
Odessa National Polytechnic University

Alexander Drozd
drozd@ukr.net

1 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

CO-DESIGN AND TESTING
OF SAFETY-CRITICAL
EMBEDDED SYSTEMS

Master Course

2

General course information

2. Prerequisites:
Computer Systems and System Analysis; Foundations of Logic
Engineering; Probability Theory; Theory of Self-Checking Circuits;
Modeling Foundation knowledge.

3. Subject of Study:
Principles, methods and techniques in co-design and testing of S-CES.

4. Aims:
Acquisition of knowledge about methods and techniques in co-design
and testing of S-CES and their components.

1. Object of Study:
Concepts of Safety-Critical Embedded Systems (S-CES):
Co-design and Testing.

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

Teaching and Learning Time Allocation

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems3

Module Lectures Lab
Classes

Private
Study

1 Co-design foundation
of S-CES 2 0 2

2 Dependability of S-CES
and their digital components 4 0 2

3 On-line testing for digital
components of S-CES 10 14 12

4 Checkability of S-CES
digital components 2 4 2

Total: 18 18 18

MODULE 1.
Co-design foundation of S-CES

4 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

Topic of lecture Lectures Lab
Classes

Private
Study

1 Traditional ideas of S-CES
co-design 2 0 2

Total: 2 0 2

MODULE 1. Co-Design Foundation of S-CES

5

Lecture 1. Traditional ideas of S-CES co-design

1.2. Standards regulating legislative of S-CES

1.3. Life-cycle of S-CES

1.1. Component approach

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

1.1. Component Approach

6

Component-based technology is information technology based on
component representation of systems and on use of well-tested
software and hardware products.

COTS-approach (Commercial-Off-The-Shelf) – reuse of
commercial components.

CrOTS-approach (Critical-Off-The-Shelf) – reuse of components in
critical applications.

Component approach constitutes the use of library components
developed formerly and commonly employed in commercial and
critical applications, including the components of one’s own design.

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

1.2. Standards regulating legislative of S-CES

7

IEC 61508 (general for
electronics & digital)

and
EN 50126 (Railway)

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

DO 178-B (Avionics)
and

ISO 26262 (Automotive)

IEC 61513
(Nuclear power plants)

and
IEC 62061 (Machines)

IEC – International Electrotechnical Commission This slide from presentation of
M. Fusani ISTI - CNR, Pisa, Italy

1.2. Standards regulating legislative of S-CES

8

IEC 61508 – Safety of electrical, electronic and
programmable systems important to safety

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

IEC 61508-1:1998 ‘General requirements’

IEC 61508-2:2000 ‘Requirements to electrical, electronic and
programmable systems’

IEC 61508-3:1998 ‘Requirements to software’

IEC 61508-4:1998 ‘Definitions to Abbreviations’

IEC 61508-5:1998 ‘Examples of methods for determining safety integrity
levels’

IEC 61508-6:2000 ‘Guide for use of IEC 61508-2 and IEC 61508-3’

IEC 61508-7:2000 ‘Overview of techniques and measures’

1.2. Standards regulating legislative of S-CES

9

Features of IEC 61508 standard

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

1. The use of safety integrity levels concept – every unit of equipment is
developed and analysed with contribution in safety of critical object.

2. Consideration of full life-cycle of S-CES

3. Positioning of software as essential S-CES component which is
source of possible failures influencing on safety of critical object

4. Flexibility of requirements for the critical objects. It allows to be
foundation for development of standards to specific areas of
industry

1.2. Standards regulating legislative of S-CES

10

IEC 61508 standard as foundation for development
of standards to specific areas of industry

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

ECSS – European Cooperation for Space Standardization

ECSS-E-10 ‘Space Engineering – System Development’

ECSS-E-40A ‘Space Engineering – Software Development’

ECSS-Q-20 ‘Guarantee Production Space Destination – Quality
Assurance’

ECSS-Q-80B ‘Guarantee Production Space Destination – Quality
Assurance of Software’

1.2. Standards regulating legislative of S-CES

11

IEC 61508 standard as foundation for development
of standards to specific areas of industry

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

RTCA – Radio Technical Commission for Aeronautics
DO-178B:1992 ‘Consideration of software at certification of

 on-board systems and equipments’

MIRA – Motor Industry Research Association
MISRA-C:2004 ‘Guide for use of language C++ in critical systems‘

CENELEC – European Committee for Electrotechnical
Standardization

EN 50126 ‘Objects of railway transport. Requirements and
validation of dependability, reliability, maintainability and safety‘

1.2. Standards regulating legislative of S-CES

12

IEC 61508 standard as foundation for development
of standards to specific areas of industry

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

IAEA – International Atomic Energy Agency

IAEA NS-G-1.1 ‘Software and computer-based systems important
to safety in nuclear power plants’

IAEA NS-G-1.2 ‘Safety assessment and verification for nuclear
power plants’

IAEA NS-G-1.3 ‘Instrumentation and control systems important to
safety in nuclear power plants’

1.2. Standards regulating legislative of S-CES

13

IEC 61508 standard as foundation for development
of standards to specific areas of industry

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

IEC – International Technical Commission

IEC 60780:1998 ‘Nuclear power plants – Electrical equipment of the
safety system - Qualification’

IEC 60880:2006 ‘Nuclear power plants – Instrumentation and control
systems important to safety – Software aspects for computer-based
systems performing category A functions’

IEC 60980:1989 ‘Recommended practices for seismic qualification of
electrical equipment of the safety system for nuclear generating stations’

IEC 60987:2007 ‘Nuclear power plants – Instrumentation and control
systems important to safety – Hardware design requirements for
computer-based systems’

1.2. Standards regulating legislative of S-CES

14

IEC 61508 standard as foundation for development
of standards to specific areas of industry

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

IEC – International Technical Commission

IEC 61226:2005 ‘Nuclear power plants – Instrumentation and control
systems important to safety – Classification of instrumentation and control
functions’

IEC 61513:2001 ‘Nuclear power plants – Instrumentation and control
systems important to safety – General requirements for systems’

IEC 62138:2004 ‘Nuclear power plants – Instrumentation and control
systems important to safety – Software aspects for computer-based
systems performing category B or C functions’

IEC 62340:2007 ‘Nuclear power plants – Instrumentation and control
systems important to safety – Requirements for coping with common
cause failure’

1.3. Life-cycle of S-CES

15

1. Development of signal formation algorithm block-diagram.

1. Stages of FPGA-based digital component development

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

2. Development of program models of control algorithms in
CASE-tools environment.

3. Integration of signal formation algorithm block-diagram
program models in CASE-tools environment.

4. Implementation of integrated digital component program
models to FPGA.

CASE – Computer Aided Software / System Engineering

1.3. Life-cycle of S-CES

16

1. Block-diagrams according to control algorithms.

2. Results of FPGA-based digital component development

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

2. Program models of control algorithms in CASE-tools
environment.

3. Integrated program model of control algorithms in
CASE-tools environment.

4. FPGA with implemented integrated program model.

1.3. Life-cycle of S-CES

17

1. Verification of block-diagrams according to control
algorithms.

3. Verification stages of FPGA-based digital component
development

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

2. Verification of program models of control algorithms in
CASE-tools environment.

3. Verification of integrated program model in CASE-tools
environment.

4. Verification of FPGA with implemented integrated program
model.

1.3. Life-cycle of S-CES

18

2. A life-cycle of FPGA-based S-CES

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

Verifi-c
ation
stages

Results
of

deve-lo
p-ment

Development of
block-diagrams

according to
control

algorithms

Development of
program models

of control
algorithms in
CASE-tools
environment

Integration of
program models

of control
algorithms in
CASE-tools
environment

Implementation
of integrated

program model
to FPGA

Block-diagrams
according to

control
algorithms

Program models
of control

algorithms in
CASE-tools
environment

Integrated
program model

of control
algorithms in
CASE-tools
environment

FPGA with
implemented

integrated
program model

System
require-
ments

specifi-c
ation

System
integ-r
ation

Verification of
block-diagrams

according to
control

algorithms

Verification of
program models

of control
algorithms in
CASE-tools
environment

Verification of
integrated

program model
in CASE-tools
environment

Verification of
FPGA with

implemented
integrated

program model

Analy-s
is of

verify-c
ation

results

Stages
of

deve-lo
p-ment

 Reading List

19 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

1. Бахмач Е.С., Герасименко А.Д., Головир В.А. и др. Отказобезопасные
информационно-управляющие системы на программируемой логике /
Под ред. Харченко В.С. и Скляра В.В. – Национальный аэрокосмический
университет «ХАИ», Научно-производственное предприятие «Радий»,
2008. – 380 с.

 В3 Программные средства и их влияние на надежность и
безопасность ИУС, с. 17, 18; 2.1 Обзор нормативных документов в
области ИУС критических объектов, с. 55 – 59; 3.3. Жизненный цикл
ИУС с программируемой логикой, с. 81 – 86.

2. Kharchenko V.S., Sklyar V.V. FPGA-based NPP Instrumentation and Control
Systems: Development and Safety Assessment / Bakhmach E.S., Herasimenko
A.D., Golovyr V.A. a.o.. – Research and Production Corporation “Radiy”,
National Aerospace University “KhAI”, State Scientific Technical Center on
Nuclear and Radiation Safety, 2008. – 188 p.

 1.4.1 Problems of ensuring dependability, p. 22, 23; 5.2 Analysis of I&C
systems conformity to regulatory safety requirements, p.127 – 133; 2.3.1. Life
cycle of FPGA-based Instrumentation and Control Systems, p. 44 – 49.

 Conclusion

20

2. Component approach constitutes the use of library components
developed formerly and commonly employed in commercial and
critical applications, including the components of one’s own
design.

1. Co-design of S-CES is based on traditional ideas such as
Component approach, Standards regulating legislative and
Life-cycle of S-CES

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

3. The main standard is IEC 61508 – Safety of electrical, electronic
and programmable systems important to safety.

4. Life-cycle of FPGA-based S-CES digital component contains 4
stages of development with verification of results obtained on
every stage.

Questions and tasks

21

1. What is the S-CES?
2. What Traditional ideas of S-CES co-design do you know?
3. What is the Component approach?
4. What Standards regulate legislative of S-CES?
5. What Stages are contained with Life-cycle of FPGA-based

S-CES?

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

MODULE 2.
Dependability of S-CES

and their digital components

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems22

Topic of lecture Lectures Lab
Classes

Private
Study

2 Foundation of
Dependability 2 0 1

3 Fault Tolerance of S-CES
and their digital components 2 0 1

Total: 4 0 2

MODULE 2. Dependability of S-CES
and their digital components

23

Lecture 2. Foundation of Dependability

2.2. Dependability Threats

2.3. Dependability Attributes

2.1. Introduction into dependability

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

2.4. Dependability Measures

2.5. Safety and Reliability

2.6. Forms of Dependability Requirements

2.7. The Means to attain Dependability Techniques

2.1. Introduction into Dependability

24

Increase of requirements to modern computer systems from
Reliability to Dependability.

Growth of computer system complexity

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

2.1.1. Motivation of Dependability Consideration

Expansion of a set of tasks solved with use of computer
systems including critical application areas

Amplification of interdependence and interaction between
hardware and software of computer systems including
processes of co-design S-CES on programmable elements.

Reasons:

2.1.2. Related Works

25

Different aspects of Dependability, principles of construction and realization
of dependable computer systems have been studied for the last two decades.

1. Avizienis A., Laprie J.-C. Dependable Computing: From Concepts to
Application // IEEE Transactions on Computers, 1986. Vol. 74, No. 5. P. 629-638.
 Authors formulated the principle of “Dependable Computing” as
computation resistant to hardware and software failures (caused by their
defects brought in design and not revealed in the course of detected).

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

2. Dobson I., Randell B. Building Reliable Secure Computing Systems out of
Unreliable Insecure components // Proc. of IEEE Conference on Security and
Privacy, Oakland, USA. 1986. P. 186-193.
 Authors defined “Secure-Fault Tolerance” and proposed a principle of
its realization for various types of computer systems.

3. Avizienis A., Laprie J.-C, Randell B., Landwehr C. Basic Concepts and
Taxonomy of Dependable and Secure Computing // IEEE Transactions on
Dependable and Secure Computing, 2004. Vol. 1. No. 1. P. 11-33.

2.1.3. Definition of Dependability

26

Dependability is ability to avoid service failures that are more
frequent or more severe than is acceptable. When service failures are
more frequent or more severe than acceptable: dependability failure.

Attributes - properties expected from the system and according to
which assessment of service quality resulting from threats and means
opposing to them is conducted.

Means - methods and techniques enabling
1) to provide service on which reliance can be placed
2) to have confidence in its ability.

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

Threats - undesired (not unexpected) circumstances causing or
resulting from undependability (reliance cannot or will not any
longer be placed on the service.

2.2. Dependability Threats

27

Dependability Threats - Faults,
Errors,
 Failures.

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

Faults: development (design) or operational (phase of creation
or occurrence),
internal or external (system boundaries),
hardware or software (domain),
natural or human-made (phenomenological case),
accidental, non-malicious, deliberate or deliberately
malicious (intent),
permanent or transient (persistence).

2.2. Dependability Threats

28 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

Faults: Development or Design Faults
Physical Faults
Interaction Faults

Development or Design Faults:
erroneous acts or decisions in system development bring to
appearance of a fault in its design which becomes apparent in
computer system operation under certain terms and causes an
error in computation process, thus leading to a malfunction or
failure (non-rendering of service)

• software flaws,
• malicious logics.

2.2. Dependability Threats

29 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

Physical Faults:
due to natural (internal) causes a fault appears bringing
to an error in computation process, thus leading to a
malfunction or failure.

Interaction Faults:
due to external information, physical or other effects a
fault appears bringing to an error in computation
process and then a computer system malfunction or
failure.

2.2. Dependability Threats

30 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

Failures: content, early or late timing,
halt or erratic (domain),
signaled or unsignaled (detectability),
consistent or inconsistent (consistency),
minor or catastrophic (consequences).

2.2. Dependability Threats

31

Fault error failure chain is a way from correct service up to
incorrect service.

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

Short-circuit in
memory chip

Fault
activation

Fault

Error
propagation

Read by program, cascade of
erroneous results

First written to by program

Wrong bit value
Error

Erroneous output
FailureThis slide from presentation

of Felicita Di Giandomenico
ISTI - CNR, Pisa, Italy

2.3. Dependability Attributes

32

Readiness for usage – Availability.

Continuity of service – Reliability.

Absence of catastrophic consequences on the users & env. – Safety.

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

Availability, Confidentiality, Integrity – Security.
Absence of unauthorized access to, or handling of, system state.

Absence of unauthorized disclosure of inf. – Confidentiality.

Absence of improper system alterations – Integrity.

Ability to undergo repairs and evolutions – Maintainability.

2.4. Dependability Measures

33

The alternation of correct-incorrect service delivery is quantified
to define the Measures of Dependability:

Reliability: a measure of the continuous delivery of correct
service – or the time to failure;

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

Maintainability: a measure of the time to service restoration

since the last failure occurrence.

Availability: a measure of the delivery of correct service with
respect to the alternation of correct and incorrect service;

2.5. Safety and Reliability

34

Safety is an extension of Reliability:
the state of correct service and the states of incorrect service
due to non-catastrophic failure are grouped into a safe state:

• Safety is a measure of continuous safeness, or equivalently, of
the time to catastrophic failure;

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

• Safety is thus Reliability with respect to catastrophic failures.

2.6. Forms of Dependability Requirements

35

Availability: – “The database must be accessible 99% of the time"

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

Other forms of requirements:
• Fault tolerance: this system must provide uninterrupted service
with up to one component failure, and fail safely if two fail;

• Specific defensive mechanisms: "these data shall be held in
duplicate on two disks.

Rate of occurrence of failures: – "the probability that a failure of a
flight control system will cause an accident with fatalities or loss of
aircraft must be less than 10-9 per hour of flight“.

Probability of surviving mission: – The probability that the flight
and ordnance control system in a fighter plane are still operational at
the end of a two hour mission must be more than...

2.7. The Means to attain Dependability Techniques

36

The development of a Dependable Computing System calls for
the combined utilization of a set of four techniques:

• Fault prevention: how to prevent the occurrence or
introduction of faults;

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

• Fault removal: how to reduce the number or severity of faults;

• Fault forecasting: how to estimate the present number, the
future incidence and the likely consequences of faults.

• Fault tolerance: how to deliver correct service in the presence
of faults.

2.7.1. Fault Prevention

37

Fault Prevention is attained by quality control techniques employed
during the design and manufacturing of hardware and software:

• They include structured programming, information hiding,
modularization, etc., for software, and rigorous design rules
and selection of high-quality, mass-manufactured hardware
components for hardware.

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

• Simple design, possibly at the cost of constraining functionality
or increasing cost

• Formal proof of important properties of the design
• Provision of appropriate operating environment (air

conditioning, protection against mechanical damage) intend to
prevent operational physical faults, while training, rigorous
procedures for maintenance, ‘foolproof’ packages, intend to
prevent interaction faults.

2.7.2. Fault Removal

38

Fault Removal is performed both during the development, and
during the operational life of a system.

• During development it consists of three steps: verification,
diagnosis, correction.

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

• Verification is the process of checking whether the system
adheres to given properties. If it does not, the other two steps
follow:
• After correction, verification should be repeated to check

that fault removal had no undesired consequences; the
verification performed at this stage is usually termed
non-regression verification.

• Checking the specification is usually referred to as
validation.

2.7.2.1. Fault Removal during Development

39

Verification Techniques can be classified according to whether or
not they exercise the system.

• Without actual execution is static verification:
static analysis (e.g., inspections or walk-through),

model-checking, theorem proving.

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

• Exercising the system is dynamic verification: either with
symbolic inputs in the case of symbolic execution, or
actual inputs in the case of testing.

• As well as verifying that the system cannot do more than
what is specified important to safety and security.

• Important is the verification of fault tolerance mechanisms,
especially a) formal static verification, and b) testing that
includes faults or errors in the test patterns: fault injection.

2.7.2.2. Fault Removal during the Operational Life

40

Fault Removal during the operational life of a system is corrective
or preventive maintenance.

• Corrective maintenance is aimed at removing faults that have
produced one or more errors and have been reported.

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

• Preventive maintenance is aimed to uncover and remove
faults before they might cause errors during normal operation.
a) physical faults that have occurred since the last preventive

maintenance actions;
b) design faults that have led to errors in other similar systems.

• These forms of maintenance apply to non-fault-tolerant
systems as well as fault-tolerant systems, that can be
maintainable on-line (without interrupting service delivery) or
off-line (during service outage).

2.7.3. Fault Forecasting

41

Fault Forecasting is conducted by performing an evaluation of the
system behavior with respect to fault occurrence or activation.

• Qualitative Evaluation: aims to identify, classify, rank the
failure modes, or the event combinations (component failures or
environmental conditions) that would lead to system failures.

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

• Qualitative Evaluation or probabilistic: which aims to
evaluate in terms of probabilities the extent to which the
relevant attributes of dependability are satisfied.

• Through either specific methods (e.g., FMEA for
qualitative evaluation, or Markov chains and stochastic Petri
nets for quantitative evaluation).

• Methods applicable to both forms of evaluation (e.g.,
reliability block diagrams, fault-trees).

Reading List

42 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

1. Бахмач Е.С., Герасименко А.Д., Головир В.А. и др. Отказобезопасные
информационно-управляющие системы на программируемой логике /
Под ред. Харченко В.С. и Скляра В.В. – Национальный аэрокосмический
университет «ХАИ», Научно-производственное предприятие «Радий»,
2008. – 380 с.

1.2 Гарантоспособность и ее свойства, с. 29 – 36;
1.4.2 Отказоустойчивость и отказобезопасность, с. 42 – 45.

