
HOT Inside
The Technical Architecture
Pavan Deolasee

May 22, 2008

Overview

• PostgreSQL MVCC
• Motivation for Improvement
• HOT Basics
• HOT Internals
• Limitations
• Performance Numbers and Charts

What Does HOT Stand For ?

• Heap Organized Tuples
• Heap Optimized Tuples
• Heap Overflow Tuples
• Heap Only Tuples

Credits

• Its not entirely my work
• Several people contributed, some directly, many indirectly

– Simon Riggs – for writing initial design doc and getting me involved
– Heikki – for code review, idea generation/validation and participating

in several long discussions.
– Tom Lane – for patch review and code rework
– Korry – for extensive code review within EnterpriseDB
– Dharmendra, Siva, Merlin – for testing correctness/performance
– Florian, Gregory – for floating ideas
– Denis, Bruce – for constant encouragement and making me rework

HOT thrice ☺
– Faiz, Hope – for excellent project management within EnterpriseDB
– Nikhil – for hearing to all my stupid ideas and helping with initial work

• The list is so long that I must have missed few names – apologies
and many thanks to them

Some Background - MVCC

• PostgreSQL uses MVCC (Multi Version Concurrency
Control) for transaction semantics

• The good things:
– Readers don’t wait for writers
– Writer doesn’t wait for readers
– Highly concurrent access and no locking overhead

• The bad things:
– Multiple versions of a row are created
– The older, dead versions can not be easily removed because

indexes don’t have visibility information
– Maintenance overhead to reduce table/index bloat

MVCC - UPDATE

V1

V2

V3

Index Heap

•Transaction T1 Updates V1

•Transaction T1 Commits

•Transaction T3 Updates V2

•Transaction T3 Commits

V1

V2 V1 is dead, but still visible to older transactions,
so we call it RECENTLY DEAD

V2 is dead, but still visible to older transactions,
It’s also RECENTLY DEAD

Live

Recently Dead

T1

T1 T3

T3

Retiring Transaction/xmax

Creating Transaction/xmin

MVCC - Visibility

Index Heap

Transaction T0

V3

V1

V2

T0 started before T1 committed

T0 can only see V1

T0

T1

T2

T3

T4

time line

T1

T1 T3

T3

MVCC - Visibility

Index Heap

Transaction T2

Transaction T2

V3

V1

V2

T2 started after T1 committed, but before T3 committed

T2 can only see V2

T0

T1

T2
T3

T4

time line

T1

T1 T3

T3

MVCC - Visibility

Index Heap

Transaction T4

Transaction T4

Transaction T4
V3

V2

V1

T4 started after T3 committed

T4 can only see V3

T0

T1

T2

T3

T4

time line

T1

T1 T3

T3

MVCC – Tuple States

V2

Index Heap

• V1 and V2 are RECENTLY DEAD, V3 is
 the most current and LIVE version

• T0 finishes, V1 becomes DEAD
• T2 finishes, V2 becomes DEAD
• Only V3 remains LIVE

Live

Recently Dead

Dead

V3

V1

• V1 and V2 can not be removed, because
 T0 and T2 can still see them

T1

T1 T3

T3

Removing DEAD Tuples

V2

Index Heap

V1

• V1 is DEAD. If it’s removed, we would have
 a dangling pointer from the index.

• V1 can not be removed unless
 the index pointers pointing to it are also
 removed

Note: Index entries do not have any visibility
Information

• Near impossible to reliably find index pointers
 of a given tuple.

MVCC - Index/Heap Bloat

Updates

Inserts

Deletes

Heap Index A Index B

MVCC - Index/Heap Bloat

Heap Index A Index B

VACUUM

Vacuum – Two Phase Process

Heap Index A Index B

Vacuum

Heap Index A Index B

• VACUUM can release free space only at the
 end of the heap. Tuples are not reorganized
 to defragment the heap

• Fragmented free space is recorded in the
 Free Space Map (FSM)

Motivation

• Frequent Updates and Deletes bloat the heap and indexes resulting
in performance degradation in long term – spiral of death

• Each version of a row has it’s own index entry, irrespective of
whether index columns changed or not – index bloat

• Retail VACUUM is near impossible (dangling index pointers)
• Regular maintenance is required to keep heap/index bloat in check

