EnterprisepB-

HOT Inside

The Technical Architecture

Pavan Deolasee

Overview

« PostgreSQL MVCC

* Motivation for Improvement

« HOT Basics

« HOT Internals

« Limitations

» Performance Numbers and Charts

EnterprisepB-
e

What Does HOT Stand For ?

« Heap Organized Tuples
« Heap Optimized Tuples
« Heap Overflow Tuples

« Heap Only Tuples

EnterprisepB-
e

Credits

* Its not entirely my work

« Several people contributed, some directly, many indirectly
— Simon Riggs — for writing initial design doc and getting me involved

— Heikki — for code review, idea generation/validation and participating
in several long discussions.

— Tom Lane — for patch review and code rework

— Kaorry — for extensive code review within EnterpriseDB

— Dharmendra, Siva, Merlin — for testing correctness/performance
— Florian, Gregory — for floating ideas

— Denis, Bruce — for constant encouragement and making me rework
HOT thrice ©

— Faiz, Hope — for excellent project management within EnterpriseDB
— Nikhil — for hearing to all my stupid ideas and helping with initial work

* The listis so long that | must have missed few names — apologies
and many thanks to them

EnterprisepB-
s

Some Background - MVCC

* PostgreSQL uses MVCC (Multi Version Concurrency
Control) for transaction semantics

* The good things:
— Readers don’t wait for writers
— Writer doesn’t wait for readers
— Highly concurrent access and no locking overhead

* The bad things:

— Multiple versions of a row are created

— The older, dead versions can not be easily removed because
indexes don’t have visibility information

— Maintenance overhead to reduce table/index bloat

EnterprisepB"
e

MVCC - UPDATE

Index Heap
Q *Transaction T1 Updates V1
*Transaction T1 Commits
] 1 V1 is dead, but still visible to older transactions,
so we call it RECENTLY DEAD
IT3 V3
*Transaction T3 Updates V2
*Transaction T3 Commits
V2 is dead, but still visible to older transactions,
It's also RECENTLY DEAD
[Live B Retiring Transaction/xmax
[1 Recently Dead Creating Transaction/xmin

EnterprisepB-
e

MVCC - Visibility

time line
TO
Index Heap
v - Transaction TO 0 .’ T1
IT1 \;2 -
; T3
— LN T2
T4
TO started before T1 committed
TO can only see V1
EnterprisepB-

MVCC - Visibility

time line
TO
Index Heap
Transaction T2 " T1

v Il

| Y Transaction T2 (1)
T1 V2 -

T3

T4

T2 started after T1 committed, but before T3 committed

T2 can only see V2

EnterprisepB-
e

MVCC - Visibility

time line
TO
Index Heap
Transaction T4 " T1

v Il

I . Transaction T4 "
T1 V2 -

T3
Y Transaction T4 o
= A T2

T4

T4 started after T3 committed

T4 can only see V3

EnterprisepB-

MVCC — Tuple States

Index Heap
* V1 and V2 are RECENTLY DEAD, V3 is
Vi : the most current and LIVE version
| y * V1 and V2 can not be removed, because
n v2 [l TO and T2 can still see them
_ V3 * TO finishes, V1 becomes DEAD
» T2 finishes, V2 becomes DEAD
* Only V3 remains LIVE
] Live
] Recently Dead
] Dead

EnterprisepB"
e

Removing DEAD Tuples

Index Heap * V1 is DEAD. If it's removed, we would have
a dangling pointer from the index.
Vi * V1 can not be removed unless
the index pointers pointing to it are also
v2 removed

Note: Index entries do not have any visibility
Information

* Near impossible to reliably find index pointers
of a given tuple.

EnterprisepB-
e

MVCC - Index/Heap Bloat

[|
[

Heap Index A Index B EnterprlseDB"'

MVCC - Index/Heap Bloat

:
\’£§ | |
| |

Heap Index A Index B En terprlseDB’

Vacuum — Two Phase Process

1
I |
LI I

0

Index A Index B EnterprlseDBm

Vacuum

* VACUUM can release free space only at the
end of the heap. Tuples are not reorganized
to defragment the heap

* Fragmented free space is recorded in the
Free Space Map (FSM)

LI
[
[JET
[]
]

[]
Heap Index A indexB Enfer prisepB

Motivation

* Frequent Updates and Deletes bloat the heap and indexes resulting
in performance degradation in long term — spiral of death

« Each version of a row has it's own index entry, irrespective of
whether index columns changed or not — index bloat

» Retail VACUUM is near impossible (dangling index pointers)
« Regular maintenance is required to keep heap/index bloat in check
(VACUUM and VACUUM FULL)

— Normal VACUUM may not shrink the heap, VACUUM FULL can but
requires exclusive lock on the table

— VACUUM requires two passes over the heap and one or more passes
over each index.