2. Kharchenko V.S., Sklyar V.V. FPGA-based NPP Instrumentation and Control
Systems: Development and Safety Assessment / Bakhmach E.S., Herasimenko
A.D., Golovyr V.A. a.o.. – Research and Production Corporation “Radiy”,
National Aerospace University “KhAI”, State Scientific Technical Center on
Nuclear and Radiation Safety, 2008. – 188 p.

1.2 Dependability and its attributes, p. 16 – 34.
3. Avizienis A., Laprie J.-C, Randell B., Landwehr C. Basic Concepts

and Taxonomy of Dependable and Secure Computing // IEEE Transactions on
Dependable and Secure Computing, 2004. Vol. 1. No. 1. P. 11- 33.

 Conclusion

43

2. Dependability threats consist of Faults, Errors and Failures.

1. Dependability integrates a set of attributes, such as
Availability, Reliability, Safety, Confidentiality, Integrity and
Maintainability.

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

3. Measures of Dependability are defined using Reliability,
Availability and Maintainability

5. Means to attain Dependability contain 4 Techniques:
Prevention, Removal, Forecasting and Tolerance of Faults.

4. Safety can be considered as an extension of reliability

6. Evolution of the Dependability concept: Resilience,
Survivability and Trustworthiness (Reliability of Results).

Questions and tasks

44

1. What is the Dependability?
2. What Dependability threats of S-CES do you know?
3. What kinds of faults do you know?
4. Define essence of Availability, Reliability, Safety,

Confidentiality, Integrity and Maintainability.
5. What Components of Security do you know?
6. What Measures of Dependability do you know?
7. What Techniques are contained with Means to attain

Dependability?
8. Define essence of Prevention, Removal, Forecasting and

Tolerance of Faults.

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

MODULE 2. Dependability of S-CES
and their digital components

45

Lecture 3. Fault Tolerance of S-CES and their
digital components

3.2. Error Detection

3.3. Recovery

3.1. Introduction into Fault Tolerance

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

3.4. Dependability Measures

3.5. Fault Tolerant Technologies

3.1. Introduction into Fault Tolerance

46

 Fault Tolerance is a base of any S-CES and their components.

Fault Tolerance is the main mechanism, instrument ensuring
Dependability

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

3.1.1. Motivation of Fault Tolerance Consideration

Reasons:

Fault Tolerance ensures operative resistance to hardware and
software failures

3.1.2. Related Works

47 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

1. Dobson I., Randell B. Building Reliable Secure Computing Systems out of
Unreliable Insecure components // Proc. of IEEE Conference on Security and
Privacy, Oakland, USA. 1986. P. 186-193.
 Authors defined “Secure-Fault Tolerance” and proposed a principle of
its realization for various types of computer systems.

3. Lee P.A. and Anderson T., Fault Tolerance - Principles and Practice, second
edition, Springer Verlag/Wien, 1990

2. Jean-Claude Laprie, Jean Arlat, Christian Beounes, Karama Kanoun and
Catherine Hourtolle, Hardware and Software Fault Tolerance: Denition and
Analysis of Architectural Solutions, in Proceedings FTCS 17, 1987

3.1.3. Definition of Fault Tolerance

48

Fault Tolerance is intended to preserve the delivery of correct
service in the presence of active faults.

Effectiveness of Fault Tolerance: the effectiveness of error and
fault handling mechanisms (their coverage) has a strong influence
on Dependability Measures

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

Fault Tolerance:
• Error Detection
• Recovery

3.2. Error Detection

49

Error Detection defines the presence of an error.

 There exist two classes of error detection techniques:
• concurrent error detection, which takes place during service
delivery,
• preemptive error detection, which takes place while service
delivery is suspended; it checks the system for latent errors and
dormant faults.

Error detection originates an error signal or message within the
system. An error that is present but not detected is a latent error.

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

Fault Tolerance is generally implemented by error detection and
subsequent system recovery.

3.3. Recovery

50

 System Recovery transforms a system state that contains one
or more errors and (possibly) faults into a state without detected
errors and faults that can be activated again.

 Recovery consists of
• Error Handling
• Fault Handling (Fault treatment).

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

3.3.1. Error Handling

51

Error Handling eliminates errors from the system state.

Error Handling may take three forms:
• Rollback: the state transformation consists of returning the
system back to a saved state that existed prior to error detection;
that saved state is a checkpoint;
• Compensation: the erroneous state contains enough
redundancy to enable error elimination;
• Rollforward: the state without detected errors is a new state.

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

3.3.2. Fault Handling

52

 Fault Handling prevents located faults from being activated
again.

Fault Handling involves four steps:
• Fault Diagnosis: identifies and records the cause(s) of error(s),
in terms of both location and type;
• Fault Isolation: performs physical or logical exclusion of the
faulty components from further participation in service delivery,
i.e., it makes the fault dormant;
• System Reconfiguration: either switches in spare components
or reassigns tasks among non-failed components;
• System Reinitialization: checks, updates and records the new
configuration and updates system tables and records.

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

3.4. Fault-Tolerant Technologies

53

 Fault-Tolerant Technologies traditionally used in co-design of
S-CES:

• Use of Detecting and Correcting codes.
• Majority Structures.
• Multi-Version Systems.

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

Fault-Tolerant Technologies based on various kinds of
Redundancy and Reconfiguration.

Operative nature of the opposition to faults in safety-critical
I&CS determines the important role of the methods and means
of On-Line Testing in maintenance of Fault Tolerance.

3.4.1 Use of Detecting and Correcting codes

54

 Residue check equations:
KA + KB = KS for an operation of addition A + B = S
KA ⋅ KB = KV for an operation of multiplication A ⋅ B = V
KB ⋅ KC + KD = KA for an operation of division A / B,

C = A div B, D = A mod B,
where KA, KB, KS, KV, KC, KD – residue check codes

by modulo m,
KA = A mod m, KB = B mod m, KS = S mod m,
KV = V mod m, KC = C mod m, KD = D mod m.

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

 3.4.1.1. Residue Checking for Error Detection in
arithmetic components

55

 Blocks BCA and BCB check the operands A and B by computing the check
codes KA and KB and also comparing them with the input check codes KA
and KB. Results of comparison are the error indication codes KA and KB.
 Block CB calculates the check code KR of the result R (R = S for addition
and R = V for multiplication).
 Block BCR checks the result R comparing its by modulo with the check
code KR

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

 3.4.1.1. Residue Checking for Error Detection in
arithmetic components

A{1 ÷ n}
R{1 ÷ nR}

DC

EDC

B{1 ÷ n}

КА

КВ

BCR 4
 КR

KА

KВ

KR

BCА1

BCВ 2

CB 3

56

Code K3 K2 K1 defines number of an erroneous bit 1, 2, 3, 4, 5, 6 or 7.
K1 = 1 ⊕ 3 ⊕ 5 ⊕ 7 Both the bit 1 and check bit k1 have number 1
K2 = 2 ⊕ 3 ⊕ 6 ⊕ 7 Both the bit 2 and check bit k2 have number 2
K3 = 4 ⊕ 5 ⊕ 6 ⊕ 7 Both the bit 4 and check bit k3 have number 4
For unique defining a number of the erroneous bit, the bits 1, 2 and 4
are eliminated: K1* = 3 ⊕ 5 ⊕ 7, K2* = 3 ⊕ 6 ⊕ 7, K1* = 5 ⊕ 6 ⊕ 7.

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

 3.4.1.2. Hamming Correcting Code
for Memory Recover

 Generating Matrix of linear code
1 2 3 4 5 6 7 K3 K2 K1

1 0 0 1
1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

57

Circuit for Memory Recover using Hamming Correcting Code

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

 3.4.1.2. Hamming Correcting Code
for Memory Recover

3

5
6
7

1
2
3
4
5
6
7

⊕
1.1
⊕

1.2
⊕

1.3

M
E
M
O
R
Y

1
2
3
4
5
6
7

K1*

K2*

K3*

⊕

2.1

⊕

2.2
⊕

2.3

0
1
2
3
4
5
6
7

⊕

⊕

⊕

⊕

⊕

⊕

⊕

DC

3

3

2

1

1
2
3
4
5
6
7

K

Generating Matrix
of correcting code for
Majority Structures

Majority circuit

3.4.2. Majority Structures

58

 Majority structure can be
obtained using correcting code

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

1 2 3
1 2 … n 1 2 … n 1 2 … n
1 1 1

1 1 1

1 1 1

1 1 1

U

1

1
2
…
m

1
2
…
m

U

2

U

3

1
2
…
m

C
1

C
2

C
n

1
2
…
n

1
2
…
n

1
2
…
n

1
2
…
m

1

2

…

n

 Majority element
calculates carry function of
full adder C = 12∨13∨23

The errors caused by input
faults are not detected

 Multi-Version System (MVS) contains more than one version
for solving a computing task.

The version is defined as a method of system function
realization. For embedded systems it can be hardware means to
solve a computing task.

 Multi-Version System are aimed to provide protection against
failure due to common reason:

• Errors of design;
• Physical Defects of Manufactory;
• Faults during Operation.

3.4.3. Multi-Version Systems

59 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

Multi-Version System based on Diversity (Multi-Versity or
Version Redundancy).

Diversity means a type of redundancy based on introduction
of two or more versions.

 In regulatory documents the application of Version
Redundancy goes under the name of “Principle of diversity”

3.4.3. Multi-Version Systems

60 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

 Nuclear engineering uses a class of MVS including two
versions in accordance with international standards, such as:

IEC 61513:2001 ‘Nuclear power plants – Instrumentation and control
systems important to safety – General requirements for systems’

IEC 62340:2007 ‘Nuclear power plants – Instrumentation and control
systems important to safety – Requirements for coping with common cause
failure’

 A two-version system W is described by quintuple:
W = {X, F, Z, V, U},

where X and Z – input and output signals;
F – set of functions performed;
V – two-element set of versions v1, v2 with outputs U1, U2;
U – function of version execution results processing

(representations of Z1, Z2 in Z).

Control signal Z (system output)
is generated by solver in accordance
with outputs of versions Z1 and Z2.

The solver may be realized as
OR circuit if faulty version defines
its output in ‘zero’ value.

3.4.3. Multi-Version Systems

61 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

A Structure of two-version S-CES

1 V

2 V

U
 X

 Z1

 Z2

 Z

 A Classification of Diversity Types

3.4.3. Multi-Version Systems

62 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

Software diversity is the use of different programs designed and
implemented by different development groups with different
programming languages and tools to accomplish the same safety
goals.

Equipment (hardware) diversity is the use of different
equipment to perform similar safety functions in which different
means sufficiently unlike as to significantly decrease vulnerability to
common failure.

Human (life cycle) diversity is the use of different project groups
with different key personnel to accomplish the same project goals.

 A Classification of Diversity Types

3.4.3. Multi-Version Systems

63 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

Design diversity is the use of different approaches including both
software and hardware, to solve the same or similar problem.

Signal diversity is the use of different sensed parameters to
initiate protective action, In which any of parameters may
independently indicate in abnormal condition, even if the other
parameters fail to be sensed correctly.

Functional diversity is the use of different physical functions
performing though they may have overlapping safety effects.

3.4.3. Multi-Version Systems

64 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

Diversity type Way of diversity implementation

Diversity of
electronic elements

Diversity of firm developers of electronic elements
Diversity of technologies of electronic elements
producing
Diversity of electronic elements families
Diversity of electronic elements from the same family

Diversity of
CASE-tools

Diversity of developers of CASE-tools
Diversity of CASE-tools
Diversity of configuration of CASE-tools

Diversity of projects
development

languages

Diversity on the base of graphical language and
hardware description language
Diversity of hardware description languages

Diversity of
specification Diversity of specification languages

 Diversity types in FPGA-based S-CES

Two-version system is considered as simplest MVS. It has
only two independent versions. And requirement of independent
versions is used for each two versions of MVS.

That’s why complexity of MVS is increased with growing
amount of versions. And this complexity is the main limitation of
multi-version technology development.

We offer a new set of MVS with strongly connected versions
(SVS), which protects against failure due common reason having
maximal common part of versions.

We revise requirement to undependability of versions
and show that only common part of all versions should be
absent for protecting against failure due common reason:

A1 ∩ … Ai ∩ … ∩ AN = ∅. (1)
65

3.4.4. Multi-Version Systems

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

Computer Systems with Strongly Connected Versions is MVS
for which exception of means for performance of any one version
excludes opportunities of performance of any other version.

 Let's designate addition to version Ai as

Then the determining attribute of SVS is that
additions to versions do not include versions,

Ai = A \ Ai.

i.e. for i = 1 ÷ N and j = 1 ÷ N
is carried out Ai ⊄ Aj. (2)

66

3.4.5. Computer Systems with Strongly
Connected Versions

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

Basis for SVS creation are CS that have a modular
structure using sets of identical elements .

Identical elements of initial CS are united in
identical sections

The amount of additional sections in SVS is less than the
amount of sections in a version.

Structure of SVS

CS SVS

67 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

3.4.5. Computer Systems with Strongly
Connected Versions

A minimum quantity of
versions in a SVS is three

A maximum quantity of versions in a SVS is achieved in
case the section has one element:

Structure of SVS

CS SVS

SVS is simplified with increase of versions quantity
68 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

3.4.5. Computer Systems with Strongly
Connected Versions

The SVS becomes protected from failure due to the
common reason using two components:

• means of a choice of the true version.

• the multitude of versions, that contains at least one
true version;

Protection from Failure
due to the Common Reason

69 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

3.4.5. Computer Systems with Strongly
Connected Versions

Complexity of SVS

QIE = R + R / K,

QSVS MIN = R (1+1/K) 2,

QCM = (K + 1) λ,

Complexity of SVS

QDC MIN/QSVS MIN = 2(1–2K/(K+1) 2).

QSVS = QIE + QCM,
where QIE – complexity of identical elements;
QCM – complexity of choice means.

where R – quantity of identical elements in CS;
K – quantity of identical elements in CS; λ –
coefficient of proportionality.

QDC MIN = 2R (1+1/K 2).

K = √R/λ
70 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

3.4.5. Computer Systems with Strongly
Connected Versions

The SVS can be realized with:

Choice of the True Version

• a consecutive choice of the true version.

• a parallel choice of the true version;

71 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

3.4.5. Computer Systems with Strongly
Connected Versions

Choice of the true version is executed by the on-line
testing methods using means of hardware check

The version can be checked up using two approaches.

• internal, i.e. check of each version by its own means.

• external, i.e. check of total system;

The check of the version can be:

• indirect, which estimates its addition.

• direct, which estimates the version itself;

72 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

3.4.5. Computer Systems with Strongly
Connected Versions

Choice of the True Version

A parallel choice of the true version is realized by the
internal check of versions.

Direct check puts the true version into operation

 Change of versions is carried out before detection of the
true version.

A consecutive choice of the true version is based on
external check of versions.

Indirect check disconnects the incorrect addition
of the true version.

73 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

3.4.5. Computer Systems with Strongly
Connected Versions

Choice of the True Version

Reading List

74 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

1. Бахмач Е.С., Герасименко А.Д., Головир В.А. и др. Отказобезопасные
информационно-управляющие системы на программируемой логике /
Под ред. Харченко В.С. и Скляра В.В. – Национальный аэрокосмический
университет «ХАИ», Научно-производственное предприятие «Радий»,
2008. – 380 с.

1.4.3 Принцип диверсности (многоверсионности), с. 45 – 47;
8.5 Жизненный цикл многоверсионных ИУС, с. 119 – 224.

2. Kharchenko V.S., Sklyar V.V. FPGA-based NPP Instrumentation and Control
Systems: Development and Safety Assessment / Bakhmach E.S., Herasimenko
A.D., Golovyr V.A. a.o.. – Research and Production Corporation “Radiy”,
National Aerospace University “KhAI”, State Scientific Technical Center on
Nuclear and Radiation Safety, 2008. – 188 p.

4.1 General concepts of multi-version system theory, p. 70 – 71.
4.1 Diversity types in FPGA-based I&C systems, p. 71 – 74.

3. Monographs of System Dependability. Dependability of Networks. – Wroclaw,
Poland. – 2010. – 210 p.

 3. Multi-version computer systems with use of strongly connected versions,
 p. 39 – 50.

 Conclusion

75

1. Fault Tolerance is a base of any S-CES and their components
ensuring Dependability.

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

5. Multi-Version System ensures resistance to failure due to
common reason.

4. Fault-Tolerant Technologies based on various kinds of
Redundancy and Reconfiguration using the methods and
means of On-Line Testing.

6. Computer Systems with Strongly Connected Versions is
simplified with increase of versions quantity.

2. Fault Tolerance of S-CES is executed by Error Detection and
Recovery.

3. Recovery consists of Error Handling (rollback,
compensation, rollforward) and Fault Treatment (Fault
diagnosis and isolation, System reconfiguration and
reinitialization).

Questions and tasks

76

1. What is the Fault Tolerance?
2. What kinds of the Fault Tolerance do you know?
3. Recite the Error detection techniques.
4. What forms of Error Handling and Fault Treatment do you

know?
5. What property of On-Line Testing is essential for

Fault-Tolerant Technologies?
6. What is it “Principle of diversity”?
7. What types of Diversity do you know?
8. Define essence of Computer Systems with Strongly

Connected Versions.

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

MODULE 3.
On-line testing for digital component of S-CES

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems77

Topic of lecture Lectures Lab
Classes

Private
Study

4 Processing and checking
of exact data 2 0 2

5 Approximate data
processing 2 0 2

6 Reliability of on-line
testing methods 2 4 4

7 Increase of on-line testing
methods reliability 2 2 2

8 Checking by logarithm,
inequalities, segments 2 8 2

Total: 10 14 12

MODULE 3. On-line testing
for digital components of S-CES

78

Lecture 4. Processing and checking of exact data

4.3. Self-checking circuits

4.4. Purpose of on-line testing

4.2. Stages of on-line testing development

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

4.5. Model of exact data

4.6. Processing of exact and approximate data

4.7. Component on-line testing

4.1. Introduction into on-line testing

4.1. Introduction into On-Line Testing

79

 On-Line Testing is a base of any S-CES and their components.

On-Line Testing is aimed to ensure reliability of the calculated
results

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

4.1.1. Motivation of On-Line Testing Consideration

Reasons:

On-Line Testing ensures first response to hardware and
software failures

4.1.2. Related Works

80 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

1. Metra C., Favalli M. and Ricco B. Concurrent Checking of clock signal
correctness // IEEE Design & Test October 1998, P. 42 – 48.

5. Горяшко А. П. Синтез диагностируемых схем вычислительных устройств.
– М.: Наука, 1987. – 288 c.

2. Touba N. A. and McCluskey E. J. Logic synthesis techniques for reduced area
implementation of multilevel circuits with concurrent error detection // Proc. IEEE
Inf. Conf. on Computer Aided Design. – 1994. – P. 651 – 654.

3. Metra C., Schiano L., Favalli M and Ricco B. Self-checking scheme for the
on-line testing of power supply noise. – Proc. Design, Automation and Test in
Europe Conf. Paris (France). – 2002. – P. 832 – 836.

4. Nicolaidis M. and Zorian Y. On-line testing for VLSI – a compendium of
approaches // Electronic Testing: Theory and Application (JETTA). – 1998. – V.
12. – P. 7 – 20.

4.1.3. Definition of On-Line Testing

81

It has many names:
• concurrent checking [1], concurrent error detection [2],
executing an error detection simultaneously with work of the
digital circuit (DC);

• on-line testing operatively estimating a technical condition of
DC [3];

• hardware check in accordance with its hardware realization
as against to program one [4];

• built-in check as opposed to the remote check taking into
account inseparable connection with circuit [5].

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

On-line testing is considered to be the check of digital circuit
operation correctness over working influences.

4.2. Stages of On-Line Testing Development

82

• the initial stage;
• stage of becoming – the development stage of self-checking

circuits which expand the on-line testing for own means
within the framework of the exact data processing;

• the present stage expanding the on-line testing for
processing of the approximate data.

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

In development of on-line testing it is possible to select three
stages:

The basis of the theory and practice of on-line testing of
computer systems was made with achievements in the field of
noiseless data transmission on distance.