(VACUUM and VACUUM FULL)
– Normal VACUUM may not shrink the heap, VACUUM FULL can but

requires exclusive lock on the table
– VACUUM requires two passes over the heap and one or more passes

over each index.
– VACUUM generates lots of IO activity and can impact the normal

performance of the database.
– Must be configured properly

Pgbench Results

• scale = 90, clients = 30, transactions/client = 1,000,000
• two CPU, dual core, 2 GB machine
• separate disks for data (3 disks RAID0) and WAL (1

disk)
• shared_buffers = 1536MB
• autovacuum = on
• autovacuum_naptime = 60
• autovacuum_vacuum_threshold = 500
• autovacuum_vacuum_scale_factor = 0.1
• autovacuum_vacuum_cost_delay = 10ms
• autovacuum_vacuum_cost_limit = -1

Heap Bloat (# blocks)

243,193

18,080

49,425

Increase
in Size

147,541

5

1

Original
Size

Postgres 8.3
Pre HOT

5,523147,541245,835155,173Accounts

17151,0216Tellers

14211661Branches

Increase
in Size

Original
Size

Increase
in Size

Original
Size

Postgres 8.3
Post HOT

Postgres 8.2

In 8.2, the heap bloat is too much for small and large tables

Postgres 8.3 – Multiple Autovacuum

Postgres 8.2 Postgres 8.3
Pre HOT

Postgres 8.3
Post HOT

Original
Size

Increase
in Size

Original
Size

Increase
in Size

Original
Size

Increase
in Size

Branches 1 49,425 1 166 1 142

Tellers 6 18,080 5 1,021 5 171

Accounts 155,173 243,193 147,541 245,835 147,541 5,523

Multiple autovaccum processes helped small tables, but not large tables

Postgres 8.3 – HOT (Retail Vacuum)

Postgres 8.2 Postgres 8.3
Pre HOT

Postgres 8.3
Post HOT

Original
Size

Increase
in Size

Original
Size

Increase
in Size

Original
Size

Increase
in Size

Branches 1 49,425 1 166 1 142

Tellers 6 18,080 5 1,021 5 171

Accounts 155,173 243,193 147,541 245,835 147,541 5,523

Several Ideas

• Update In Place
– The first design. Replace old version with the new version and

move old version somewhere else
– It was just too complicated!

• Heap Overflow Tuple
– That’s what HOT used to stand for
– A separate overflow relation to store the old versions.
– Later changed so that the new version goes into the overflow

relation and pulled into the main relation when old version
becomes dead.

– Managing overflow relation and moving tuples around was
painful.

• Heap Only Tuple
– That’s what HOT stands for today
– Tuples without index pointers

HOT Update

Necessary Condition A: UPDATE does not change any
of the index keys

Example:
CREATE TABLE test (a int, b char(20));
CREATE UNIQUE INDEX textindx ON test(a);
INSERT INTO test VALUES (1, ‘foo’);

UPDATE test SET b = ‘bar’ WHERE a = 1;
UPDATE test SET a = a + 1 WHERE a = 1;

First UPDATE changes the non-index column – candidate for HOT update
Second UPDATE changes the index column – HOT update not possible

HOT Update

V1

V2

V3

Index Heap

HOT

Necessary Condition B: The new version should fit in
the same old block – HOT chains can not cross block
boundary.

• V1 is updated – no index key change
 Single Index Entry Update Chain

• V2 is updated – no free space in block

HOT Update – Necessary Conditions

Necessary Condition A: UPDATE does not change any
of the index keys

Necessary Condition B: The new version should fit in
the same old block – HOT chains can not cross block
boundary.

Inside A Block

Page Header

tuple 1tuple 2

tuple 4tuple 3

tuple 5tuple 6

tuple N

Used Space

Free Space

3 4 61 2 5 N

pd_upper

pd_lower

Root Tuples/LP HOT Tuples/LP

• Page Header followed by line pointers

• Line pointers point to the actual tuples

• Indexes always point to the line pointers

 and not to the actual tuple

• HOT chains originate at Root LP and

 may have one or more HOT tuples

• HOT tuples are not referenced by the
 indexes directly.

HOT – Heap Scan

V1

V2

V3

V4

Index Ref • No change to Heap Scan

• Each tuple is examined separately and

 sequentially to check if it satisfies the

 transaction snapshot

HOT – Index Scan

V1

V2

V3

V4

Index Ref • Index points to the Root Tuple

• If the Root tuple does not satisfy the

 snapshot, the next tuple in the HOT chain

 is checked.

