прогонады примерно на 9-й день эмбрионального развития. Связан с насле, ственными заболеваниями: опухоль Вильмса, синдром Дэнис-Драма			
Sox9	Содержит НМG-бокс. Ответствен за CD-синдром и аутосомальную инверсию пола. Экспрессир ется до 13-го дня эмбрионального развития. Возможный модификатор влияния SRY на MIS-ген			
Z	Отрицательный регулятор развития тестисов. В норме активен у самок, у самцов заблокирован работой SRY. Существует мутация Z^i , нечувствительная к эффекту воздействия TDF-SRY			
DAX1 (DSS)	Локализован в районе Xp21. В двойной дозе способен преодолевать эффект SRY и сдвигать развитие гонад в направлении яичника. Кодирует ядерный рецептор. Ответствен за дозозависимую реверсию пола			
Tda ^{1b}	Предположительно связан с хромосомами 2-й и 4-й мыши. Приводит к появлению овотестисов у В6Y ^{DOM} -гибридов			
Tas	Аутосомная мутация на хромосоме 17 мышей, приводящая к появлению ХУ-самок			
MIS	Ген антимюллеровского гормона, секретируется клетками Сертоли в ответ на активность SRY. Ингибирует развитие Мюллерова протока. Локализован на хромосоме 19 человека — p13,2—p13,3			
Tfm(hAR)	Ген рецептора андрогенов. У человека локализован на X-хромосоме (Xp11-12). Вызывает тестику- лярную феминизацию			
Гены сперматогенеза и спермиогенеза	Известен ряд факторов: Spy, SMSY, UBE1Y, TSPY, YRRM, проявляющих такую активность			
SF1	Ген рецептора стероидных гидролаз. У человека предположительно локализован в участке 9q33. Необходим для развития недифференцированной прогонады и регуляции активности MIS-гена в клетках Сертоли			
Od	Гипотетический X-хромосомный или аутосомный ген, ответственный за дифференциацию прогонады в яичник и отрицательно регулируемый геном SRY			

Ү-хромосома и пол

- 1) обедненность генами;
- 2) обогащенность повторяющимися блоками нт, и в частности, сателлитной ДНК;
- 3) присутствие значительных гетерохроматиновых районов;
- 4) наличие области гомологии с Xхромосомой – псевдоаутосомальной области (PAR).

Схема определения эволюции генов Ү-хромосомы в связи с определением и дифференциацией пола.

Гены Sox3 и UBE1 принадлежали к консервативной части прогоносомы: ZNF – к более новой ее части. На постепенно деградирующей Ү-хромосоме аллель Sox3 /SRY приобретает тестисопределяющие функции, а аллели UBE1/UBE1Y и ZNF/ZNY роль в сперматогенезе. Ген **UBE1Y** утерян у приматов, возможно, за счет выполнения его функций другими генами (SMCY, YRRM и т.д.) реализуется функция детерминации пола.

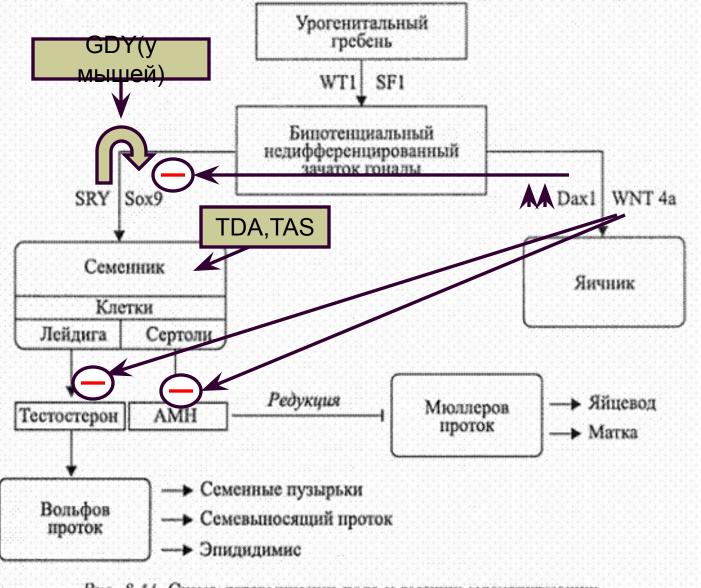
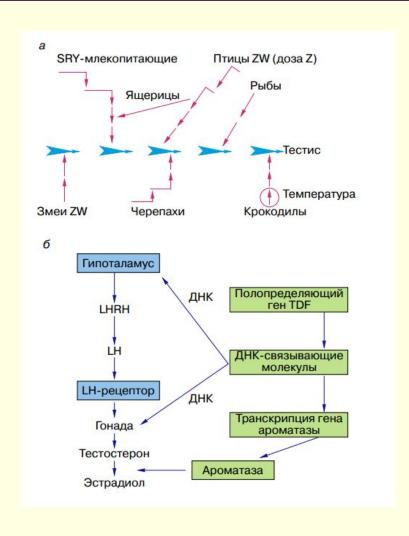



Рис. 8-14. Схема детерминации пола у высших млекопитающих.

Возможные пути генетического контроля гонадогенеза у позвоночных:

а – предполагается наличие сходного многоэтапного механизма гонадогенеза и разнообразие генетического контроля этого процесса в разных группах позвоночных.

(этап гонадогенеза, положительный контроль, отрицательный контроль)

б – гипотетический механизм температурного варианта определения пола. Этапы, взятые в рамки, предполагают температурочувствительность. LH и LHRH – люитенизирующий гормон и его релизинг – агент, положительно контролирую- щий синтез LH.