Transmitter ReceiverM e s s a g e

• Data transmission on distance

4.2.1. Initial Stage of On-Line Testing Development

83 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

The noises on air deformed
transmitted messages.

Transmitter ReceiverM e s s a g e

Noise

84

4.2.1. Initial Stage of On-Line Testing Development

• Data transmission on distance

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

To transfer correct message the redundant coding the data
with help of correcting or detecting codes was used.

Coder Decoder

Noise

Noise combating code

85

4.2.1. Initial Stage of On-Line Testing Development

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

• Data transmission on distance

To transfer correct message the redundant coding the data
with help of correcting or detecting codes was used.

Coder Decoder

Noise

Noise combating code

The device which
will transform the
initial message to a
redundant code is
called as the coder.

The device that is
checking or

restoring received
message, refers to as

the decoder.

86

4.2.1. Initial Stage of On-Line Testing Development

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

To transfer correct message the redundant coding the data
with help of correcting or detecting codes was used.

Correcting codes allow to correct errors restoring the
message.

Coder Decoder

Noise

Correcting code

87 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

4.2.1. Initial Stage of On-Line Testing Development

To transfer correct message the redundant coding the data
with help of correcting or detecting codes was used.

Detecting codes allow to check up correctness of the
transmitted data. In case of error detection the message will be
transferred again.

88 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

4.2.1. Initial Stage of On-Line Testing Development

Coder Decoder

Noise

Detecting code

 the elements of the transmitted message are coded
by numbers from

0002 up to 1112.

For example,

1 1 2 3
0 0 0 0
1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0
5 1 0 1
6 1 1 0
7 1 1 1

89 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

4.2.1. Initial Stage of On-Line Testing Development

The coder transforms they into words of the group code,
which can be defined by the generating array 2 with linear -
independent words 1, 2 and 4.

2 1 2 3 4 5 6
1 0 0 1 1 1 0
2 0 1 0 1 0 1
4 1 0 0 0 1 1

1 1 2 3
0 0 0 0
1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0
5 1 0 1
6 1 1 0
7 1 1 1

90 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

4.2.1. Initial Stage of On-Line Testing Development

The decoder detects an error if it is non-code word. The code
words are checked using the linear equation that defines check bits
4, 5 and 6 as the modulo 2 sum of the information bits 1, 2 and 3.

3 1 2 3 4 5 6
0 0 0 0 0 0 0
1 0 0 1 1 1 0
2 0 1 0 1 0 1
3 0 1 1 0 1 1
4 1 0 0 0 1 1
5 1 0 1 1 0 1
6 1 1 0 1 1 0
7 1 1 1 0 0 0

4 2 ⊕ 3 4
1 0 1 1
2 1 0 1
4 0 0 0

For example, bit 4
is equal to the
modulo 2 sum of
the bits 2 and 3.

4 = 2 ⊕ 3

91 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

4.2.1. Initial Stage of On-Line Testing Development

2 1 2 3 4 5 6
1 0 0 1 1 1 0
2 0 1 0 1 0 1
4 1 0 0 0 1 1

In case the all equations are true, it is codeword, i.e. correct,
and otherwise it is non-codeword and it contains an error.

4 = 2 ⊕ 3
5 = 1 ⊕ 3
6 = 1 ⊕ 2

92 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

4.2.1. Initial Stage of On-Line Testing Development

2 1 2 3 4 5 6
1 0 0 1 1 1 0
2 0 1 0 1 0 1
4 1 0 0 0 1 1

3 1 2 3 4 5 6
0 0 0 0 0 0 0
1 0 0 1 1 1 0
2 0 1 0 1 0 1
3 0 1 1 0 1 1
4 1 0 0 0 1 1
5 1 0 1 1 0 1
6 1 1 0 1 1 0
7 1 1 1 0 0 0

The equations defines the error detection circuit. If
the circuit detects an error, its output E = 1,
otherwise E = 0.

4 = 2 ⊕ 3
5 = 1 ⊕ 3
6 = 1 ⊕ 2

⊕
⊕

1 2 3 4 5 6

⊕
⊕

⊕
⊕

1

 E

Error detection
circuit

93 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

4.2.1. Initial Stage of On-Line Testing Development

3 1 2 3 4 5 6
0 0 0 0 0 0 0
1 0 0 1 1 1 0
2 0 1 0 1 0 1
3 0 1 1 0 1 1
4 1 0 0 0 1 1
5 1 0 1 1 0 1
6 1 1 0 1 1 0
7 1 1 1 0 0 0

Coders and decoders were considered absolutely reliable
during message transfer and consequently were checked only
by test in pauses of work.

It has been inherited by
on-line testing, where the error
detection circuits were used
without checking while
operation.

94

4.2.1. Initial Stage of On-Line Testing Development

⊕
⊕

1 2 3 4 5 6

⊕
⊕

⊕
⊕

1

 E

Error detection
circuit

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

In 1968 on the congress in Edinburgh Carter and Schneider
for the first time have paid attention to necessity to check the
error detection circuit during its work.

To achieve this purpose, they
have suggested to build the
self-checking circuits.

It was the important step in
development of on-line testing,
which for the first time has
been expanded on his error
detection circuits.

95 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

4.3. Self-Checking Circuits

⊕
⊕

1 2 3 4 5 6

⊕
⊕

⊕
⊕

1

 E

Error detection
circuit

A circuit is fault-secure for a set of faults F if for every fault in
F the circuit never produces an incorrect codeword at the output
for an input codeword.

A circuit is self-testing for a set of faults F if for every fault in
F the circuit produces a non-codeword at the output for at least
an input codeword.

If the circuit is both fault-secure and self-testing it is said to be
totally self-checking.

• Definitions

96 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

4.3. Self-Checking Circuits

 A circuit is fault-secure for a set of faults
F if for every fault in F the circuit never produces an incorrect
codeword at the output for an input codeword.

0 0 01 1 17
1 1 01 1 06
1 0 11 0 15
0 1 11 0 04
0 1 10 1 13
1 0 10 1 02
1 1 00 0 11
0 0 0 0 0 0 0
4 5 61 2 33A code distance d between codewords of the pair

is an amount of their bits with the differ value.

If fault generates the error
in t bits and t < d then the
circuit is fault-secure
because it produces
non-codeword that can not
be incorrect codeword.

0

1
2

3

4

5
6

7

 d = 3
 d

 = 4

4.3. Self-Checking Circuits

• Fault-secure circuit

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems97

 A circuit is fault-secure for a set of faults
F if for every fault in F the circuit never produces an incorrect
codeword at the output for an input codeword.

A code distance d between codewords of the pair
is an amount of their bits with the differ value.

If fault generates the error
in t bits and t < d then the
circuit is fault-secure
because it produces
non-codeword that can not
be incorrect codeword.

0

1
2

3

4

5
6

7

 d = 3
 d

 = 4

4.3. Self-Checking Circuits

• Fault-secure circuit

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

Definition
of fault-secure

circuit
determines
how much

information
redundancy

is needed
to detect
one fault.

98

The self-testing property is aimed to create a condition at which the
first fault f1 should be detected prior to the second fault f2 of F has
occurred. This condition means that all input codewords should be

obtained during the time-interval between faults f1 and f2 .

It is satisfied due to
rare occurrence of faults. t

f1 f2 t

f1

operation cycle

f2

4.3. Self-Checking Circuits

 A circuit is self-testing for a set of faults
F if for every fault in F the circuit produces a non-codeword at
the output for at least an input codeword.

• Self-Testing circuit

99 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

The self-testing property is aimed to create a condition at which the
first fault f1 should be detected prior to the second fault f2 of F has
occurred. This condition means that all input codewords should be

obtained during the time-interval between faults f1 and f2 .

It is satisfied due to
rare occurrence of faults.

4.3. Self-Checking Circuits

 A circuit is self-testing for a set of faults
F if for every fault in F the circuit produces a non-codeword at
the output for at least an input codeword.

• Self-Testing circuit

f2 t

tf1 f2

f1 f2

operation cycle

100 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

The self-testing property is aimed to create a condition at which the
first fault f1 should be detected prior to the second fault f2 of F has
occurred. This condition means that all input codewords should be

obtained during the time-interval between faults f1 and f2 .

It is satisfied due to rare
occurrence of faults and
high-frequency operations
of the computing circuits.

4.3. Self-Checking Circuits

 A circuit is self-testing for a set of faults
F if for every fault in F the circuit produces a non-codeword at
the output for at least an input codeword.

• Self-Testing circuit

f1 f2 tf2

f1 f2 t
operation cycle

101 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

The self-testing property is aimed to create a condition at which the
first fault f1 should be detected prior to the second fault f2 of F has
occurred. This condition means that all input codewords should be

obtained during the time-interval between faults f1 and f2 .

The self-testing property
is based on a high level of
reliability and productivity
of modern computing circuits.

4.3. Self-Checking Circuits

 A circuit is self-testing for a set of faults
F if for every fault in F the circuit produces a non-codeword at
the output for at least an input codeword.

• Self-Testing circuit

f1 f2 tf2

f1 f2 t
operation cycle

102 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

 According to these definitions the designed circuit is
not self-checking in a set of stuck-at faults.

⊕
⊕

1 2 3 4 5 6

⊕
⊕

⊕
⊕

1

 E

Error detection
circuit

“0”

1

4.3. Self-Checking Circuits

• Non-Self-Testing circuit

103 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

Such circuit is not self-testing and not
self-checking in set of the stuck-at faults.

Really, stuck-at «0» fault in a point 1
defines a codeword at the output
of the circuit on all input code words.

 0

Such circuit is not self-testing and not
self-checking in set of the stuck-at faults.

⊕
⊕

1 2 3 4 5 6

⊕
⊕

⊕
⊕

1

 E

Error detection
circuit

“0”

1

“0”

2

“0”

3

“0”

4 Stuck-at «0» fault in the points 2, 3
or 4 makes the error detection circuit
also not self-checking.

4.3. Self-Checking Circuits

 According to these definitions the
designed circuit is not self-checking in a set of stuck-at faults.

Really, stuck-at «0» fault in a point 1
defines a codeword at the output
of the circuit on all input code words.

 0

• Non-Self-Testing circuit

104 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

⊕
1 2 3 4 5 6

⊕

⊕

5

4

4

5
6

6

4.3. Self-Checking Circuits

In order to design self-checking circuit the bits 4,
5 and 6 are complemented with their inverse bits 4, 5 and 6.

• Design of Self-Checking circuit

⊕
⊕

1 2 3 4 5 6

⊕
⊕

⊕
⊕

1

 E

Error detection
circuit

“0”

1

“0”

2

“0”

3

“0”

4

105 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

If even one input pair contains equal bits the output pair will contain equal bits too.

⊕
1 2 3 4 5 6

⊕

⊕

5

4

4

X1

X2

5

Y1

Y2

UC

F1

F2

X1

X2
Y1

Y2

UC

F1

F2

6

6

E{1}

E{2}

Self-Checking
circuit

SELF-CHECKING CIRCUITS 4.3. Self-Checking Circuits

 This circuit contains Carter's unit (UC), which
will transform two pairs of inverse bits X1=¬X2 and Y1=¬Y2 to one
pair of inverse bits F1=¬F2.

• Design of Self-Checking circuit

⊕
⊕

1 2 3 4 5 6

⊕
⊕

⊕
⊕

1

 E

Error detection
circuit

“0”

1

“0”

2

“0”

3

“0”

4

106 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

If even one input pair contains equal bits the output pair will contain equal bits too.

⊕
1 2 3 4 5 6

⊕

⊕

5

4

4

X1

X2

5

Y1

Y2

UC

F1

F2

X1

X2
Y1

Y2

UC

F1

F2

6

6

E{1}

E{2}

Self-Checking
circuit

SELF-CHECKING CIRCUITS 4.3. Self-Checking Circuits

 This circuit contains Carter's unit (UC), which
will transform two pairs of inverse bits X1=¬X2 and Y1=¬Y2 to one
pair of inverse bits F1=¬F2.

• Design of Self-Checking circuit

107 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

The self-checking circuit
has two bits output E{1,2}.

In case of error detection
 E{1} = E{2}

and otherwise
E{1} = E{2}.

The next decades on-line testing has received wide
development in a part of the self-checking circuit.

Using parity, residue and other methods of checking, the
self-checking circuits were designed:
• self-checking combinational circuits;
• self-checking asynchronous and synchronous sequential

machines;
• self-checking Adders and ALUS, Multiply and Divide Arrays.

4.3. Self-Checking Circuits

• Design of Self-Checking circuit

108 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

The definitions of self-checking circuit have executed an
important role in on-line testing development.

There were determined:
• conditions to detect faults using resources required for one

error;
• requirements to on-line testing methods to detect a fault

using the first error produced in computed result;
• high level reliability and productivity of modern computing

circuits.

4.3. Self-Checking Circuits

• Value of Self-Checking circuit

109 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

However, the definitions of self-checking circuit have also
negative influence on on-line testing development.

They have fixed the following dogmas:

• Purpose of on-line testing is to detect a fault of the circuit.

• On-line testing methods have to detect a fault using the first
error produced in computed result.

• The correct circuit calculates a reliable result, and non-reliable
result is computed only on faulty circuit.

4.4. Purpose of On-Line Testing

• Dogmas of Self-Checking Circuit Theory

110 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

The correct circuit calculates a reliable result, and
non-reliable result is computed only on faulty circuit.

Is this truth?

 the correct circuit is necessary
only to calculate reliable result, and in itself is not
meaningful.

The truth is that

4.4. Purpose of On-Line Testing

• Dogmas of Self-Checking Circuit Theory

111 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

What is a purpose of on-line testing?

Today the purpose of on-line testing comes from definitions of
self-checking circuits.

Purpose of on-line testing is

• to detect a fault of the circuit

• to estimate reliability of the circuit

• to answer a question “Is the circuit correct or not?”

during the main operations
using actual data.

o
r

4.4. Purpose of On-Line Testing

• Dogmas of Self-Checking Circuit Theory

112 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

What is a purpose of on-line testing?

Today the purpose of on-line testing comes from definitions of
self-checking circuits.

This presentation will show that declared purpose

• defies common sense

• contradicts actual on-line testing application

• is not achievable for self-checking circuits

during the main operations
using actual data.

a
n
d

4.4. Purpose of On-Line Testing

• Dogmas of Self-Checking Circuit Theory

113 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

Creation of the critical conditions is
the best way to detect a fault!

Purpose of on-line testing is to detect a circuit fault during the
main operations using actual data.

Declared purpose defies common sense.
Let’s consider computational process as a plane flight.

Detection of the plane faults
should be carried out before

the flight start.

Search for faults during the
flight would extremely surprise
the passengers.

Creation of the critical conditions is
the best way to detect a fault!

The fault can be much more efficiently detected using the
off-line testing methods during pauses of the operations.

4.4. Purpose of On-Line Testing

114 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

Search of faults during computations defies common sense as
detection of mines using farmers (actual data).

Faulty circuit can be considered as a mine field.

Test input words are minesweepers that
detect mines before the main operations.

Actual data is a farmer working in the field.

Circuit fault is a mine.

4.4. Purpose of On-Line Testing

Purpose of on-line testing is to detect a circuit fault during the
main operations using actual data.

Declared purpose defies common sense.

115 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

Declared purpose contradicts actual application.

The errors are produced by transient and permanent faults.

Transient faults occur much
more often than permanent
faults.

Therefore, as a rule, the first
detected error is produced by
transient fault.

Transient faults are valid for
a short period of time.

Therefore, after this period a
circuit will be correct again.

That’s why on-line testing is not used
for circuit fault detection.

4.4. Purpose of On-Line Testing

Purpose of on-line testing is to detect a circuit fault during the
main operations using actual data.

116 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

Purpose of on-line testing is to answer a question
“Is the circuit correct or not?”

Declared purpose is not achievable for self-checking circuits
The first detected error can be produced

by either transient or permanent faults.

In case of transient fault
the conclusion that the circuit
is faulty will not be true after
a short period of time.

The first detect is not
enough to identity the
permanent fault. It requires
to detect many errors.

Therefore, the first detected error cannot answer
a question "Is the circuit faulty or not?"

4.4. Purpose of On-Line Testing

117 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

Actual purpose of on-line testing is
• to detect an error, which reduces reliability of
the calculated result

• to estimate reliability of the calculated result

• to answer a question “Is the result reliable or not?”

during the main operations using actual data.

o
r

4.4. Purpose of On-Line Testing

118 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

Actual purpose of on-line testing can be derived from the
practice of its application.

The correct circuit is only necessary to get a reliable result from
actual data. That is why reliability of the circuit by itself should not

be the subject of estimation during the main operations.

 Declared purpose

• Declared vs. Actual purpose

Actual purpose
is to estimate

reliability of a result
is to estimate

reliability of a circuit

Correct circuit
is

only
required to get
a reliable result

from actual
data

The result
is checked
to answer

a question “Is
a circuit

correct or
faulty” Means to achieve purpose

PURPOSE

4.4. Purpose of On-Line Testing

119 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

This model means that
all numbers

irrespectively of their true nature
are considered as

exact data.

• What is the reason to declare incorrect purpose?

This reason is the Model of Exact Data

4.5. Model of Exact Data

120 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

The universe of the approximated data

The universe outside of an error
 does not exist, does not develop, cannot be studied.

 The error is a difference between absolute and relative trues,
 i.e. the universe is learnt by means of an error.

 Development of the universe is carried out
by a trial and error method.

 All exists within the limits of admissions.
 The right to make an error is the right to exist.

 Quantitative estimations of all things in the universe
are numbers with admissions, which are their vital space.

 These numbers are the approximated data.

4.5. Model of Exact Data

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems121

Absolute

Relative

T
r
u
t
h

ERROR

protozoon

P
e
r
s
o
nmutation

All values of codeword can be mapped to the respective
ordinal numbers. They are integers by nature and belong to
Exact Data. Everything that can be written down in a field of a

computer format is the exact data as well as it can be
numbered.

For example, 4-bits codeword has the following values and
their ordinal numbers:

• What is Exact Data?

The Exact Data enumerates elements of a set, i.e., it
includes only “integers by nature”.

0 0 0 0 00 0 0 1 10 0 1 0 20 0 1 1 3

4.5. Model of Exact Data

122 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

The exact data model means that all numbers
irrespectively of their true nature

are considered as exact data.

 Many concepts
first of all connected to a computer,

are under influence of model of the exact data

4.5. Model of Exact Data

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems123

• On-line testing is based on the Model of Exact Data

This logic is based on assumption that
the correct circuit calculates a reliable result always,
and non-reliable result is received only on faulty circuit.

It is true only
in case of exact data.

 but it is a foundation for
 Nobody declared this model

• self-checking circuit techniques to obtain reliable results on
correct circuit only;

4.5. Model of Exact Data

124 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

• On-line testing is based on the Model of Exact Data

All errors are essential for reliability of an exact result.

This identifies the declared and actual purposes
for the case of exact data.

A detected error concurrently shows that the calculated result
is non-reliable and the circuit has a fault.

4.5. Model of Exact Data

125 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

 but it is a foundation for
 Nobody declared this model

• the declared on-line testing purpose to estimate reliability of a
circuit through detection of its fault;

Every error in exact result makes it non-reliable and the
computing task terminates abnormally.

The first error detection allows to recalculate this result as
soon as it is possible in case of exact data.

The first error detection is the fastest way to receive
reliable results in case of exact data.

• the main requirement to on-line testing methods: detect
the first error produced by the circuit fault;

4.5. Model of Exact Data

126 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

• On-line testing is based on the Model of Exact Data

 but it is a foundation for
 Nobody declared this model

• self-checking circuit techniques to obtain reliable results on
correct circuit only;

• the declared on-line testing purpose to estimate reliability of
a circuit through detection of its fault;

• the main requirement to on-line testing methods: detect
the first error produced by the circuit fault;

• the on-line testing development within the framework of
the exact data processing only.