• Continue till end of the HOT chain

• The Root tuple can not be removed even

 if it becomes DEAD because index scan

 needs it

Pruning – Shortening the HOT Chain

V1

V3

V4

Index Ref • V1 becomes DEAD
• V1 is removed, but it’s line pointer (LP)
 can not be removed – index points to it

• Root LP is redirected to the LP of
 next tuple in the chain

V2

Pruning – Shortening the HOT Chain

V2

V3

V4

Index Ref • Root LP is a redirected LP
• V2 becomes DEAD
• V2 and it’s LP is removed – HOT tuple
• Root LP now redirects to the next
 tuple in the chain

Pruning – Shortening the HOT Chain

V3

V4

Index Ref • Root LP is a redirected LP
• V3 becomes DEAD
• V3 and it’s LP is removed – HOT tuple
• Root LP now redirects to the next
 tuple in the chain

Pruning – Shortening the HOT Chain

V4

Index Ref • Root LP is a redirected LP
• V4 becomes DEAD
• V4 and it’s LP is removed – HOT tuple
• Root LP is now DEAD – still can’t
 be removed

Pruning – Normal UPDATEs and DELETEs

V1
Index Ref • Normal UPDATEd and DELETEd

 tuples are removed and their LPs
 are marked DEAD – LPs can’t be
 removed

• A very useful side-effect of HOT

Pruning and Defragmentation

Page Header

tuple 1tuple 2

tuple 4tuple 3

tuple 5tuple 6

tuple N

Used Space

Free Space

3 4 61 2 5 N

pd_upper

pd_lower

Root Tuples/LP HOT Tuples/LP

Pruning – Recovering Dead Space

Page Header

tuple 1tuple 2

tuple 4tuple 3

tuple 5tuple 6

tuple N

Used Space

Free Space

3 4 61 2 5 N

Defragmentation – Collecting Dead Space

Page Header

tuple 5tuple 6

tuple N

Used Space

Free Space

61 2 5 N

Billion $ Question – When to Prune/Defragment ?

• Pruning and defragmentation (PD) happens together –
requires cleanup lock on the buffer and shuffles tuples
in a page.

• Too frequent PD may conflict with other backends
accessing the buffer.

• Too infrequent PD may slow down reclaiming dead
space and create long HOT chains.

• Page level hint bits and transaction id is used to
optimize PD operations.

Page Level Hints and Xid

• If UPDATE does not find enough free space in a page,
it does COLD UPDATE but sets PD_PAGE_FULL flag

• The next access to page may trigger prune/defrag
operation if cleanup lock is available.

• PD never waits for cleanup lock
• Page Xid is set to the oldest transaction id which

deleted or updated a tuple in the page. PD is usable
only if RecentGlobalXmin is less than the Page Xid.

Lazy Vacuum / Vacuum Full

• Lazy Vacuum is almost unchanged.
• DEAD line pointers are collected and reclaimed.
• Vacuum Full clears the redirected line pointers by

making them directly point to the first visible tuple in the
chain.

V

V

Headline Numbers - Comparing TPS

That’s a good 200% increase in TPS

Comparing Heap Bloat (# blocks)

243,193

18,080

49,425

Increase
in Size

147,541

5

1

Original
Size

Postgres 8.3
Pre HOT

5,523147,541245,835155,173Accounts

17151,0216Tellers

14211661Branches

Increase
in Size

Original
Size

Increase
in Size

Original
Size

Postgres 8.3
Post HOT

Postgres 8.2

HOT significantly reduces heap bloat; for small and large tables

Comparing Index Bloat (# blocks)