— VACUUM generates lots of 10 activity and can impact the normal
performance of the database.

— Must be configured properly

EnterprisepB-
s

Pgbench Results

« scale = 90, clients = 30, transactions/client = 1,000,000

« two CPU, dual core, 2 GB machine

« separate disks for data (3 disks RAIDO) and WAL (1
disk)

« shared buffers = 1536MB

e autovacuum = on

e autovacuum_naptime = 60

e autovacuum_vacuum_threshold = 500

« autovacuum_vacuum_scale factor = 0.1

« autovacuum_vacuum_cost delay = 10ms

e autovacuum_vacuum_cost [imit = -1

EnterprisepB"
s

Heap Bloat (# blocks)

Postgres 8.2 Postgres 8.3 Postgres 8.3
Pre HOT Post HOT
Original | Increase
Size in Size
Branches 1 49,425
Tellers 6 18,080
Accounts 155,173 | 243,193

In 8.2, the heap bloat is too much for small and large tables

EnterprisepB"

Postgres 8.3 — Multiple Autovacuum

Postgres 8.2 Postgres 8.3 Postgres 8.3
Pre HOT Post HOT

Original | Increase | Original | Increase

Size in Size Size in Size
Branches 1 49,425 1 166
Tellers 6 18,080 5 1,021

Accounts 155,173 | 243,193 | 147,541 | 245,835

Multiple autovaccum processes helped small tables, but not large tables

EnterprisepB"

Postgres 8.3 — HOT (Retail Vacuum)

Postgres 8.2 Postgres 8.3 Postgres 8.3
Pre HOT Post HOT

Original | Increase | Original | Increase | Original | Increase

Size in Size Size in Size Size in Size
Branches 1 49,425 1 166 1 142
Tellers 6 18,080 5 1,021 5 171

Accounts | 155,173 | 243,193 | 147,541 | 245,835 | 147,541 5,523

EnterprisepB-

Several |Ideas

« Update In Place

— The first design. Replace old version with the new version and
move old version somewhere else

— It was just too complicated!
« Heap Overflow Tuple
— That's what HOT used to stand for
— A separate overflow relation to store the old versions.

— Later changed so that the new version goes into the overflow

relation and pulled into the main relation when old version
becomes dead.

— Managing overflow relation and moving tuples around was
painful.

« Heap Only Tuple
— That's what HOT stands for today
— Tuples without index pointers

EnterprisepB"

HOT Update

Necessary Condition A: UPDATE does not change any
of the index keys

Example:

CREATE TABLE test (a int, b char(20));
CREATE UNIQUE INDEX textindx ON test(a);
INSERT INTO test VALUES (1, foo’);

UPDATE test SET b = ‘bar’ WHERE a = 1;
UPDATE test SETa=a+1WHERE a =1,

First UPDATE changes the non-index column — candidate for HOT update
Second UPDATE changes the index column — HOT update not possible

EnterprisepB"

HOT Update

Index Heap

=

l
V2 HOT

* V1 is updated — no index key change
Single Index Entry Update Chain

* V2 is updated — no free space in block

Necessary Condition B: The new version should fit in
the same old block — HOT chains can not cross block

boundary.

EnterprisepB-

HOT Update — Necessary Conditions

Necessary Condition A: UPDATE does not change any
of the index keys

Necessary Condition B: The new version should fit in
the same old block — HOT chains can not cross block
boundatry.

EnterprisepB"
e

Inside A Block

Page Header « Page Header followed by line pointers
.. 3| 4 . 6 . * Line pointers point to the actual tuples
pd_upper Free Space ‘ * Indexes always point to the line pointers
and not to the actual tuple

pd_lower * HOT chains originate at Root LP and

may have one or more HOT tuples
Used Space
* HOT tuples are not referenced by the

indexes directly.

uple-3 tuple 4

. Root Tuples/LP HOT Tuples/LP

EnterprisepB"

HOT — Heap Scan

Index Ref

*l—->

V2

V3

>
>

[1]

V4

* No change to Heap Scan
* Each tuple is examined separately and
sequentially to check if it satisfies the

transaction snapshot

EnterprisepB-

HOT — Index Scan

Index Ref

V2

V3

[1]

V4

\VAV/

* Index points to the Root Tuple

* If the Root tuple does not satisfy the
snapshot, the next tuple in the HOT chain
is checked.