4.5. Model of Exact Data

127 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

 but it is a foundation for
 Nobody declared this model

• On-line testing is based on the Model of Exact Data

Reading List

128 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

1. Дрозд А. Этапы развития рабочего диагностирования вычислительных
устройств / А. Дрозд // Компьютерные науки и технологии. – Варна
(Болгария), 2009. – № 1. – С. 44 – 50.

2. Пархоменко П. П., Согомонян Е. С. и др. Основы технической
диагностики. – М.: Энергия, 1981. – 320 c.

3. Согомонян Е. С., Слабаков Е. В. Самопроверяемые вычислительные
устройства и системы (обзор) // Автоматика и телемеханика. – 1981. – №
11. – С. 147 – 167.

4. Согомонян Е. С., Слабаков Е. В. Самопроверяемые устройства и
отказоустойчивые системы. – М.: Радио и связь, 1989. – 208 с.

5. Дрозд А.В. Нетрадиционный взгляд на рабочее диагностирование
вычислительных устройств // Проблемы управления. – 2008. – № 2. – С.
48 – 56. с.

6. Дрозд А.В. Нетрадиционный взгляд на рабочее диагностирование
вычислительных устройств / А.В. Дрозд // Автоматизированные системы
управления и приборы автоматики. – 2009. – Вып. 147. – С. 15 – 24.

 Conclusion

129

1. On-line testing is a base of any S-CES and their components
ensuring reliability of calculated results.

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

4. Self-checking circuits theory defines a purpose of on-line
testing as estimation of the circuit reliability, however the
actual purpose is checking the result reliability.

5. Model of exact data defines development of on-line testing
within the framework of the exact data processing

2. In development of on-line testing it is possible to select three
stages: the initial stage, stage of becoming – self-checking
circuits development expanding the on-line testing for own
means within the framework of the exact data processing,
the present stage of on-line testing development for processing
of the approximate data.

3. Totally self-checking circuits detect the faults using the first
error of the calculated results

Questions and tasks

130

1. What names of on-line testing do you know?
2. Recite the stages of on-line testing.
3. Describe the initial stage of on-line testing development.
4. What conditions of self-checking circuits do you know?
5. What does fault security and self-testing mean?
6. What purpose of on-line testing follows from definitions of a

self-checking circuit?
7. What is actual purpose of on-line testing?
8. What is Exact Data?
9. What is the Model of Exact Data?

10. Describe the role which the Model of Exact Data plays in
on-line testing development.

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

MODULE 3. On-line testing
for digital components of S-CES

Lecture 5. Approximate Data Processing

5.3. Complete and Truncated Operations

5.4. Features of Approximate Data Processing

5.2. Floating-point Formats and Arithmetic

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

5.5. Probability of an essential error

5.1. Introduction into Approximate Data Processing

131

5.1. Introduction into Approximate Data Processing

 The majority of processed numbers is approximate data and
their volume only increase.

 Our Universe is approximate and all in it are structured
under its realities including computer Processing

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

5.1.1. Motivation of Approximate Data Processing
Consideration

Reasons:

 That’s why Universe generates approximate data

132

5.1.2. Related Works

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

1. Гук М. Процессоры Intel: от 8086 до Pentium II / Гук М. – СПб: Питер,
1997. – 224 c.

5. Drozd A. On-line testing of computing circuits at approximate data processing /
A. Drozd // Радіоелектроніка та інформатика. 2003. № 3. – С. 113 – 116.

2. ANSI/IEEE Std 754-1985. IEEE Standard for Binary Floating-Point Arithmetic.
IEEE, New York, USA, 1985. – 18 c.

3. Рабинович З. Л., Раманаускас В. А. Типовые операции в вычислительных
машинах. – Киев: Техника, 1980. – 264 c.

4. Савельев А. Я. Прикладная теория цифровых автоматов. – М.: Высш. шк.,
1987. – 272 c.

133

6. Демидович Б.П., Марон И.А. Основы вычислительной математики. – М.:
Физматгиз, 1966. – 664 с.

2. Like special dedicated computing systems.

1. Like reactor-trip systems for nuclear power plants.

Sensors Comparators Processor
RM RE

Sensors Processor Comparators
RM RA

Two kinds of the S-CES:

5.1.3. Data processed in the S-CES

RM , RE and RA – are the results of measurements, exact and
approximate data processing accordingly

Processor of the first kind of S-CES operates with exact data

Processor of the second kind of S-CES operates with approximate data
134 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

• Approximate data

Approximate data contain results of measurements and are
processed in floating-point format.

A significance of approximate data processing rapidly
increases with the computers development.

For example, Intel processors 286 and 386 are complemented
in PC by outside coprocessors 287 and 387 operating with
floating-point formats.

Starting from processor Intel 486DX the inside coprocessors
are used for operating with floating-point formats.

Pentium-processors have pipeline inside coprocessors.
Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

5.1.3. Approximate Data Processing

135

• Normal form of data representation

Let a computer works with 8-bit codeword in range from
0000 00002 ÷ 1111 11112 or 0 ÷ 255.

However it is necessary to solve a computing task in range
 0 ÷ 1000.

For example, it needs to calculate 800 + 100.

This problem was decided using scale index kМ ≥ 1000 / 255

Initial data transforms from range of the computing task into
range of the codeword:

kМ = 4: 800 / 4 = 200; 100 / 4 = 25; 200 + 25 = 225;
Restoring range of the computing task: 225 × 4 = 900.

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

5.2. Floating-point Formats and Arithmetic

136

• Normal form of data representation
So, Normal form of data representation using two

components have discovered:
m × kМ,

where m is mantissa or significant;
kМ = B E - scale index;
B - base of numerical system; E - exponent;

The exact data are represented in true form using one
component because volume of range and accuracy strongly
connected between themselves by size of the codeword.

Approximate data are represented in normal form using two
components by reason of significantly different requirements
advanced to volume of range and accuracy.

Size of mantissa determines accuracy and exponent size – range.

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

5.2. Floating-point Formats and Arithmetic

137

• Normal form of data representation

Normal form m × BE represents data using operation of
multiplication in a record of floating-point numbers.

That’s why
• multiplication is presented in all operations executed with

mantissas;
• operations with mantissas and their results inherits the

properties and features of a multiplication and a product
accordingly

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

5.2. Floating-point Formats and Arithmetic

138

For example,
• an addition of mantissas is executed by matching the

exponents shifting one of the mantissas, where shift is
special case of multiplication.

• a results of two-place operation has double size

Extended Formats:

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

5.2. Floating-point Formats and Arithmetic

139

• Standard IEEE-754 (1985)

Base Formats
• Single Formats

• Double Formats

Sign Bias exponent Mantissa

1 8 23
Amount of bits Bias = 127

Sign Bias exponent Mantissa

1 11 52
Amount of bits

Bias = 1023

Single and Double

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

5.2. Floating-point Formats and Arithmetic

140

• Standard IEEE-754 (1985)

Types of Data Sign Bias exponent Mantissa

Normalized number ± 1 ÷ 11…10 Any value

Non-normalized number ± 0 ≠ 0

Zero ± 0 0

Infinity ± 11…11 0

NaN –No number ± 11…11 ≠ 0

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

5.2. Floating-point Formats and Arithmetic

141

• Standard IEEE-754 (1985)

Parameter \ Formats Single Double Double extended

Size of mantissa (in bits) 23 52 ≤ 64
Bias exponent -126 ÷ 127 -1022 ÷ 1023 -16382 ÷16383

Bias 127 1023 No regulate
Size of exponent (in bits) 8 11 ≤ 15
Size of format (in bits) 32 64 ≤ 79

Range of numbers 10-38 ÷ 1038 10-308 ÷ 10308 No regulate
Amount of exponent values 254 2046 No regulate
Amount of mantissa values 223 252 No regulate
Amount of different values 1,98 × 223 1,98 × 263 No regulate

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

5.2. Floating-point Formats and Arithmetic

142

• Standard IEEE-754 (1985)

Real number in true form

Zero

Negative area
of full loss of
significanceRepresented

 negative
numbers

Negative
area of

overflow

High bounds of range

–Nmax
–Nmin +Nmin

– ∞

Low bounds
of range

–Nmax /P Positive area
of dragged loss
of significance

Positive area
of full loss of
significance Represented

 positive
numbers

+ ∞

Negative
area of

overflow
+Nmax

+Nmax /PNegative area
of dragged loss
of significance

5.3. Complete and Truncated Operations

143 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

0
Hardware overhead

Speed

Exponent

Floating-point
circuit

Processing
Mantissa

Approximate Computations

Residue
 checking

On-line
testing

Motivation of the use
Accuracy

Truncated
operation

Truncated
operationTruncated
operation

Compli-cat
ed

operation

Arithmetical
shift

5.3. Complete and Truncated Operations

• Truncated multiplication

144 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

2 – 1

2 – 2

2 – 3

2 – 4

2 – 5

2 – 6

2 – 7

2 – 8

1

2

3

4

5

6

7

8

11 12 13 14 15 16 17 18

21 22 23 24 25 26 27 28

31 32 33 34 35 36 37 38

41 42 43 44 45 46 47 48

51 52 53 54 55 56 57 58

61 62 63 64 65 66 67 68

71 72 73 74 75 76 77 78

81 82 83 84 85 86 87 88

A{1 ÷ n}:

B{1 ÷ n}:

V{1 ÷ 2n}:

1 2 3 4 5 6 7 8

2 – 1 2 – 2 2 – 3 2 – 4 2 – 5 2 – 6 2 – 7 2 – 8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 – 1 2 – 2 2 – 3 2 – 4 2 – 5 2 – 6 2 – 7 2 – 8 2 – 9 2 –102 –112 –122 –132 –142 –152 –16

n = 8

V{1 ÷ 2n – k}:

V{1 ÷ k}:

1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8

12 13 14 15 16

2 –122 –132 –142 –152 –16

48

57 58

66 67 68

75 76 77 78

84 85 86 87 88

k

k = n – log2n

k = 5

Truncated
multiplication

with
mantissas
reduces

almost twice
hardware
overhead
and time
operation
without
lowering

an accuracy

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

5.3. Complete and Truncated Operations

145

• Truncated restoring division

A{3}A{1} A{2} A{5}A{4}”0”
”0” B{5}B{4}B{3}B{2}B{1}

”1”12

44
33

C{0}
¬C{0}

”0””1”21

C{1} ”0”
¬C{1} ”1”

C{2}
¬C{2} ”1”

C{3}
¬C{3}

C{4}
¬C{4}

C{5}
¬C{5}

D{2}D{1}

”1”

”1”
SM

1
2

3

4

1

3

4

2

s

p

K

Truncated
restoring
division

with mantissas
reduces almost

twice
hardware
overhead
and time
operation
without
lowering

an accuracy

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

5.3. Complete and Truncated Operations

146

• Truncated non-restoring division

SM

1
2

3

4

1

3

4

2

s

p

K

4
3

C{1}

C{0} 4

A{3}A{1} A{2} A{5}A{4}”0”
”0” B{5}B{4}B{3}B{2}B{1}

2
1

”1” 3

”0”21

”0”

C{2}

C{3}

C{4}

C{5}

D{1}¬С{5} D{2}

Truncated
non-restoring

division
with mantissas
reduces almost

twice
hardware
overhead
and time
operation
without
lowering

an accuracy

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

5.3. Complete and Truncated Operations

147

• Truncated operation of shift in mantissa addition

Truncated
operation

of mantissas
shift

twice reduces
hardware
overhead
without
lowering

an accuracy

1. Deleting of low bits of the calculated result

 An approximate number
A is represented as
a product. For example
in floating-point format

A = m B
E

where m is mantissa;
B is a base of notation;
E is an exponent.

 1 ... n

Double size of result

 n+1...2n
Single

precision

A product of two operands
doubles a size of the result.

Therefore, the main floating-point
formats have a single precision.

 According to
the error theory, a
number of exact
bits in a result

does not exceed a
number of exact

bits in the
operand.

148 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

5.4. Features of approximate data processing

106 + 1 + 1 + … + 1

10 6
 1 + 1 + 1 + 1 + … + 1 + 106

2 2

…
10 6

2 ⋅ 10 6

10 6

…
106

n < 20

Violation

for the approximate data
of the associative law 10 6

4

 Addition of one million with one million of units by
implementing the binary operations with codeword size
n < 20

 Addition of one million to a unit renders the result of one million
because the unit is lost during the exponents matching.

One million of such operations also renders the result equal to the first
number, which is one million.

5.4. Features of approximate data processing

2. Data processing in extended formats

149 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

 To restore the associative law, the size of the codeword
should be increased.

The correct circuit can calculate non-reliable result.

5.4. Features of approximate data processing

2. Data processing in extended formats

150 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

 Addition of one million with one million of units by
implementing the binary operations with codeword size
n < 20

106 + 1 + 1 + … + 1

10 6
 1 + 1 + 1 + 1 + … + 1 + 106

2 2

…
10 6

2 ⋅ 10 6

10 6

…
106

n < 20

Violation

for the approximate data
of the associative law 10 6

4

This action is frequently executed in such operations as
addition, subtraction and matching operands.

Mantissa of the number with the smaller exponent is shifted
down with loss of least significant bits (LSB).

Then, the LSB in the result of all previous operations are
eliminated from further calculations.

5.4. Features of approximate data processing

3.1. Denormalization of an operand mantissa at the
matching the exponents

151 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

1 … n–B
1 … B

n–B+1 … n
n+1 … n+BB+1 … n

→ В – non-exact LSB

This action is executed with results in such operations as
addition, subtraction and multiplication.

Mantissa of the result is cyclic shifted to the left with filling the
low position by LSB.

Then, the result of all following operations contain the
additional LSB.

5.4. Features of approximate data processing

3.2. Normalization of the result mantissa

152 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

1 … B B+1 … n

n–B+1 … n

← В

1 … n–B – non-exact LSB

The error produced by a fault of the
computing circuit considered as essential error if it
reduces the number of exact bits in final result.
Otherwise it is considered as inessential.

Definition:

An approximate result has exact most significant bits
(MSB) and non-exact LSB:

5.5. Probability of an Essential Error

• Essential and Inessential Errors

exact bits … non-exact bits
essential … inessential

 ERRORS

153 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

1. Error elimination with discarded bits of the result

K1 = n / nсK1 = 0.5

The faulty circuit can calculate the reliable result in case
of inessential errors.

Eliminated errors are inessential.

A half of all errors is inessential.

Factor K1 defines a share of errors
remained after elimination of LSB.

n and nс are
numbers of kept and
total calculated bits.

n
 n+1 ... 2n

nC
 1 ... n

• The factors lowering a probability of essential error

154 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

5.5. Probability of an Essential Error

nE

 1 ... nE nE+1 ... n

n

K2 = nE / n nE and n are
the number of
exact bits and
total number of
bits in enlarged
mantissa of the
extended format.

Factor K2 defines a share of
essential errors in extended
format.

In the formats for floating-point arithmetic
on PC size of mantissa increases 2.7 times from
24 bits in a single format up to 64 bits in a
double extended format.

5.5. Probability of an Essential Error

• The factors lowering a probability of essential error

2. Increase of a share of inessential errors with use of the
extended formats

155 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

K3.1 = 1 –
ОC n
ОS d

 n
 n Shift

d bits
1 ... n-d n-d+1 ... n

OS and OC are the
hardware overhead of
computing circuits
preceding a shifter and
total number of
computing circuits.

For series of denormalization, K3 is
defined as a product of the factors K3.1 calculated for each of these operations.

5.5. Probability of an Essential Error

• The factors lowering a probability of essential error

3.2. Elimination of errors in results of all previous operations

156 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

1 ... n-d1 ... n-d
K3.2 = 1 – ОC n

ОS d Cycle shift
d bits

OS and OC are the
hardware overhead of
computing circuits
following after a shifter
and total number of
computing circuits.

For series of normalization, K3 is
defined as a product of the factors K3.2 calculated for each of these operations.

5.5. Probability of an Essential Error

• The factors lowering a probability of essential error

3.2. Reducing the essential errors amount in results of
operations following after normalization

157 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

1 ... n-d
LSB

n-d+1 ... n
MSB

n-d+1 ... n
MSB

1 ... n-d
LSB

with inessential errors in
results of all next operations

Probability that the occurred error is essential
PE = K1 K2 K3 PE << 1

 For approximate data processing
 the majority of errors produced by the circuit

faults belongs to inessential errors.

5.5. Probability of an Essential Error

• The factors lowering a probability of essential error

158 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

Reading List

159 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

1. Полин Е. Л. Арифметика ЭВМ . Часть 2 / Одеськ. нац. політехніч. ун.-т. –
Одеса: АО Бахва, 2002. – 150 с.

 7.1.3. Свойства формата с плавающей точкой, с. 115 – 122.
 7.2. Стандарт IEEE 754, с. 123 – 131.

2 Дрозд О.В. Контроль за модулем обчислювальних пристроїв. Навч.
посібн. для студ. спеціальності 7.091501 – «Комп’ютерні та
інтелектуальні системи та мережі» / Одеськ. нац. політехніч. ун.-т. –
Одеса: АО Бахва, 2002. – 144 с.
 3.1. Скорочення обчислень у ОП, с. 51 – 74.

3 Дрозд А. Этапы развития рабочего диагностирования вычислительных
устройств / А. Дрозд // Компьютерные науки и технологии. – Варна
(Болгария), 2009. – № 1. – С. 44 – 50.

 Conclusion

160

1. The majority of processed numbers is approximate data and
their volume only increase.

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

4. The truncated operations are the main methods for processing
mantissas in floating-point formats.

5. The errors produced by the circuit faults in MSB and LSB of
approximated results are essential and inessential accordingly

2. Approximate data contain results of measurements and are
processed in normal form using the floating-point formats,
such as Standard IEEE 754 formats.

3. Approximate data are represented using two components
by reason of significantly different requirements advanced
to volume of range and accuracy: size of mantissa determines
accuracy and exponent size – range.

6. Features of approximate data processing determine factors
significantly lowering a probability of an essential error which
is the general parameter of on-line testing objects.

Questions and tasks

161

1. What role do the approximate data play in computer
processing?

2. What kind of the approximate data do you know?
3. Describe the issues of Standard IEEE 754.
4. Why approximate data are represented using two

components?
5. What role do the truncated operations play in mantissa

processing?
6. What are the essential and inessential errors?
7. What features of approximate data processing do the factors

lowering a probability of an essential error determine?
8. What role do the probability of an essential error play in

on-line testing?

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

MODULE 3. On-line testing
for digital components of S-CES

Lecture 6. Reliability of on-line testing methods

6.4. Residue checking a truncated multiplication

6.5. Residue checking a truncated division of mantissas

6.2. The ways for increasing on-line testing reliability

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

6.6. Residue checking a truncated operation of shift

6.1. Reliability of traditional on-line testing methods

162

6.3. The first way for increasing on-line testing reliability

6.1. Reliability of traditional on-line testing methods

 Estimation in reliability of traditional on-line testing methods
should be revised.

 Our universe is approximate and all in it are structured
under its realities including on-line testing methods

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

6.1.1. Motivation of traditional on-line testing methods
reliability consideration

Reasons:

 Traditional on-line testing methods have been developed
for exact data processing and was estimated within
framework of Exact Data Model.

163

6.1.2. Related Works

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

1. Журавлев Ю. П., Котелюк Л. А., Циклинский Н. И. Надежность и контроль
ЭВМ. – М.: Советское радио, 1978. – 416 c.

2. Щербаков Н. С. Достоверность работы цифровых устройств. – М.:
Машиностроение, 1989. – 224 c.

4. Рабинович З. Л., Раманаускас В. А. Типовые операции в вычислительных
машинах. – Киев: Техника, 1980. – 264 c.

5. Савельев А. Я. Прикладная теория цифровых автоматов. – М.: Высш. шк.,
1987. – 272 c.

164

6. Граф Ш., Гессель М. Схемы поиска неисправностей. – М.:
Энергоатомиздат, 1989. – 144 с.