24,679

353

1,023

Increase
in Size

24,680

5

2

Original
Size

Postgres 8.3
Pre HOT

024,68024,67724,680Accounts

1955865Tellers

425882Branches

Increase
in Size

Original
Size

Increase
in Size

Original
Size

Postgres 8.3
Post HOT

Postgres 8.2

HOT significantly reduces index bloat too; for small and large tables

Comparing IO Stats

Accounts

Tellers

Branches

101,354,726162,867173,465,11119,065,032167,902,03620,138,195H

62,275,473678452,528,1737,710219,033,182685,599H

74,640,5677842,904,470,0568,595810,688,147576,949H

266,747,533

135,684,700

330,165,668

Blks Hit

482,835

599

68,992

Blks Read

Postgres 8.3
Pre HOT

181,307,03849,327270,662,463464,641I

60,655,20728210,984,757366I

56,184,9417254,298,1117,540I

Blks HitBlks
Read

Blks HitBlks Read

Postgres 8.3
Post HOT

Postgres 8.2

Comparing IO Stats

Accounts

Tellers

Branches

101,354,726162,867173,465,11119,065,032167,902,03620,138,195H

62,275,473678452,528,1737,710219,033,182685,599H

74,640,5677842,904,470,0568,595810,688,147576,949H

266,747,533

135,684,700

330,165,668

Blks Hit

482,835

599

68,992

Blks Read

Postgres 8.3
Pre HOT

181,307,03849,327270,662,463464,641I

60,655,20728210,984,757366I

56,184,9417254,298,1117,540I

Blks HitBlks
Read

Blks HitBlks Read

Postgres 8.3
Post HOT

Postgres 8.2

Comparing IO Stats

Accounts

Tellers

Branches

101,354,726162,867173,465,11119,065,032167,902,03620,138,195H

62,275,473678452,528,1737,710219,033,182685,599H

74,640,5677842,904,470,0568,595810,688,147576,949H

266,747,533

135,684,700

330,165,668

Blks Hit

482,835

599

68,992

Blks Read

Postgres 8.3
Pre HOT

181,307,03849,327270,662,463464,641I

60,655,20728210,984,757366I

56,184,9417254,298,1117,540I

Blks HitBlks
Read

Blks HitBlks Read

Postgres 8.3
Post HOT

Postgres 8.2

Significant reduction in IO improves the headline numbers

What Should I Do ?

• Nothing! HOT is always enabled and there is no way to
disable it.

• It works on user and system tables
• A heap fill factor less than 100 may help
• A significantly smaller heap fill factor (as low as 50) is

useful for heavy updates where most of the updates
are bulk updates

• Non index key updates is a necessary condition for
HOT – check if you don’t need one of the indexes.

• Prune-defrag reclaims COLD UPDATEd and DELETEd
DEAD tuples by converting their line pointers to DEAD

• You still need VACUUM – may be less aggressive

Limitations

• Free space released by defragmentation can only be
used for subsequent UPDATEs in the same page – we
don’t update FSM after prune-defragmentation

• HOT chains can not cross block boundaries
• Newly created index may remain unusable for

concurrent transactions
• Normal vacuum can not clean redirected line pointers

Create Index

• This was one of the most interesting challenges in HOT
development.

• The goal was to support CREATE INDEX without much
or no impact on the existing semantics.

• Did we succeed ? Well, almost

Create Index - Challenges

• Handling broken HOT chains
• New Index must satisfy HOT properties

– All tuples in a HOT chain must share the same index key
– Index should not directly point to a HOT tuple.

• Create Index should work with a ShareLock on the
relation

Create Index – Sane State

1, a, x 1, a, y

2, b, x 2, c, y

3, d, x

4, e, x 4, f, y

1

2

3

4

indexA(col1)

Create Table test (col1 int, col2 char, col3 char);

Create Index indexA ON test(col1);

• All HOT chains are in sane state

• Every tuple in a chain shares the

 same index key

• Index points to the Root Line Pointer

Create Index – Broken HOT Chains

1, a, x 1, a, y

2, b, x 2, c, y

3, d, x

4, e, x 4, f, y

1

2

3

4

indexA(col1)

Create Index indexB ON test(col2);
indexB(col2)

• Create a new Index on col2
• Second and fourth HOT chains,

 marked with , are broken

 w. r. t. new Index

• tuples are recently dead, but

 may be visible to concurrent txns

Create Index – Building Index
with Broken HOT Chains

2, b, x 2, c, y

3, d, x

4, e, x 4, f, y

1

2

3

4

1, a, x 1, a, y

indexA(col1)

Create Index indexB ON test(col2);
indexB(col2)

a

c

d

f

• Recently Dead tuples are not indexed

• Index remains unusable to the

 transactions which can potentially

 see these skipped tuples, including

 the transaction which creates the

 index

• Any new transaction can use the index

• xmin of pg_class row is used to check

 index visibility for transactions

Thank you

pavan.deolasee@gmail.com
pavan.deolasee@enterprisedb.com