 Continue till end of the HOT chain

* The Root tuple can not be removed even

if it becomes DEAD because index scan

needs it

EnterprisepB-

Pruning — Shortening the HOT Chain

Index Ref * V1 becomes DEAD
ser! m— v * V1 is removed, but it’s line pointer (LP)
L can not be removed — index points to it

V2 * Root LP is redirected to the LP of

next tuple in the chain

V3

NAVAVA

V4

EnterprisepB-

Pruning — Shortening the HOT Chain

Index Ref

V2

V3

V4

NV

* Root LP is a redirected LP

* V2 becomes DEAD

* V2 and it’'s LP is removed — HOT tuple
* Root LP now redirects to the next

tuple in the chain

EnterprisepB-

Pruning — Shortening the HOT Chain

Index Ref

V3

V4

* Root LP is a redirected LP

* V3 becomes DEAD

* V3 and it's LP is removed — HOT tuple
* Root LP now redirects to the next

tuple in the chain

EnterprisepB-

Pruning — Shortening the HOT Chain

Index Ref Root LP is a redirected LP

>] + V4 becomes DEAD
* V4 and it's LP is removed — HOT tuple

* Root LP is now DEAD - still can’t
be removed

T w

EnterprisepB-
e

Pruning — Normal UPDATEs and DELETEs

Index Ref * Normal UPDATEd and DELETEd

> . V1 tuples are removed and their LPs
are marked DEAD — LPs can’t be
removed

* A very useful side-effect of HOT

EnterprisepB-
e

Pruning and Defragmentation

Page Header

| Hd E]

pd_upper Free Space

pd_lower

Used Space

sile= tuple 4

. Root Tuples/LP HOT Tuples/LP En terprlseDBm

Pruning — Recovering Dead Space

Page Header

| Bl K]

Free Space

Used Space

fe-3 tuple 4

tuple 2 tuple 1

EnterprisepB"
e

Defragmentation — Collecting Dead Space

Page Header

) ‘- K]

Free Space

Used Space

tupte 6

EnterprisepB"
e

Billion $ Question — When to Prune/Defragment ?

* Pruning and defragmentation (PD) happens together —
requires cleanup lock on the buffer and shuffles tuples
In a page.

« Too frequent PD may conflict with other backends
accessing the buffer.

* Too infrequent PD may slow down reclaiming dead
space and create long HOT chains.

« Page level hint bits and transaction id is used to
optimize PD operations.

EnterprisepB-
s

Page Level Hints and Xid

 If UPDATE does not find enough free space in a page,
it does COLD UPDATE but sets PD_PAGE_FULL flag

* The next access to page may trigger prune/defrag
operation if cleanup lock is available.

* PD never waits for cleanup lock

« Page Xid is set to the oldest transaction id which
deleted or updated a tuple in the page. PD is usable
only if RecentGlobalXmin is less than the Page Xid.

EnterprisepB-
s

Lazy Vacuum / Vacuum Full

« Lazy Vacuum is almost unchanged.
 DEAD line pointers are collected and reclaimed.

* Vacuum Full clears the redirected line pointers by
making them directly point to the first visible tuple in the
chain.

—>[] —— v |

L

EnterprisepB-

Headline Numbers - Comparing TPS

transactions per second

2500

2 88

2000 -

OPG 8.2
1500 -

PG 8.3 Pre HOT
1000 { 736,03 828.32

@ PG 8.3 Post HOT

500 -

That's a good 200% increase in TPS

EnterprisepB-

Comparing Heap Bloat (# blocks)

Postgres 8.2 Postgres 8.3 Postgres 8.3
Pre HOT Post HOT

Original | Increase | Original | Increase | Original | Increase

Size in Size Size in Size Size in Size
Branches 1 49,425 1 166 1 142
Tellers 6 18,080 5 1,021 5 171

Accounts | 155,173 | 243,193 | 147,541 | 245,835 | 147,541 5,523

HOT significantly reduces heap bloat; for small and large tables

EnterprisepB-

Comparing Index Bloat (# blocks)