3. Согомонян Е. С., Слабаков Е. В. Самопроверяемые устройства и
отказоустойчивые системы. – М.: Радио и связь, 1989. – 208 с.

Traditionally, reliability of on-line testing method is estimated
and considered as probability of error detection

6.1.3. What is reliability of on-line testing methods?

Such view on reliability of on-line testing method does not take
into account features of on-line testing objects:

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems165

Reliability of on-line testing method should be considered
using two parameters:
• probability of error detection characterizing an on-line testing

method;
• probability of essential error characterizing an on-line testing

object.

Reliability of on-line testing method can be considered using
unit-side square.

6.1.3. What is reliability of on-line testing methods?

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems166

РE is a probability of an essential error

PDN is a probability of inessential error detection.

РE РN

РD

РS

РDN
2

РDE
1

РSE

3
РSN

4

PDE is a probability of essential error detection.

РD is a probability of error detection

PSN is a probability of inessential error skipping.
PSE is a probability of essential error skipping.

РN is a probability of an inessential error
РN = 1 – РE

РS is a probability of error skipping
РS = 1 – РD

 PDE +
+ PDN +
+ PSE +
+ PSN = 1

Reliability of on-line testing methods is defined on dependence
of the purpose of on-line testing

6.1.3. What is reliability of on-line testing methods?

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems167

РE РN

РD

РS

РDN
2

РDE
1

РSE

3
РSN

4

Estimation of on-line testing method
Reliability as a Probability of error
detection ignoring a Probability of
essential error follows from the Model of
Exact Data.

 According to declared purpose of
on-line testing a method is reliable if
the circuit fault is detected
irrespectively of error type (essential
or inessential).

RDR = PDE + PDN =
= PD

Reliability of on-line testing methods is defined on dependence
of the purpose of on-line testing

6.1.3. What is reliability of on-line testing methods?

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems168

РE РN

РD

РS

РDN
2

РDE
1

РSE

3
РSN

4

 According to actual purpose of
on-line testing a method is reliable
if correctly estimates a calculated
result as reliable or non-reliable.

RAR = PDE + PSN =
= PD PE + (1 - PD) (1 - PE)

An on-line testing method defines a result
as non-reliable by the error detection.
However an actual tag of non-reliable
result is essential error occurrence.

it states the truth about the result:
detects the essential errors in case of
non-reliable result and skip inessential
ones otherwise.

Reliability of on-line testing method is consist of the checking the results

Traditional on-line testing methods
based on totally self-checking circuit

theory have high detection probability
PD >> PS.

Exact results have probability PE = 1.

Traditional on-line testing methods demonstrate
high reliability in checking the exact results.

6.1.4. Reliability of on-line testing methods for exact data

РD

РS

1

РDE

3 РSE

RAR = PDE + PSN = PD PE + (1 - PD) (1 - PE)

РE

169

RAR = PD

RAR → 1.

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

 1. Traditional on-line testing
methods based on self-checking
circuit theory within framework
of the Model of Exact Data have
high probability of error
detection PD.

РE РN

РS

РDN

2

РDE

 1

РSN 4

РD

РSE

6.1.5. Low reliability of traditional on-line testing methods

RAR = PDE + PSN = PD PE + (1 - PD) (1 - PE)

 2. Approximate results have low
probability of essential error PE

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems170

Reliability of traditional on-line testing methods contains
low parts 1 and 4 of unit-side square: RAR → 0.

 3. The part 2 demonstrates a new property of an on-line
testing method to eject reliable results. For exact data
ejection of reliable results can be only in case of fault in
error detection circuit.

РE РN

РS

РDN

2

РDE

 1

РSN 4

РD

РSE

6.1.5. Low reliability of traditional on-line testing methods

New property of on-line testing methods

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems171

An on-line testing method becomes approximate as our Universe.

 1. A difference between
declared and actual purpose of
on-line testing is defined by the
part 2 describing a probability
of inessential error.

 2. This part 2 is largest in
unit-side square and its area is
close to unit: PDN → 1

CURRENT VIEW
1. Existing on-line testing is

applicable to any type of
data.

2. A purpose of on-line testing is
to estimate reliability of
computing circuit.

3. All processed numbers are
considered as the exact data.

4. All errors are essential for
reliability of computed result.

5. Traditional on-line testing
methods have high reliability:
detect almost all errors and
faults.

NEW VIEW
1. Existing on-line testing is

applicable to the exact data
only.

2. A purpose of on-line testing is
to estimate reliability of
computation result.

3. Processed numbers are in most
cases approximate data.

4. Basically, the errors are
inessential.

5. Traditional on-line testing
methods have low reliability of
result checking: mainly detect
inessential errors.

172 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

6.1.5. Low reliability of traditional on-line testing methods

COMPARISON

1. РE > 0,5РE РN

РS

РDN

2

РDE

 1

РSN

РD

РSE3

D = РD Р E + (1-РD)(1-Р E) D↑= РD ↑ Р E ↑ или РS↓ Р N ↓

2. РE < 0,5

3. РD-E > РD-N

РE РN

РS

РDN 2РDE

РSN

4

РD

РSE

 3РE РN

 PDN 2

РDE

 1

РSE3

РSN

РS

РD-E

РS

РD-N

4
173 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

6.2. The ways for increasing on-line testing reliability

D = РD Р E + (1-РD)(1-Р E) D↑= РD ↑ Р E ↑ or РS↓ Р N ↓

1. РE > 0,5
РD > 0,5

2. РE < 0,5
PD < 0,5

3. РD-E > РD-N

On-Line Testing Methods

Residue checking of truncated operations

1. Checking with natural inf. redundancy.

1. Logarithm checking

2. Checking by inequalities
3. Checking by segments

2. Checking by simplified operation.

174 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

6.2. The ways for increasing on-line testing reliability

D↑= РD ↑ Р E ↑

(РE > 0,5) &
(РD > 0,5)

1. The first way is increasing the
part 1 of unit-side square raising
a probability of essential error

175 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

6.3. The first way for increasing on-line testing
reliability

РE РN

РS

РDN

2

РDE

 1

РSN

РD

РSE3

3. This way provides the high
probability of essential error
detection

2. The first way allows to develop
the on-line testing methods with
traditionally high probability
of error detection

176 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

6.3. The first way for increasing on-line testing
reliability

D↑= РD ↑ Р E ↑

(РE > 0,5) &
(РD > 0,5)

РE РN

РS

РDN

2

РDE

 1

РSN

РD

РSE3

High probability of essential error
 РE > 0,5

can be achieved only for
truncated operations

Residue checking is the main on-line
testing method for arithmetic of

complete operations

That’s why residue checking is
rationally to extend on truncated

operations

1. Residue checking of truncated operations

V{1 ÷ 2n}:

n = 14

k = 10

1 2 3 4 5 6 7 8 9 10 11

2 – 1 2 – 2 2 – 3 2 – 4 2 – 5 2 – 6 2 – 7 2 – 8 2 – 9 2 –102 –11

12 13 14 15 16 17 18 19 20 21 22

2–12 2–13 2–14 2–15 2–16 2–17 2–18 2–19 2– 20 2–21 2–22

23 24 25 26 27 28

2–23 2–24 2–25 2–26 2–27 2–28

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2

3

4

5

6

7

8

9

10

11

12

13

14

V1

5 6 7 8

11

12

13

14 V1

V2

V3

V6

V8

V9

V10

V11

V5

V7

V4

177 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

6.4. Residue checking a truncated multiplication

The method is based on
a decomposition of high part

of the product conjunction array
(PCA) into fragments.

A fragment is defined as a part
of PCA described with a product

Vi = ±Ai Bi ,where Ai and Bi are operands A
and B or their parts.

For example, fragment V1:
V1= –A{5 ÷8} B{11 ÷14} 2–22,

A1= A{5 ÷8} 2–8; B1=B{11÷14} 2–14

The method compares the check codes of
truncated product calculated by two ways:
• using truncated product;
• using operands. High part of the PCA

can be represented as a
sum of fragments:

The method uses definition of a
fragment and representation of a
truncated product in check codes:

KVi = ±KAi KBi

178 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

6.4. Residue checking a truncated multiplication

BA
KA

A

BB
KB

B

KA

M
KAi

KBi

KVi

A
KVT

S

G

KVV

KB

BV
KV

VS KVS

VR

Error detection circuit

Blocks BA and BB check the operands A and
B by computing the check codes KA and KB
and comparing them with the input check
codes KA and KB. Results of comparison are
the error indication codes KA and KB.

The check codes KAi and KBi are composed
of operand bits or computed during the
generation of the check codes KA and KB.

Block M computes the check
codes KVi, i=1÷k-1, of the
fragments by the formula (1).
Block A calculates the check
code KVT of the truncated
product by the formula (2).

The block G generates the
check code KVS of the excluded
bits VS. Block S computes the
check code of the result KVV.

Block BV checks the result VR
by comparing it with the check
code KVV. Result of comparison
is the error indication code KV.

KVi = ±KAi KBi (2)

(1)

179 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

6.4. Residue checking a truncated multiplication

BA
KA

A

BB
KB

B

KA

M
KAi

KBi

KVi

A
KVT

S

G

KVV

KB

BV
KV

VS KVS

VR

Error detection circuit

The method of residue checking a
truncated multiplication defines the
following steps:
• Choice of the PCA decomposition

into fragments;
• Description of fragments;
• Description of the check codes KAi and KBi composed of operands bits;
• Definition of formulas for calculated

check codes KAi and KBi;• Design of the blocks BA and BB in
accordance with obtained formulas;

• Design of the blocks M and A taking
into account the descriptions of
fragments and check codes KAi, KBi;• Design of the blocks G and S using
values of n and k;

• Design of the block BV as a block BA
for the following error detection
circuit where result is used as
operand.

KVi = ±KAi KBi (2)

(1)

180 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

6.4. Residue checking a truncated multiplication

Choice of the PCA decomposition into fragments should be aimed to
design a high quality error detection circuit.

V1

V3

V6

V8

V9

V10

V5

V7

V4

V2

V11

Li = 4 Li = 6

Hardware overhead of the error detection circuit is mainly
defined by complexity of the blocks BA and BB which as
compaction scheme does not depend in complexity on the PCA
decomposition.

Time of check can be reduced using the following
procedure for defining the PCA decomposition.

Decomposition is defined specifying a
sequence of central - symmetric fragments.

 The first central - symmetric fragment
Vi = –A{n-Li+1 ÷ n} B{n-Li+1 ÷ n}2-2n
has size Li=2 Е(k/4+1).

It defines high and low parts like
the PCA high part with k = k – Li. Process is following before k>1.

181 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

6.4. Residue checking a truncated multiplication

Blocks of the error detection circuit are developed taking
into account decomposition of the PCA into fragments.

V1

V3

V6

V8

V9

V10

V5

V7

V4

V2

V11

1 2 3 4 5 6 7 8 9 10 11

2 – 1 2 – 2 2 – 3 2 – 4 2 – 5 2 – 6 2 – 7 2 – 8 2 – 9 2 –102 –11

12 13 14

2–12 2–13 2–14

 14

13

12

11

10

9

8

7

6

5

4

3

2

1

2–14

2–13

2–12

2–11

2–10

2– 9

2– 8

2– 7

2– 6

2– 5

2– 4

2– 3

2– 2

2– 1

A
B

V1= –A{5÷8} B{11÷14} 2–22

V3= +A{5, 6} B{11, 12} 2–18

V5= –A{9÷14} B{9÷14} 2–28

V7= –A{11÷14} B{5÷8} 2–22

V9= +A{11, 12} B{5, 6} 2–18

V11= +A{1÷14} B{1÷14} 2–28

V2= +A{5} B{13} 2–18

V4= +A{7} B{11} 2–18

V6= +A{9} B{9} 2–18

V8= +A{11} B{7} 2–18

V10= +A{13} B{5} 2–18

F
r
a
g
m
e
n
t
s

KA2= (A{5} 2–18) mod 3 = –A{5};
KA3= (A{5, 6}) mod 3 = A{5, 6};
KA4= –A{7}; KA6= –A{9};
KA8= –A{11}; KA9= A{11, 12};
KA10= –A{13};

Composed

KB2= –B{13}; KB3= B{11, 12};
KB4= –B{11}; KB6= –B{9};
KB8= –B{7}; KB9= B{5, 6};
KB10= –B{5};

check
codes

182 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

6.4. Residue checking a truncated multiplication

Development
of the block BB

V1

V3

V6

V8

V9

V10

V5

V7

V4

V2

V11

1 2 3 4 5 6 7 8 9 10 11
2 – 1 2 – 2 2 – 3 2 – 4 2 – 5 2 – 6 2 – 7 2 – 8 2 – 9 2

–10
2

–11

12 13 14
2–12 2–13 2–14

 14

13
12
11

10
9

8

7

6

5

4

3

2

1

2–14

2–13

2–12

2–11

2–10

2– 9

2– 8

2– 7

2– 6

2– 5

2– 4

2– 3

2– 2

2– 1

A
B

Sequence of Computations
KB1= B{11÷14} mod 3;

KB7= B{5÷8} mod 3;
KB5= KB1+B{9, 10};
KB11= KB5+KB7+B{1÷4} mod 3

Adders 1 ÷ 7 by
modulo 3

B{1}
1B{2}

B{3}
B{4}
B{5}

2B{6}
B{7}
B{8}
B{9}
B{10}
B{11}

3B{12}
B{13}
B{14}

4

5

6

7
КB{1}
КB{2}

КB11{1}
КB11{2}

КB7{2}
КB7{1}

КB5{1}
КB5{2}

КB1{2}
КB1{1}

КA

Block BB – high speed pyramidal circuit

HEDC HIMUL

HE/M

183 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

6.4. Residue checking a truncated multiplication

Hardware overhead
• of Error Detection Circuit:
HEDC = 4n + k (in FA – full adder)

• of Multiplier:
HMUL = n2 – k2 / 2 (in FA)

• Relative
HE / M = (8n + 2k) / (2n2 – k2)

184 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

6.5. Residue checking a truncated division of mantissas

 Correlation of truncated multiplication and division

A truncated non-restoring
division is an inverse operation
for truncated multiplication of
the binary divisor on quotient
represented in notation 1,1.
 Truncated multiplication of

divisor D = d{1 ÷ n}⋅2-n on
quotient Q = q{0 ÷ n}⋅2-n
determines left part 1 of
Conjunctions Array (CA).

Truncated (2n – k)-bits
product

VTR = V{1 ÷ 2n – k}⋅2–(2n–k),
is calculated on this part as

VTR = A – RTR, where
A=a{1 ÷ n}⋅2-n is dividend;
RTR=r{1 ÷ n–k}⋅2–(n–k) is
truncated remainder.

Quotient
Q{0÷n}

1 2 3 4 5 6 Divisor D{1÷n}

2-1 2-2 2-3 2-4 2-5 2-6

0 20

1 2-1 k

2 2-2

3 2-3

4 2-4

5 2-5

6 2-6

2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 2-9 2-10 2-11 2-12

Dividend
A{1÷n}

1 2 3 4 5 6 Residue
R{1÷n-k}1 2 3

CA for product of divisor on quotient

185 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

6.5. Residue checking a truncated division of mantissas

 Decomposition of the CA left part on k+1 fragments
Vi = Di ⋅ Qi , i = 1 ÷ k+1 (k=3, i = 1 ÷ 4)

Quotient
Q{0÷n}

1 2 3 4 5 6 Divisor
D{1÷n}2-1 2-2 2-3 2-4 2-5 2-6

0 20

1 2-1

2 2-2

3 2-3 V4

4 2-4 V3

5 2-5 V2

6 2-6 V1

2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 2-9

Dividend
A{1÷n}

1 2 3 4 5 6

Residue R{1÷n-k} 1 2 3

V1 = D{1÷3} ⋅ Q{6}⋅ 2-9;
V2 = D{1÷4} ⋅ Q{5}⋅2-9;
V3 = D{1÷5} ⋅ Q{4}⋅ 2-9;
V4 = D{1÷6} ⋅ Q{0÷3}⋅2-9.

KD1 = – D{1÷3} mod 3;
KD2 = (KD1 + D{4}) mod 3;
KD3 = (KD2 – D{5}) mod 3;
KD4 = (KD3 + D{6}) mod 3;

KQ1 = Q{6};
KQ2 = –Q{5};
KQ3 = (Q{6};
KQ4 = – Q{0÷3} mod 3;

186 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

6.5. Residue checking a truncated division of mantissas

 Error Drtection circuit

Blocks 1 and 2 check the input numbers: dividend A and divisor D.
Blocks 3 and 4 generate check codes KQ and KR of quotient Q and residue R.
Blocks 5 and 6 calculate check codes КVTR and КVTR*.
Block 7 compares check codes КVTR, КVTR* and calculates indicate code КQ.

 КVTR = Σ KVi
 КVTR* = КA - КRTR,
where КA =A mod m;

КRTR = RTR mod
m;
 KVi = KDi ⋅ KQi;
 KDi = Di mod m;
 KQi = Qi mod m.

k+1

i=1

A

D

КA

КD 2

1

3

4

RTR

Q

5

6
7

KQi

 KRTR

 KQ

KDl KVTR

KVTR* KQ

KA

KD

КA

187 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

6.6. Residue checking a truncated operation of shift

Truncated shift is executed in floating-point addition

 1. Definition of operation C=A+B,
 where A=a1⋅2a2; B=b1⋅2b2;
C=c1⋅2c2.
2. Execution of operation

2.2. Processing the mantissas
a1 SHIFT = a1⋅2-da;

b1 SHIFT = b1⋅2-db;
c1 = a1 SHIFT + b1 SHIFT.

2.1. Processing the exponents
 c2 = max (a2, b2);
 da = c2 - a2; db = c2 - b2.

1

2

3

a1 SHIFT

b1 SHIFT

c2

c1

b2

a2

a1

b1

da

db 4

 3. The floating-point
adder consists of
the block 1 for the
exponent processing,
barrel-shifters 2 and 3,
adder 4.

188 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

6.6. Residue checking a truncated operation of shift

Arithmetic shift of a mantissa

 An operation of arithmetic shift contains three actions: aSHIFT = a⋅2-d - a0 + as.
1. The reduction of the bit weights for the mantissa a in 2d times.
2. The truncation of the d low bits of the mantissa a (the code a0=a{n-d+1÷n}).

3. The sign bit padding in the position with bit weights 2-1÷2-d for complement
code of the mantissa a. Sign bits sa … sa compose the code as.

a{1} … a{n-d} a{n-d+1} … a{n}
2-1 … 2-n+d 2-n+d-1 … 2-n

a{1} … a{n-d}
2-d-1 … 2-n

a{n-d+1} … a{n}
2-n-1 … 2-n-d

sa … sa

2-1 … 2-d

aSHIFT{1} … aSHIFT{n}
2-1 … 2

-n

1

2

3

189 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

6.6. Residue checking a truncated operation of shift

Arithmetic shift is executed using the Barrel-shifter

 The Barrel-shifter contains n
of n-to-1 multiplexers.
 The multiplexer hardware overhead q
is proportional to the operand size n.
 The barrel-shifter hardware overhead
QSHIFT=nq is proportional to the square
of the operand size n and makes the
main hardware overhead of the
floating-point adder.
 Barrel-shifter executes a truncated
operation, which reduces twice the
hardware overhead in comparison with
the long shifter computing complete
2n-bit result aC=aSHIFT{1÷2n}2-2n.

2

S3
S4

D2

D15

D1

. . .

D0

S1
S2

S3
S4

D1

D15

D0

S1
S2

15

S3
S4

D13

D15
D14

D0

S1
S2

. . .

1. . .

. . .

a{1}

a{2}

a{15}

aSHIFT{1}

aSHIFT{2}

aSHIFT{15}

.

d{4}
d{2}
d{1}
d{3}

sa

190 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

6.6. Residue checking a truncated operation of shift

Shift matrix

d=d{1÷r}, r=4 a = a{1÷n}, n=15

4 3 2 1 1 2 3 4 … 12 13 14 15

23 22 21 20 2-1 2-2 2-3 2-4 … 2-12 2-13 2-14 2-15

0 0 0 0 1 2 3 4 … 12 13 14 15

0 0 0 1 1 2 3 4 … 12 13 14 15

0 0 1 0 1 2 3 4 … 12 13 14 15

0 0 1 1 1 2 3 4 … 12 13 14 15

0 1 0 0 1 2 3 4 … 12 13 14 15

. . . … … …

1 1 0 0 1 2 3 4 … 12 13 14 15

1 1 0 1 1 2 3 4 … 12 13 14 15

1 1 1 0 1 2 3 4 … 12 13 14 15

1 1 1 1 1 2 3 4 … 12 13 14 15

 aC : 1 2 3 4 … 12 13 14 15 16 17 18 19 … 27 28 29 30

 aSHIFT : 1 2 3 4 … 12 13 14 15 a0

191 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

6.6. Residue checking a truncated operation of shift

Conversion a0 into a01 = a0⋅2d

d i=1÷n

4 3 2 1 1 2 3 4 … 12 13 14 15

23 22 21 20 2-1 2-2 2-3 2-4 … 2-12 2-13 2-14 2-15

0 0 0 0

0 0 0 1 15 15

0 0 1 0 14 15 14 15

0 0 1 1 13 14 15 13 14 15

0 1 0 0 12 13 14 15 12 13 14 15

… … …

1 1 0 0 4 … 12 13 14 15 4 … 12 13 14 15

1 1 0 1 3 4 … 12 13 14 15 3 4 … 12 13 14 15

1 1 1 0 2 3 4 … 12 13 14 15 2 3 4 … 12 13 14 15

1 1 1 1 1 2 3 4 … 12 13 14 15 1 2 3 4 … 12 13 14 15

a01 a0

192 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

6.6. Residue checking a truncated operation of shift

Conversion a01 into a02 with keeping the bit weights by mod 3
d fi, i=1÷n Fj, j=1÷2r

4 3 2 1 1 2 3 4 5 6 7 8 9 … 14 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

23 22 21 20 2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 2-9 … 2-142-15 2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 2-9 2-102-112-122-132-142-15

1 2 1 2 1 2 1 2 1 … 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1

0 0 0 0

0 0 0 1 15 15

0 0 1 0 14 15 14 15

0 0 1 1 … 14 15 13 14 15

0 1 0 0 … 14 15 12 13 14 15

0 1 0 1 … 14 15 11 12 13 14 15

0 1 1 0 … 14 15 10 11 12 13 14 15

0 1 1 1 9 … 14 15 9 10 11 12 13 14 15

1 0 0 0 8 9 … 14 15 8 9 10 11 12 13 14 15

1 0 0 1 7 8 9 … 14 15 7 8 9 10 11 12 13 14 15

1 0 1 0 6 7 8 9 … 14 15 6 7 8 9 10 11 12 13 14 15

1 0 1 1 5 6 7 8 9 … 14 15 5 6 7 8 9 10 11 12 13 14 15

1 1 0 0 4 5 6 7 8 9 … 14 15 5 6 7 8 9 10 11 12 13 14 15

1 1 0 1 3 4 5 6 7 8 9 … 14 15 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 1 0 2 3 4 5 6 7 8 9 … 14 15 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 1 1 1 2 3 4 5 6 7 8 9 … 14 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

a01 a02

193 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

6.6. Residue checking a truncated operation of shift

Conversion a01 into a02 with calculating the check codes

d Fj, j=1÷2r Vl, l=1÷2r-1

4 3 2 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7

23 22 21 20 2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 2-9 2-10 2-11 2-12 2-13 2-14 2-15

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1

0 0 0 0

0 0 0 1 15 15

0 0 1 0 14 15 14 15

0 0 1 1 13 14 15 13 14 15

0 1 0 0 12 13 14 15 ka12÷15{2,1}

0 1 0 1 11 12 13 14 15 11 ka12÷15{2,1}

0 1 1 0 10 11 12 13 14 15 10 11 ka12÷15{2,1}

0 1 1 1 9 10 11 12 13 14 15 9 10 11 ka12÷15{2,1}

1 0 0 0 8 9 10 11 12 13 14 15 ka8÷15{2,1}

1 0 0 1 7 8 9 10 11 12 13 14 15 7 ka8÷15{2,1}

1 0 1 0 6 7 8 9 10 11 12 13 14 15 6 7 ka8÷15{2,1}

1 0 1 1 5 6 7 8 9 10 11 12 13 14 15 5 6 7 ka8÷15{2,1}

1 1 0 0 4 5 6 7 8 9 10 11 12 13 14 15

ka4÷7{2,1}
ka4÷7{2,1}
ka4÷7{2,1}
ka4÷7{2,1}

ka8÷15{2,1}

1 1 0 1 3 4 5 6 7 8 9 10 11 12 13 14 15 3 ka8÷15{2,1}

1 1 1 0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 2 3 ka8÷15{2,1}

1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 ka8÷15{2,1}

a02 a03

ka4÷7{2,1}=
a{4÷7}mod3

ka12÷15{2,1}=
a{12÷15}mod3

ka8÷15{2,1}=
(a{8÷11}+

ka12÷15{2,1})
mod3

194 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

6.6. Residue checking a truncated operation of shift

Simplification of the checking computation

 1. Conversion of the restricted bits a0 in the code
a01 simplifies the unit 3 in σ01 = 1.5 times.

kaSHIFT

Ka
ka

2
1a ka

3d

4
d{1}

7

 sa

a03

5
 kad

kas1

kaV 6 ka03

 2. Conversion of the code a01 in a02 simplifies the
unit 3 in σ02=2n/r times. For n=15 σ02=7,5.

 3. Conversion of the code a02 in a03 simplifies the unit 3 in σ03=2n/3
times and the unit 6 in σ=n/(2r-1) times. For n=15 σ03=10, σ =2.1.

 The checking
hardware
overhead
reduces

from square
dependence

on the
operand size
to linear one.

195 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

6.6. Residue checking a truncated operation of shift

 Unit 1: modulo-3 generator Unit 3: generator of the check code ka03
 Unit 2: modulo-3 comparator Unit 4: generator of the check code kas1

a{14}
a{15}

1
a{12}
a{13}

2a{10}
a{11}

a{8}
a{9}

5

a{6}
a{7}

3
a{4}
a{5}

4a{2}
a{3}

sa

a{1}

6
7

ka{2}
ka{1}

8

ka12÷15{1}
ka12÷15{2}

ka

1

2

ka8÷15{1}
ka8÷15{2}

ka4÷7{1}
ka4÷7{2}

ka1÷15{1}
ka1÷15{2} AND

D1

D3 2
D0

D2

E
S1
S2

D5

D7

1D4

D6

S2
S3

D1

D3

D0

D2

E
S1

D1 5D0

E
S2

D1

D3 3
D0

D2

E
S1
S2

D1 4D0

E
S2

ka12÷15{2
}ka4÷7{2}

ka12÷15{1
}ka4÷7{1}

AND

ka8÷15{2}

ka8÷15{1}

AND
sa

ka03{7}

ka03{6}

ka03{5}

ka03{2}

ka03{3}

ka03{4}

ka03{1}
V4

V5

V2

V1

V3

V8

V6

kas1

3

4

a{13}
a{15}

a{9}
a{11}

a{5}
a{7}

a{1}
a{3}

d{3}
d{4}

d{1}
d{2}

a{10}
a{14}

a{2}
a{6}

6

7

8

V7

Reading List

196 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

1. Дрозд А.В. Нетрадиционный взгляд на рабочее диагностирование
вычислительных устройств / А.В. Дрозд // Автоматизированные системы
управления и приборы автоматики. – 2009. – Вып. 147. – С. 15 – 24.

2. Дрозд О.В. Контроль за модулем обчислювальних пристроїв. Навч.
посібн. для студ. спеціальності 7.091501 – «Комп’ютерні та
інтелектуальні системи та мережі» / Одеськ. нац. політехніч. ун.-т. –
Одеса: АО Бахва, 2002. – 144 с.
 3. Контроль ОП зі скороченим виконанням операцій, с. 74 – 135.

3 Drozd A. V., Lobachev M. V. Efficient On-line Testing Method for
Floating-Point Adder. – Proc.. Design, Automation and Test in Europe.
Conference and Exhibition 2001 (DATE 2001). Munich, Germany, 13 – 16
March 2001. – P. 307 – 311.

4 Drozd A. V., Lobachev M.V., Drozd J. V. Efficient On-line Testing Method for
a Floating-Point Iterative Array Divider. – Proc. Design, Automation and Test
in Europe. Conference and Exhibition 2002 (DATE 2002). Paris, France, 4 – 8
March 2002. – P. 1127.

 Conclusion

197

1. Traditional on-line testing methods have low reliability of
approximated result checking: mainly detect inessential errors.

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

3. The firs way can be realized using truncated operations only
because only these operations can have the high probability of
essential error.

4. The first way allows to develop the on-line testing methods
with traditionally high probability of error detection

2. On-line testing reliability can be increased by three ways:
increasing a probability of essential error; reducing a
probability of error detection and also detecting essential and
inessential errors with different probabilities.

5. The truncated multiplication can be checked by modulo using
decomposition of product conjunction array into fragments.

6. The another truncated operations can be checked using
fragment approach as well as they inherit the properties of
multiplication.

Questions and tasks

198

1. What is a reliability of the on-line testing methods?
2. What reliability do the traditional on-line testing methods

demonstrate in approximate data processing?
3. Describe the ways to increase reliability of the traditional

on-line testing methods for approximate data processing.
4. What conditions does the first way use for increasing the

reliability of the on-line testing methods?
5. What role do the truncated arithmetic operations play in

mantissa checking?
6. What approach does the residue checking method use for

truncated operations?

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

MODULE 3. On-line testing
for digital components of S-CES

Lecture 7. Increase of on-line testing methods reliability

7.4. Checking of a squarer

7.5. Checking by simplified operation

7.2. Checking with use of natural information redundancy

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

7.6. The models of operation simplification

7.1. The second way for increasing on-line testing reliability

199

7.3. The use of product information redundancy

7.7. Execution of check calculations

7.1. The second way for increasing on-line testing reliability

 Second way answers a common case of on-line testing objects.

 The second way increases on-line testing reliability using a
low probability of essential error.

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

7.1.1. Motivation of increasing an on-line testing reliability by
the second way

Reasons:

On-line testing objects, as a rule, have a low probability of
essential error.

200

7.1.2. Related Works

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

1. Савченко Ю. Г. Цифровые устройства, нечувствительные к неисправностям
элементов. – М.: Советское радио, 1977. – 176 c.

2. Сушкевич А. К. Теория чисел. – Харьков: Изд. ХГУ, 1956.

201

4. Граф Ш., Гессель М. Схемы поиска неисправностей. – М.:
Энергоатомиздат, 1989. – 144 с.

3. Селлерс Ф. Методы обнаружения ошибок в работе ЭЦВМ. – М.: Мир,
1972. – 310 c.

7.1. The second way for increasing on-line testing reliability

 In case of a low probability of essential error the increase of
on-line testing reliability can be achieved only reducing a
probability of error detection.

 Reduction requirements to error detection promote
simplification of the check circuits.

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

7.1.3. Features of the second way

202

 Earlier reduction of an error detection probability has been
aimed at simplification of the on-line testing means.
 However now the goal is increase of reliability of the on-line
testing methods. This goal can be achieved with simplification of
the check circuits.

7.1. The second way for increasing on-line testing reliability

 The main requirement to reduction of an error detection
probability is to keep a set of detected faults.

Every probable fault should be detected at least an input
codeword.

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

7.1.3. Features of the second way

203

The probable fault distorts a result at the output of single-step
arithmetic circuits on the weight of any one bit.

The error looks like ±2r, where r is number of the result bit.

The set of faults detected by residue checking (modulo three)
can be used as the comparison templet of set of the probable
faults.

7.2. Checking with use of natural information redundancy

 The code containing the forbidden words is characterized by
its information redundancy.

Natural information redundancy is alternative to information
redundancy created by expansion of a code introducing the
additional bits.

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

7.2.1. Natural information redundancy

204

Considered checking methods use natural information
redundancy of the arithmetic operation results.

7.3. The use of product information redundancy

Really the product contains the forbidden words.
This follows from execution of the commutative law or

multiplication to zero

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

A product of complete operation has natural information
redundancy.

205

4
5
6
...

22n

1
2
3

4
5
6
...

22n

1
2
3

 Both sets of input and output words of
multiplication have the same capacity
22n, where n is size of operands.

 However the same output word can
correspond to several input words.

7.3. The use of product information redundancy

 Fermat (1601-1665) supposition: the number C = 2n + 1, n=2x
(x is natural number) are prime.

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

Checking the products using prime numbers

206

 A prime number С = 2n + 1 cannot be a product of two n-bit
binary factors. Bits of product for n = 8

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

 Euler (1707-1783) refuted of
Fermat statement for x = 5, but the statement are true for x < 5
including the cases of wide-spread word size n = 8 and n = 16.

x 0 1 2 3 4
n 1 2 4 8 16
C 3 5 17 257 65537

7.3. The use of product information redundancy

 A prime number С = 2n+1 and numbers which is multiply to
C are forbidden words for a product of two n-bit binary factors.

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

Checking the products using prime numbers

207

 These words compose double code G(n, n) without zero-word.

n high bits of a product n low bits of a product Forbidden words

2n n+1 n 1 (2n+1) × k

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 (28+1) × 1

0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 (28+1) × 2

0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 (28+1) × 3

0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 (28+1) × 4

. (28+1) × . . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 (28+1) × (28-1)

7.3. The use of product information redundancy

 The checking method verifies that:
• multipliers A{1÷n} and B{1÷n} are not zero
• product V{1÷2n} is forbidden word k (2n+1).

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

Checking the products using prime numbers

208

 Error is detected, if only one of two conditions performs:
 (A{1 ÷ n} ≠ 0) & (B{1 ÷ n} ≠ 0);
 V{1 ÷ n} = V{n + 1 ÷ 2n}.

 Every probable fault of iterative array multiplier is detected
at least on one input word: A{1 ÷ n} B{1 ÷ n} ± 2r = k (2n + 1).
 It is proved by factorization of the formula k (2n + 1) ± 2r on
multipliers A{1 ÷ n} and B{1 ÷ n} at least for one value k.

7.3. The use of product information redundancy

 The checker consists of two blocks and
forms two-bits check code E{1, 2}:

E{1} = ((A{1 ÷ n} ≠ 0) & (B{1 ÷ n} ≠ 0));
E{2} = (V{1 ÷ n} = V{n + 1 ÷ 2n}).

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

Checking the products using prime numbers

209

. . .
A{n}

A{1}
B1

E{1}

E{2}

&

1.3

1

1.1

. . .
B{n}

B{1}
1

1.2

. . .
V{n}

V{1}
B2

1
. . .
n

. . .
V{2n}

V{n+1}
1

. . .
n

 The first block B1 consists of two n-bits
gates OR 1.1 and 1.2 which check the
conditions A{1 ÷ n} ≠0 and B{1 ÷ n} ≠ 0, and
gate AND 1.3 computes the bit E{1} from
condition, that both of the factors are not
zero.
 The second block B2 is comparator of the
low and high product bits. It computes the
bit E{2}.

 The code E{1, 2} = 002, if at least one of
factors is zero and the product is not zero:
the low and high parts of product are
different.
 The code E{1, 2} = 112, if both of the
factors are not zero and the product assumes
forbidden word: the low and high bits of
product are equal.
 The code E{1, 2} = 012, if at least one of
the factors is zero and the low and high bits
of product are equal: V{1 ÷ 2n} = 0.
 The code E{1, 2} = 102, if both of the
factors are not zero and the low and high
parts of non-zero product are different.

If E{1, 2} = 002 or 112 then fault is detected;
If work is correct then E{1, 2} = 01 or 10.

7.3. The use of product information redundancy

 This checking method can be extended on mantissa
processing taking into account a range of the normalized
mantissa codeword: 2n – 1 ÷ 2n – 1.

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

Checking the products using prime numbers

210

 Such range excludes zero as a value of a product.

 The checker contains only the comparator (Block B2) which
can be designed on Carter's units.

 This peculiarity eliminates a check of factors to be equal to
zero and eliminates the block B1 of the checker.

7.3. The use of product information redundancy

 A probability of error detection PD = 3⋅ 2 –n,
PD n=8 = 0,012; PD n=16 = 4,6 ⋅10 –5.

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

Checking the products using prime numbers

211

 Time of permanent fault detection T = ln 2 / PD,
Tn=8 = 59; Tn=16 = 15142 (clock units);

 The checker based on use of prime numbers is simplest for
multipliers. It is simpler of the residue checker more than 5,3
times.

 A reliability of the checking method R = 1 – PE,
R = 0,9 for PE = 0,1.

7.3. The use of product information redundancy

 The described checking method has such lack as limited
application: only for two size of word – n = 8 and n = 16.

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

Checking the products using prime numbers

212

 This checking method can be extended on another size of word
using prime number C* = 2n – 1.

n 3 5 7 13 17 19 31
C* 7 31 127 8191 131071 524287 2147483647

 A prime number С* = 2n – 1 can be a product of two n-bit
binary factors only in case the factor is equal to С*.

Bits of product for n = 7
14 13 12 11 10 9 8 7 6 5 4 3 2 1
0 0 0 0 0 0 0 1 1 1 1 1 1 1

7.3. The use of product information redundancy

 A prime number С* = 2n–1 and numbers which is multiply to
C* can be a product of two n-bit binary factors.

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

Checking the products using prime numbers

213

 These words compose double code G(n, ¬n) with inverse part
without words which are equal to С* in their high part.

n high bits of a product n low bits of a product C*

2n n+1 n 1 (2n–1) × k

0 0 0 0 0 0 0 1 1 1 1 1 1 1 (27–1) × 1

0 0 0 0 0 0 1 1 1 1 1 1 1 0 (27–1) × 2

0 0 0 0 0 1 0 1 1 1 1 1 0 1 (27–1) × 3

0 0 0 0 0 1 1 1 1 1 1 1 0 0 (27–1) × 4

. (27–1) × . . .

1 1 1 1 1 1 0 0 0 0 0 0 0 1 (27–1) × (27–1)

7.3. The use of product information redundancy

 The checking method verifies that:
• multipliers A{1÷n} and B{1÷n} are not C* and not zero
• product V{1÷2n} is word k (2n – 1).

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

Checking the products using prime numbers

214

 Error is detected, if only one of two conditions performs:
 (A{1 ÷ n} ≠ C*) & (B{1 ÷ n} ≠ C*) for A{1 ÷ n}, (B{1 ÷ n} ≠ 0

 V{1 ÷ n} = ¬ V{n + 1 ÷ 2n}.

 Every probable fault of iterative array multiplier is detected
at least on one input word: A{1 ÷ n} B{1 ÷ n} ± 2r = k (2n – 1).
 It is proved by factorization of the formula k (2n – 1) ± 2r on
multipliers A{1 ÷ n} and B{1 ÷ n} at least for one value k.

7.3. The use of product information redundancy

 The checker consists of two blocks and
forms two-bits check code E{1, 2}:

E{1} = ((A{1 ÷ n} = C*) or (B{1 ÷ n} = C*));
E{2} = ¬ (V{1 ÷ n} = ¬ V{n + 1 ÷ 2n}).

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

Checking the products using prime numbers

215

 The first block B1 consists of two n-bits
gates AND 1.1 and 1.2 which check the
conditions A{1 ÷ n} = C* or B{1 ÷ n} = C*,
and gate OR 1.3 computes the bit E{1} from
condition, that at least one of the factors is
equal to C*.
 The second block B2 is comparator of the
low and inverse high product bits with
inverse output. It computes the bit E{2}.