Postgres 8.2 Postgres 8.3 Postgres 8.3
Pre HOT Post HOT
Original | Increase | Original | Increase | Original | Increase
Size in Size Size in Size Size in Size
Branches 2 1,023 2 588 2 4
Tellers 3) 353 3 586 5 19
Accounts 24,680 24,679 24,680 24,677 24,680 0

HOT significantly reduces index bloat too; for small and large tables

EnterprisepB-
e

Comparing 10O Stats

Postgres 8.2 Postgres 8.3 Postgres 8.3
Pre HOT Post HOT
Blks Read Blks Hit Blks Read Blks Hit Blks Blks Hit
Read
Branches | H 576,949 | 810,688,147 8,595 | 2,904,470,056 784 | 74,640,567
| 7,540 | 330,165,668 68,992 | 254,298,111 7| 56,184,941
Tellers H 685,599 | 219,033,182 7,710 | 452,528,173 678 | 62,275,473
| 366 | 135,684,700 599 | 210,984,757 28 | 60,655,207
Accounts H| 20,138,195 | 167,902,036 | 19,065,032 173,465,111 | 162,867 | 101,354,726
| 464,641 | 266,747,533 482,835 | 270,662,463 | 49,327 | 181,307,038

EnterprisepB"
e

Comparing 10O Stats

Postgres 8.2 Postgres 8.3 Postgres 8.3
Pre HOT Post HOT
Blks Read Blks Hit Blks Read Blks Hit Blks Blks Hit
Read
Branches |H 576,949 | 810,688,147 8,595 | 2,904,470,056 784 | 74,640,567

EnterprisepB-
e

Comparing 10O Stats

Postgres 8.2 Postgres 8.3 Postgres 8.3
Pre HOT Post HOT
Blks Read Blks Hit Blks Read Blks Hit Blks Blks Hit
Read

Accounts H| 20,138,195 | 167,902,036 | 19,065,032 173,465,111 | 162,867 | 101,354,726

Significant reduction in IO improves the headline numbers

EnterprisepB-
e

What Should | Do ?

* Nothing! HOT is always enabled and there is no way to
disable it.

|t works on user and system tables
* A heap fill factor less than 100 may help

« A significantly smaller heap fill factor (as low as 50) is
useful for heavy updates where most of the updates
are bulk updates

* Non index key updates is a necessary condition for
HOT — check if you don’t need one of the indexes.

* Prune-defrag reclaims COLD UPDATEd and DELETEd
DEAD tuples by converting their line pointers to DEAD

* You still need VACUUM — may be less aggressive

EnterprisepB"
s

Limitations

* Free space released by defragmentation can only be
used for subsequent UPDATEsSs in the same page — we
don’t update FSM after prune-defragmentation

« HOT chains can not cross block boundaries

* Newly created index may remain unusable for
concurrent transactions

 Normal vacuum can not clean redirected line pointers

EnterprisepB"

Create Index

« This was one of the most interesting challenges in HOT
development.

* The goal was to support CREATE INDEX without much
or no impact on the existing semantics.

« Did we succeed ? Well, almost @

EnterprisepB"

Create Index - Challenges

* Handling broken HOT chains

* New Index must satisfy HOT properties
— All tuples in a HOT chain must share the same index key
— Index should not directly point to a HOT tuple.

* Create Index should work with a ShareLock on the
relation

EnterprisepB"
e

Create Index — Sane State

* All HOT chains are in sane state

* Every tuple in a chain shares the

N

indexA(col1)

* Index points to the Root Line Pointer

BRI
/

’ same index key

N I

Create Table test (col1 int, col2 char, col3 char);

Create Index indexA ON test(col1); En terprls eDBm

Create Index — Broken HOT Chains

* Create a new Index on col2
» Second and fourth HOT chains,

marked with __, , are broken

indexA(col1) may be visible to concurrent txns

e

w. r. t. new Index

BRI
/

\Z,b,x

* [tuples are recently dead, but

indexB(col2)

Create Index indexB ON test(col2);

EnterprisepB-

Create Index — Building Index
with Broken HOT Chains

\\ 1’a,X D

BRI
/

indexA(col1)

2]

/{4,e,x | 4,fy >

indexB(col2)

[~ [=][e]
\

Create Index indexB ON test(col2);

* Recently Dead tuples are not indexed

* Index remains unusable to the
transactions which can potentially
see these skipped tuples, including
the transaction which creates the
index

* Any new transaction can use the index

» xmin of pg_class row is used to check

index visibility for transactions

EnterprisepB-

EnterprisepB-

Thank you

pavan.deolasee@gmail.com