 The code E{1, 2} = 112, if at least one of
factors is C* and the low and high parts of
product are not inverse.
 The code E{1, 2} = 002, if both of the
factors are not equal to C* and the low and
high bits of product are inverse.
 The code E{1, 2} = 012, if at least one of
the factors is C* and the low and high bits of
product are inverse.
 The code E{1, 2} = 012, if both of the
factors are not equal to C* and the low and
high parts of non-zero product are not
inverse.

If E{1, 2} = 002 or 112 then fault is detected;
If work is correct then E{1, 2} = 01 or 10.

. . .
A{n}

A{1}
B1

E{1}

E{2}

1

1.3

&

1.1

. . .
B{n}

B{1}
&

1.2

. . .
V{n}

V{1}
B2

1
. . .
n

. . .
V{2n}

V{n+1}
1

. . .
n

7.3. The use of product information redundancy

 The checking method is not correct in case at least one of
factors is equal to zero. This case should be identified in checker
additionally for codeword in range 0 ÷ 2n – 1.

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

Checking the products using prime numbers

216

 Both the checking method and checker are quite correct for
mantissa processing taking into account a range of the
normalized mantissa codeword: 2n – 1 ÷ 2n – 1.

7.3. The use of product information redundancy

 A probability of error detection PD = 3⋅ 2 –n,
PD n=7 = 0,023; PD n=17 = 2,3 ⋅10 –5.

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

Checking the products using prime numbers

217

 Time of permanent fault detection T = ln 2 / PD,
Tn=7 = 30; Tn=8 = 30284 (clock units);

 The checker based on use of prime numbers is simplest for
multipliers. It is simpler of the residue checker more than 5,3
times.

 A reliability of the checking method R = 1 – PE,
R = 0,9 for PE = 0,1.

Block B1 calculates residue R by modulo m of result S = A2.

A
Squarer

B1 B2

S

E

Error detection circuit

Block B2 calculates check code E which identifies the forbidden values of
residue R.

 Way 2.
Decrease of PD

218 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

 7.4. Checking of a squarer

• Error detection circuit of squarer

1. Calculation of square S = A2 and residue
R = S mod m for values of an operand on
the half of period А = 0 ÷ (m – 1) / 2.

A 0 1 2 3 4 5 6 7
S 0 1 4 9 16 25 36 49
R 0 1 4 9 1 10 6 4

X 0 1 4 6 9 10
F 1 4 4 2 2 2

Z 2 3 5 7 8 11 12 13 14

m = 15

3. Creation of a set Z of the forbidden
values z;

• Estimation of error detection probability

2. Creation of a set X of the allowed values
x for the residue R and an index F of their
occurrences for values of an operand on the
period А = 0 ÷ m – 1.

219 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

 7.4. Checking of a squarer

Y 1 2 4 8 -1 -2 -4 -8

m = 15
4. Creation of a set Y of the typical error
y = ± 2r by modulo m, where r is number of
a bit in result, r = 0 ÷ 2n – 1.

• Estimation of error detection probability

220 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

 7.4. Checking of a squarer

4.1 A set Y of the typical error y = ± 2r by
modulo m is finite: positive errors not more
m and negative errors not more m.

4.2 The typical error y = ± 2r by modulo m
can be obtained duplicating value of the
error by modulo m from 1 before 1 or – 1.

4.3 This process can be considered in detail
on example m = 13.

20=1, 1×2=2, 2×2=4, 4×2=8,
8×2=16: 16 mod 15 = 1.

20=1, 1×2=2, 2×2=4, 4×2=8,
8×2=16:
 –13
 3, 3×2=6, 6×2=12
 –13
 –1

m = 13

Y {1, 2, 4, 8, 3, 6}.

5. Creation of the error detection table
using occurrences of allowed values x
from condition z = (x + y) mod m;

1 2 4 8
2
3
5
7
8
11
12
13
14

-1 -2 -4 -8 Sumz / y

 4 2
4 4
2
 2 4 1
2 2
 2 4
 2
 2 2

4
2 2
 2 1
2 2 4
 1 4
 4
 1 2
1 4

4 1 2 4 2 2 15
10
12
5
15
9
10
5
9

6. Calculation of maximal PH and
minimal PL error detection probabilities:

PH = SumMAX / (m Y*);
PL = SumMIN / (m Y*),

where SumMAX is the sum of all elements
of the table;
SumMIN is the least sum of lines

which elements cover all columns;
 Y* is amount of elements in set Y.

PD H = 0,75

PD L = 0,15SumMAX = 90

 SumMIN = 18 for z = 11 and z = 14

Y* = 8

221 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

m = 15

 7.4. Checking of a squarer

X 0 1 4 6 9 10
F 1 4 4 2 2 2

• Estimation of error detection probability

R = PD PE + (1 - PD) (1 – PE)

PDE

PE

PD

PS PSE

PSN

PN

PSE

PDE

PS

PD

PE

PDN

R = 0,75

1. Case of exact data: PE = 1
 PD = PD H = 0,75

R = 0,30

2. Case of approximate data: PE = 0,1
 PD = PD H = 0,75

R = 0,78

 PD = PD H = 0,15 PSN

PN

PSE

PDE

PS

PD

PE

PDN

222 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

 7.4. Checking of a squarer

• Estimation of the checking method reliability

 7.5. Checking by simplified operation

 The checking method is based on operation simplification
limiting of a set of the input words down to the set of check
words.

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

Simplification of operation

223

 Such solution is not correct: the probable faults – shorts
between the same bits of the factors – are do not detected.

 This solution can be improved using the factors which are
equal by modulo 3.

 For example, a multiplier can be checked as squarer on input
words composed of equal factors.

 7.5. Checking by simplified operation

 The method defines limiting conditions for operands and results.

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

Limiting conditions

224

Y Y*

X*X

Y Y*

X

X1*
X2*

 Simplification bottom-up:
limiting conditions imposed
upon operands determine
limiting condition for the result.

 Simplification top-down:
limiting condition imposed upon
result determine limiting
conditions for the operands.

 7.5. Checking by simplified operation

 A model of simplification of the computing operation contains
limiting conditions (LC) and logic operation executed with their.

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

The models of the Operation Simplification

225

 Composite LC is LC for operands composed of some LC.

 The LC for operands can be dependent or independent
determining equal or different LC for the result accordingly.

 In order to keep a set of the detected fault
the dependent LC should be processed only using logic
operations OR or XOR;
the independent LC should be processed only using logic
operations AND.

Block B1 uses LC for operands identifying the input words, on
which the operation can be transformed to simplified form.

Block B2 checks LC for results of the operation considered in
simplified form.

Block B3 forms an error indication code, which detects an error
only in case of the input word identification in block B1 and detection
of this error in block B2.

Object of
on-line testing

B2
B3

V

E

Error detection circuit

B
A

B1

226 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

 7.5. Checking by simplified operation

Structure of the Error detection circuit

 7.5. Checking by simplified operation

 Two kinds of the check calculations are used:
• forming the codes of LC for the operands and the result;
• execution of logic operations with the codes of LC.

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

The models of execution of the check calculations

227

 The codes of LC are formed by modulo 3 keeping a set of the faults
detected if the residue checking.

 Both the logic operation OR with allowed values and AND with
forbidden values of the LC codes are executed on a Carter's unit.

 The codes of LC can take allowed values 012 or 102 and forbidden
values 002 or 112.

 The logic operation NOT transforms the allowed values to forbidden
one’s or on the contrary inverting one of code bits by NOT-unit.

 The Carter's and NOT units allow to execute any logic operation
as well as OR, AND, NOT compose functionally complete basis.

 7.5. Checking by simplified operation

 Initial data for checker design is a required probability PD of error
detection. It is used for determining the LC for operands.

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

Design of the Checker

228

 For example, the LC for multiplier checker (complete operation) with
low PD = 0,07 can be determined as follows.

G is a set of total inputs word

LC Type
of LC

Set of check
words

Logic
operation

Set of check
words PD

A mod 3 = 0 D 0,33 G
OR 0,56 G

0,06
B mod 3 = 0 D 0,33 G
V1 mod 3 = 0 I 0,33 G

AND 0,06 G
V2 mod 3 = 0 I 0,33 G

R mod 3 = 0 R D – dependent LC, I – independent LC, R – LC for result

A × B = V; R V1 V2V = R . V1 . V2; V:

 7.5. Checking by simplified operation

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

Design of the Checker

229

 M – the generator of
residue code;
UC – the Carter’s unit;
UN – the NOT-unit;

• – the inverse output;
BD – the block forming
the dependent LC;
BI – the block forming
the independent LC;
BL – the block executing
the logic operation with
the codes of LC;
KL – the composite code
of dependent LC;
KC – the composite code
of independent LC;
KM– the code of error
indication

M

1.1
A

KМ

UN

5.4

UC

4.1

KA

M

1.2
B

KB

BD

1

BL

4

M

2.1
V1 UC*

5.3

KV1

M

2.2
V2

KV2

BI

2

BL

5

UN

5.2

UN

5.1

M*

3.1
R KR*

3

UN

6.2
BR UC*

6.3

BL

6

KL

KC

UC*

5.6UN

5.5

UC

6.1

КA = A mod 3; КV1 = V1 mod 3;
КB = B mod 3; КV2 = V2 mod 3;

КR* = R mod* 3.

 7.5. Checking by simplified operation

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

Estimation of the method

230

 Reliability of the checking by simplified operation
in comparison with the residue checking method

RSIMP (PD) RMO (PD)

Reading List

231 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

1. Drozd A. V. Efficient Method of Failure Detection in Iterative Array
Multiplier. – Proc. Design, Automation and Test in Europe. Conference and
Exhibition 2000 (DATE 2000). Paris, France, 27 – 30 March 2000. – P. 764.

2. Said Mouafak Montaha M. New On-Line Testing Method to Increase the
Reliability of Checking Approximated Results / M. Said Mouafak Montaha,
M.V. Lobachev, O.V. Drozd // 4-th international Conference “Advanced
Computer Systems and Networks: Design and Application”. Lviv, Ukraine,
17-19 December, P. 166-168, 2009.

 Conclusion

232

1. The second way can be realized using natural information
redundancy of results of the arithmetic operations or
simplifying a calculating operation in check.

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

2. The natural information redundancy of a complete product
can be realized using the prime numbers.

4. The squarer can be effectively checked using the forbidden
values of a residue by modulo.

5. The checking by simplified operation determines and forms
by modulo the limiting conditions for operands and result and
also executes the logic operation with these conditions.

6. The second way for increasing a reliability of on-line testing
methods reduces a probability of error detection without
truncating a set of the detected faults.

3. The use of the prime numbers allows to design the simplest
checkers for on-line testing of the iterative array multiplier.

Questions and tasks

233

1. What is the second method for increasing a reliability of the
on-line testing methods?

2. What the methods are by the second way realized?
3. Describe the use of the prime numbers for on-line testing the

complete product of mantissas.
4. Describe the procedure of the error detection probability

assessment in the method of the squarer on-line testing ?
5. What the models are in the checking method by simplified

operation used?
6. What the main requirement does upon the methods by the

second way impose?

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

MODULE 3. On-line testing
for digital components of S-CES

Lecture 8. Checking by logarithm, inequalities, segments

8.4. The checking by segments

8.2. The logarithm checking

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

8.1. The third way for increasing on-line testing reliability

234

8.3. The checking by inequalities

8.1. The third way for increasing on-line testing reliability

 The third way allows to obtain the most effective solutions.

 The third way is directly aimed at distinction of essential
and inessential errors taking into account a size of the error.

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

8.1.1. Motivation of increasing an on-line testing reliability by
the third way

Reasons:

235

8.1.2. Related Works

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

1. Селлерс Ф. Методы обнаружения ошибок в работе ЭЦВМ. – М.: Мир,
1972. – 310 c.

2. Журавлев Ю. П., Котелюк Л. А., Циклинский Н. И. Надежность и контроль
ЭВМ. – М.: Советское радио, 1978. – 416 c.

236

4. Тоценко В. Г., Киселев И.М. Метод повышения эффективности
диагностирования дискретных устройств с регулярной структурой //
Управляющие системы и машины. – 1977. – № 5. – С. 97 – 102.

3. Моллов В. К. Структурно-функциональные методы оперативного контроля
и диагностики цифровых устройств управляющих систем: Автореф. дис. . .
канд. техн. наук: 05.13.13 / Киевск. политехн. ин-т – Киев, 1989. – 16 с.

5. Байда Н. П., Кузьмин И., Шпилевой В. Микропроцессорные системы
поэлементного диагностирования РЭА. – М.: Радио и связь, 1987. – 256 c.

8.1. The third way for increasing on-line testing reliability

 The main feature of a third way is use of the different
probabilities of detection for essential and inessential errors.

 The third way increases on-line testing reliability estimating a
size of the result and its error.

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

8.1.3. Features of the third way

237

 The methods of a third way difference the essential and
inessential errors as well as well detect an error in high and low
bits of the result.

 The logarithm checking is based on the use of the
Natural Information Redundancy (NIR) of data formats
in form of not quite use of the codeword high positions.

8.2. The logarithm checking

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems238

0 0 0 0 0 1 0 1

1 0 0 0 0 1 0 1

NIR

NIR

1. Fixed-point format

2. Floating-point format

8.2.1. The use of the Natural Information Redundancy

 Check code КА of fixed-point number A is equal to
amount of bits of a significant part of this number.

8.2. The logarithm checking

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems239

0 0 0 0 0 1 0 1

NIR

1 0 0 0 0 1 0 1

NIR

1. Fixed-point format

2. Floating-point format

KA

KA

8.2.2. Definition of the check code of a number or mantissa

KA = Int (log 2 A) for A > 0;
KA = 0 for A = 0.

 Check code КА of mantissa A is equal to amount of
bits of a check part of this mantissa.

KA = Int (log 2 (A-1) for A > 0.

 The check code is calculated using the truth form
of a number or a mantissa by two steps:

8.2. The logarithm checking

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems240

8.2.3. Calculation of the check code of a number or a mantissa

1. Filling the most significant (check) part by the units;

2. Calculation of units amount.

B{2} 1 A{2}

8.2. The logarithm checking

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems241

8.2.3.1. Filling the most significant (check) part by the units

0 0 0 0 1 1 1 1 1 1 1 1 1

1
5

1
4

1

0
3

0
2

1
1

0
10

1
9

1
8

0
7

1
6

0
15

0
14

0
13

0
12

1
11

A

B

1
1

1

A{15}
A{14}
A{13}
A{12}
A{11}
A{10}
A{9}
A{8}
A{7}
A{6}
A{5}
A{4}
A{3}
A{1}

1
1

1
1

1
1

1
1

1
1

B{15}
B{14}
B{13}
B{12}
B{11}
B{10}
B{9}
B{8}
B{7}
B{6}
B{5}
B{4}
B{3}
B{1}

1

8.2. The logarithm checking

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems242

8.2.3.1. Filling the most significant (check) part by the units

 A{4}

 A{5}

 A{1}

 A{3}

 A{7}

 A{6} B{6}

B{1}
B{2}

B{4}

B{5}

 A{2}

B{7}

B{10}

B{8}

B{9}

 A{8}

 A{9}
 A{10}

 A{11}

B{13}

B{12}

B{11}

 A{12}

 A{13}
 A{14} B{14}

 A{15} B{15}

1

1

1

B{3}1

1

1

1

1

1

1

1

1

1
1

1
1

1

 A{3}

1

 A{5}

1 A{4}

B{2}
B{3}
B{4}

 A{2}

B{5}

1
1

1 B{7}

B{6}
Y{8}

1

 A{6}
 A{8}
 A{9}

 A{9}

1
1 B{11}

B{10}
B{9}

1

 A{10}
 A{11}

 A{12} B{12}
 A{13}

1

B{13}

B{14}

1 B{15}

 A{14}

 A{15}

 A{1} B{1}

A circuit with a serial-group calculation
of the code B

A circuit with a serial calculation of the bits in
groups of the code B

8.2. The logarithm checking

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems243

8.2.3.2. Calculation of units amount

B{1÷15}

1 1 1 1 11 1 1 1 10 0 0 0 1

5 4 3 2 110 9 8 7 615 14 13 12 1111

1

2

1

1

0

7

0

6

0

5

0

4

1

3

1 11

2 13

1

1

 1
23

18

3

21

1

1 20

11

0

0

1

1

22

0

3

0

2

The check codes of operands allow predict the check code of
arithmetic operation result with difference α ≤ 1

 ∙ For addition S = A + B, A ≥ 0 and B ≥ 0: KS = KS* + α, where
KS* = max(KA, KB); α = 0 or α = 1.

 ∙ For multiplication P = A⋅B, A > 0 and B > 0: KP = KP* – α,
where KP* = KA + KB; α = 0 or α = 1.

 ∙ For division Q = A / B, A > 0 and B > 0: KQ = KQ* + α,
where KQ* = KA – KB; α = 0 or α = 1.

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems244

8.2. The logarithm checking

8.2.4. The check equations for the arithmetic operations

 ∙ For addition S = A + B, A ≥ 0 and B ≥ 0: KS = KS* + α, where
KS* = max(KA, KB); α = 0 or α = 1.

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems245

8.2. The logarithm checking

8.2.4. The check equations for the arithmetic operations

0 0 0 0 0 1 0 1

KA

0 0 0 1 0 1 0 1

KB

0 0 0 1 1 0 1 0

KS

0 0 0 0 0 1 0 1

KA

0 0 0 1 1 1 0 1

KB

0 0 1 0 0 0 1 0

KS

α = 0 α = 1

 ∙ For addition S = A + B: KS = KS* + α,
where KS* = max (KAR, KBR); α = 0 or α = 1.

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems246

8.2. The logarithm checking

8.2.4. The check equations for the arithmetic operations

Sign
S

Sign
B

Sign
A

Addition KAR KBR KSRinitial transformed
0 0 0 A + B = S A + B = S KA KB KS
0 0 1 – | A | + B = S | A | + S = B KA KS KB
0 1 0 A – | B | = S | B | + S = A KB KS KA
1 0 1 – | A | + B = – | S | B + | S| = | A | KB KS KA
1 1 0 A – | B | = – | S | A + | S | = | B | KA KS KB
1 1 1 – | A | – | B | = – | S | | A | + | B | = | S | KA KB KS

KAR = KA ∧ ¬U1 ∨ KB ∧ U1; KBR = KB ∧ ¬ U2 ∨ KS ∧ U2;
KSR = KA ∧ U1 ∨ KS ∧ ¬ U2 ∨ KB ∧ U3,

where U1 = Sign A ⊕ Sign S, U2 = Sign A ⊕ Sign B, U3 = Sign A ⊕ Sign S.

 ∙ For multiplication: P = A B, A > 0 and B > 0, KP = KP* – α,
where KP* = KA + KB ; α = 0 or α = 1.

 2 KA – 1 ≤ A < 2 KA

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems247

8.2. The logarithm checking

8.2.4. The check equations for the arithmetic operations

 2 KP – 1 ≤ P < 2 KP

 For KA = 3: 1002 ≤ A < 10002

 KP – 1 = (KA – 1) + (KB – 1)

 KP = KA + KB – 1
 KP = KA + KB

 2 KB – 1 ≤ B < 2 KB

●∙ For multiplication: P = A ⋅ B, A ≥ 0 and B ≥ 0,

●KP = KP* – α ;

●KP* = KA ⋅ ZB + KB ⋅ ZA;

●where α = 0 or α = 1;
●ZA – tag of zero for A;
●ZA = 0 if A = 0 and ZA = 1 if A ≠ 0;
●ZB – tag of zero for B;
●ZB = 0 if B = 0 and ZB = 1 if B ≠ 0.

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems248

8.2. The logarithm checking

8.2.4. The check equations for the arithmetic operations

 2 KA – 1 ≤ A < 2 KA

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems249

8.2. The logarithm checking

8.2.4. The check equations for the arithmetic operations

 2 KQ – 1 ≤ Q < 2 KQ

KQ – 1 = (KA – 1) – KB

 KQ = KA – KB

 KQ = KA – (KB – 1)

 2 KB – 1 ≤ B < 2 KB

 ∙ For division: Q = A / B, A > 0 and B > 0, KQ = KQ* + α,
where KQ* = KA – KB; α = 0 or α = 1.

 KQ = KA – KB + 1

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems250

8.2. The logarithm checking

8.2.4. The check equations for the arithmetic operations

●∙ For division: Q = A / B, A ≥ 0 and B > 0,

●KQ = KQ* + α ;

● KQ* = KA – KB;

●where α = 0 or α = 1;
● ZA – tag of zero for A;

●ZA = 0 if A = 0 and ZA = 1 if A ≠ 0;

1, 2, 3 – formers of check codes
V – unit of check codes rename
4 – checking block
 4.1, 4.2 – gates AND
 4.3 – adder
5 – comparator

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems251

8.2. The logarithm checking

8.2.5. Circuits of the check

1A

2B

3

Sign A

V

S

Sign B
Sign S

KA

KB

KS

4KAR

KBR

KSR

5
KSR* KS

 For adder

1A

2B

3P

KA

KB

KP

 4

5KP*
ZA

ZB

4.1

4.2
4.3

KP

 For multiplier

1A

2B

3Q

KA

KB

KQ

4

5KQ*
ZA

4.1
4.3

KQ

 For divider

1. The error 0 → 1 in the bit γ

 KR* . . . 1γ
0 0 0 0 1 0 10

2. The error 1 → 0 in the bit γ

 1. . .KR
0→1

252

8.2.6. Error detection

8.2. The logarithm checking

 KR . . . 1γ
0 0 0 0 1 0 11

 1. . . KR*
1→0

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

1. The error 0 → 1 in the bit γ is detected with PD = 2 – n + j – 1

2. The error 1 → 0 in the bit γ is detected with PD = 2 – n + j – 2

γ
0 0 x x x x x00→1

253

8.2.6. Error detection

8.2. The logarithm checking

γ
0 0 0 x x x x11→0

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

 The error detection probability is proportional to value 2 – j
of an error in the bit γ.

n – j + 2

n – j + 1

 A method of the checking by inequalities
includes:

 2. Comparison of the result with its high
and low boards

8.3. Checking by inequalities

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems254

 1. Definition and calculation of high and
low boards of the result

0 0,5 0,75 1

1

0,5

0,25

9/16

Y

X

YH

YL

Y = x2

0.5 ≤ x < 1

YH = 3/2 x - 1/2

YL = 3/2 x - 9/16

8.3. Checking by inequalities

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems255

8.3.1. Definition of the result boards for a mantissa squarer

 1. The low board YL is
tangent to the high bound
passing the point (0.75,
9/16) of the result graph.

 1. The high board YH
connects boundary points
(0.5, 0.25) and (1, 1) of the
result graph.

ΔYH = YH - Y

Y

0 0,5 0,75 1

Xa

1

0,5

0,25

9/16

0 0,5 0,75 1

X

YH

YL

Y = x2
Y

0 0,5 0,75 1

X

Y

1/16

1/16
b

x1
x2

x1
x2

ΔYH

а = 3/2 x - 1/2 - x2,
Positive error а = ΔYH

PN-D H = 2 (x1 - x2),

PD H =√(1-16a), a < 1/16.

ΔYL = Y - YL

b = x2 - 3/2 x + 9/16 ,

Negative error b = ΔYL

PN-D L = 1 + 2 (x1 - x2),

PD L = 1- 4√ b, b < 1/16

ΔYL

8.3. Checking by inequalities

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems256

8.3.2. Error detection estimation

8.3. Checking by inequalities

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems257

8.3.2. Error detection estimation

a⋅2 – 6

b⋅2 – 6

PD L

PD H

The error detection probability is increased with growing an error.

 The method of checking by segments decomposes the result
into segments of bits and provides for them the required
probabilities of error detection

P1 ≥ … ≥ Pi ≥ … ≥ PZ,
where i = 1 ÷ Z;

Z – an amount of segments.

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems258

8.4. The checking by segments

 The method is based on use of the natural time redundancy in
form of the Passive Stock of Checking Time (PSCT).

 The PSCT allows detecting an error during some time T that
is called interval of the PSCT.

Examples of the PSCT components

1. Time during which the
result remains reliable
despite of action of fault in
circuit

2. Time during which the
unreliable result is not
dangerous

1 2 3 4 5 6 7 8 9 10 1211 13 14 15 16

Exact bits Non-exact bits

TPSCT = 2 γ Errorγ = 3

1CC3

Rg
1CC2

Rg
1CC1

Rg
1CC0

Rg

γ = 1
γ = 2

γ = 3
TPSCT = γ

Probability of error detection in a segment of the result
PD* = ln 2 / TPSCT

259 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

8.4. The checking by segments

8.4.1. Natural Time Redundancy

Estimation of reliability in checking the result

D = РDE + РSNwithout consideration of PSCT
with consideration of PSCT

РD*

 РE РN

РS

РDN

2

РDE

 1

РSN 4

РD

РSE3

 РE РN

РDN

2 РDE 1

РSN 4 РSE3 РS

РD

DPSCT = РDE* + РSN

*

260 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

8.4. The checking by segments

8.4.2. Reliability of the checking by segments

1. Division of a result on
segments of the bits

2. Serial checking the
segments

3. Setting the frequency
distribution of a checking
the result segments.

Computing
circuit (CC)

Operands Result

Segment selection
block by inputs of

the CC

Segment selection
block by outputs

of the CC

Segment check
block

Control block for selection
of the segments

E

Error detection scheme

The segment-serial checking
allows to raise check

frequency of the high true bits
of the result and probability of

essential error detection

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems261

8.4. The checking by segments

8.4.3. Segment-serial checking method

Barrel
Shifter

D0
D1

D7

E
S2
S1
S0

D{3}
D{2}
D{1}

C{3}
C{2}
C{1}

A{1}
A{2}

A{7}
…

…

D0

D1

D7
…

S2
S1
S0

E{2}

 S
ASHIFT{1}
ASHIFT{2}

ASHIFT{7}

 S

E{1}
D2

D2

…

PD = 1 / n

hN = nE / nN

PDE = hD hN +1
PD hD (hN +1)

PDN = hD hN +1
PD (hN +1)

hD = PDE / PDN , hD >1

hD hN KT n
4 1 0.2 16

PDE

0.1
PDE

0.025
PSKIP

0.18
PREJECT

0,02

PD

0.6
DC

0.2

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

8.4. The checking by segments

8.4.4. Segment-serial checking of the Barrel Shifter

262

 The block BO connects inputs of the circuit elements, which calculate the
selected segments, to blocks BC.
 The block BR connects outputs of the circuit elements.
 The block BS sets sequence of a choice of segments groups.
 The blocks BC check the selected segments and calculate check codes, which
specify correctness of result in these segments.
 The block BP compresses the check codes up to code E of result correctness.

BO – operand block BR
– result block
BS – control block
BC – check blocks
BP – pack block

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems263

8.4. The checking by segments

8.4.5. Error Detection Circuit with some check blocks

 An amount of the BC
NT =] PSUM / PD [, where

PSUM = ∑ Pi

Z

i=1

Array P of bits Pi j
in binary codes of

probabilities Pi

Sequences of segment checks

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems264

Segments Probabilities Bits j =1..m, m=4
i=1..Z, Z=5 Pi 4 3 2 1

1 0.11012 = 13/16 1 1 0 1
2 0.10112 = 11/16 1 0 1 1
3 0.10012 = 9/16 1 0 0 1
4 0.01102 = 6/16 0 1 1 0
5 0.01002 = 4/16 0 1 0 0

Functions
Clock cycles of interval T

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
M40 s1 s1 s1 s1 s1 s1 s1 s1 s2 s2 s2 s2 s2 s2 s2 s2

M30 s3 s3 s3 s3 s3 s3 s3 s3 s1 s1 s1 s1 s4 s4 s4 s4

M1 s5 s5 s5 s5 s2 s2 s2 0 0 0 s4 s4 s1 s3 0 0

8.4. The checking by segments

8.4.6. Choice of check points

Reliability of the checking the result in a segment i:
Di = Pi PE + (1 – Pi) (1 – PE).

The size of increase in reliability for segment i:
δDi = (PD – Pi) (1 – PE), PD >> Pi

The size of increase in reliability:

δD = (δEi δDi),
where δEi = Ei / ECC;

Ei is complexity of segment calculation;
ECC is complexity of computing circuit.

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems265

8.4. The checking by segments

8.4.7. Increase in reliability

 For example, for PD = 0.5, Pi = 0.1, PE = 0.1, the size of
increase in reliability δDi = 0,36.

Reading List

266 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

1. Дрозд А. В. Использование логарифмического контроля для обнаружения
отказов арифметических устройств // Вісн. НТУУ «КПІ». Інф., упр. та
обчисл. техніка. – К., 1998. – Вип. 31. – С. 224 – 231.

2. Дрозд А. В., Зуда М., Лобачев М. В. Использование логарифмических
оценок в функциональном диагностировании вычислительных устройств
с плавающей точкой // Тр. Одес. политехн. ун-та. – Одесса, 2001. – Вып. 1
(13). – С. 93 – 96.

3. Drozd A. , Al-Azzeh R., Drozd J., Lobachev M. The logarithmic checking
method for on-line testing of computing circuits for processing of the
approximated data. – Proc. of Euromicro Symposium on Digital System
Design, Rennes, France, pp. 416 – 423, 2004.

4. Дрозд А. В. Контроль вычислительных устройств по неравенствам //
Ученые записки Симферопольского гос. ун-та. – Винница-Симферополь,
1998. – Спецвып. – С. 237 – 240.

5. Drozd A., Lobachev M., Reza Kolahi. “Effectiveness of on-line testing
methods in approximate data processing,” in Proc. IEEE East-West Design &
Test Conference, Odessa, Ukraine, 15 –19 Sept., pp. 62 – 65, 2005.

 Conclusion

267

1. The third way is directly aimed at distinction of essential and
inessential errors tacking into account a size of the error.

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

3. The logarithm checking is based on the use of the Natural
Information Redundancy of data formats in form of not quite
use of the codeword high positions.

4. The checking by inequalities estimates a result as reliable in
case this result is allocated within its high and low bounds.

5. The checking by segments is based on use of the natural time
redundancy in form of the Passive Stock of Checking Time

2. The logarithm checking, the checking by inequalities and the
checking by segments increase a reliability of on-line testing
methods using the third way.

6. The methods developed by the third way show high
effectiveness using the natural time and information
redundancy.

Questions and tasks

268

1. What feature of the third way for increasing a reliability of
the on-line testing methods do you know?

2. What the methods are by the third way realized?
3. Describe the use of the natural information redundancy of

the data format in the logarithm checking.
4. What tag does the reliable result in the checking by

inequalities determine?
5. Describe the use of the natural time redundancy in the

checking by segments.
6. What does the high effectiveness of the third way methods

ensure?

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

MODULE 4.
Checkability of S-CES digital components

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems269

Topic of lecture Lectures Lab
Classes

Private
Study

9

 Checkability of S-CES
digital components:

a problem, assessment,
solutions

2 4 2

Total: 2 4 2

MODULE 4. Checkability of S-CES digital components

Lecture 9. Checkability of S-CES digital components:
a problem, assessment, solutions

9.4. The ways to increase a checkability of S-CES digital
components

9.2. The model of a digital component in view of the on-line
testing for S-CES

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

9.1. Introduction into checkability

270

9.3. The method for estimating a checkability of S-CES digital
components

9.1. Introduction into checkability

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

9.1.1. Motivation of the checkability consideration for digital
components of the S-CES

Reasons:

271

2. A Fault-Tolerant Technology is traditional solution of a
safety problem for the digital components.

3. The Fault-Tolerant Technology can not solve the problem
of digital component safety in case of S-CES.

1. High requirements in safety impose upon the digital
components of S-CES.

9.1.2. Related Works

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

1. Yastrebenetsky M.A. (edit.). NPP I&Cs: Problems of Safety / M.A.
Yastrebenetsky. – Ukraine, Кyiv: Теchnika, 2004.

2. Локазюк В.Н., Остроумов С.Б., Поморова О.В. и др. Отказоустойчивые
встроенные системы на программируемой логике. Лекционный материал /
Под ред. Харченко В.С. – Министерство образования и науки Украины.
Национальный аэрокосмический университет «ХАИ», 2008. – 264 с.

272

5. Беннетс Р.Дж. Проектирование тестопригодных логических схем. М.:
Радио и связь, 1995. – 180 с.

4. Щербаков Н. С. Достоверность работы цифровых устройств. – М.:
Машиностроение, 1989. – 224 c.

3. Kharchenko V.S., Sklyar V.V. FPGA-based NPP Instrumentation and Control
Systems: Development and Safety Assessment / Bakhmach E.S., Herasimenko
A.D., Golovyr V.A. a.o.. – Research and Production Corporation “Radiy”,
National Aerospace University “KhAI”, State Scientific Technical Center on
Nuclear and Radiation Safety, 2008. – 188 p.

1. Two main operational modes, i.e. normal and
emergency ones of S-CES and heir components.

For most of operating time, the S-CES run in the normal mode.
The emergency one, i.e. for which the S-CES are designed, is a rare
event as a rule and at best may never occur.

9.1.3 Peculiarities of the S-CES

First peculiarity generates a problem of
maintaining the functionality of the
components in the emergency mode by taking
advantage of the normal mode provisions.

2. Some certain degree of inertia of the controlled objects
in comparison with that of high-rate digital components.

Second peculiarity
provides a resource of
time which may be used
to resolve the problem.

273 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

Both in the normal and emergency modes, the S-CES
components operate with different sets of input data.

On such a limited set of the input words the digital circuit of
the component takes constant values in many its points.

9.1.4. A problem of maintaining the functionality
of the S-CES components in the emergency mode

This fact generates the conditions for latent accumulation of
constant faults which may appear at the input words in the
emergency mode and counteract the component to perform its
functions.

In the normal mode, the input data vary within small ranges.

274 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

It is correct for the digital components operating in a single
i.e. only normal mode.

9.1.5. Purpose of on-line testing for the S-CES
components in the emergency mode

For S-CES this purpose should be expanded adding the
checking of the availability of the digital component to calculate
reliable results in the emergency mode.

On-line testing is aimed at the checking the reliability of the
results calculated by a digital component during basic
operations performance on operating sequences of input words.

275 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

M(SN, SC, S),
where: SN is a component description characterizing its functioning

in the normal mode – a limited set IN of input words in the
normal mode of operation;
SC is a component description characterizing its functioning
in the emergency mode – a limited set IC of input words
used for identifying the emergency mode;
S is a component description common both for normal and
emergency modes (description D of the digital circuit of the
tested component and the set F of its typical faults).

9.2. The model of a digital component in view
of the on-line testing for S-CES

9.2.1 The initial model

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems276

 Description D of the digital circuit should be illustrated by the
specific elements.

 For instance, the description of the digital circuit on FPGA
should contain the list of points of two types:
• internal points, i.e. bits of memory LUT;
• external points which include all other points like bits of LUT

address or its output.

External points can be input and output (check points).
Besides, the description should contain the functions which

define the dependences of ones external points upon others (from
input points up to output points).

9.2. The model of a digital component in view
of the on-line testing for S-CES

9.2.1 The initial model

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems277

 9.2.2. Controllable points of the digital component

1. An internal point of the digital circuit is a controllable one
if the limited set of input words contains at least one word, on
which this point is chosen in its LUT. Otherwise, the internal
point is a non-controllable one.

2. An external point of the digital circuit is a partially
controllable one (0 or 1-controllable point) if this point takes
only a value ‘0’ or only a value ‘1’ on the limited set of input
words. Otherwise, the external point is a controllable one.

9.2. The model of a digital component in view
of the on-line testing for S-CES

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems278

9.2.3. Observable points of the digital component:

1. A point of the digital circuit is a partially observable one (0
or 1- observable point) if a path from this point up to a check
point is activated on the limited set of input words only for one
value ‘0’ or ‘1’.

2. In case the path is activated for both values ‘0’ and ‘1’ the
point is observable one.

3. Otherwise the point is a non-observable one.

9.2. The model of a digital component in view
of the on-line testing for S-CES

The path is activated if a change of value of the given point is
transferred to a check point.

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems279

9.2.4. Properties of the controllable and observable points

9.2. The model of a digital component in view
of the on-line testing for S-CES

Statement 1. The observable internal point is also a
controllable.

Statement 2. For the assigned input word the result is
determined only by the values of points of the circuit, which
are observable ones.

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems280

9.2.5. Controllability and observability of the points

• Controllability C can accept 3 values: 0, 1, 2 or 1, 2, 3 for an
internal and external point, accordingly.
 Values 0, 1, 2 and 3 distinguish cases of non-controlled,
1-controlled, 0-controlled and controlled point, accordingly.

• Observability O of an external point can accept 4 values: 0,
1, 2 and 3 in cases of non-observable, 1-observable,
0-observable and observable point, accordingly.
 Observability of an internal point can accept only values 0,
1 and 2.

9.2. The model of a digital component in view
of the on-line testing for S-CES

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems281

9.2. The model of a digital component in view
of the on-line testing for S-CES

M(CN, ON, CC, OC),
where: CN and ON are the controllability C and observability O

for every points of the S-CES digital component in a
normal mode;

CC and OC are the controllability C and observability O for
every points of the S-CES digital component in an
emergency mode.

9.2.6 The resulting model

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems282

9.3.1. The dangerous points of the S-CES digital components

• possibility of the latent fault occurrence in the
normal mode;

• possibility of this fault appearance in the
emergency mode.

9.3. The method for estimating a checkability
of S-CES digital components

 A checkability of the digital component is in break in
the considered point under coincidence of two events:

 Such point is dangerous for the S-CES digital component.

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems283

 9.3.2. Possibilities of the latent fault accumulation in a
normal mode

• The point is a non-controllable one and a value in it
coincides with a value defined by the stuck-at fault

• The point is a non-observable one.

9.3. The method for estimating a checkability
of S-CES digital components

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems284

• The point is an observable and non-controllable and
its value as a value of the non-controllable point is
distinct from the value defined by the stuck-at fault;

• The point is a controllable and an observable one.

9.3. The method for estimating a checkability
of S-CES digital components

 9.3.3. Possibilities of activity of the accumulated fault in
the emergency mode

285 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

 The external point is dangerous to an emergency mode
under the following condition:

 ((CN + CE = 3) or (ON + CE = 3) or (ON = 0)) and
(OE > 0).

The internal point is dangerous to an emergency mode
under the following condition:

 (ON = 0)) and (OE > 0).

9.3. The method for estimating a checkability
of S-CES digital components

 9.3.4. Conditions of dangerous points detection

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems286

9.3.5. Checkability of a digital component

 Checkability of a digital component can be appreciated by
the following formula:

K = 1 – NE / NT,

where NE – amount of dangerous points;
 NT – total of the circuit points.

9.3. The method for estimating a checkability
of S-CES digital components

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems287

 9.4.1. Research of the digital component checkability

9.4. The ways to increase a checkability of S-CES digital
components

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems288

Iterative array multiplier of
8-bits mantissas

The base value of the factors
in a normal mode is 128.

The threshold is 245.

The range of the factors
in a normal mode is changed

from 10 by step 10 up to 80.

An amount of the dangerous
points reduces from 97 down to 0

The multiplier checkability
increases from 65% up to 100%

 9.4.1. Research of the digital component checkability

9.4. The ways to increase a checkability of S-CES digital
components

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems289

Iterative array multiplier of
8-bits mantissas

In a normal mode
the base value is 128.

The range of factors is 10.

The threshold is reduced
from 245 by step -10 down to 175.

An amount of the dangerous
points reduces

from 97 down to 48.

The multiplier checkability
increases from 65.3% up to 82.8%

 9.4.1. Research of the digital component checkability

9.4. The ways to increase a checkability of S-CES digital
components

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems290

Serial-parallel comparator
of 16-bits codewords

1 bit 16 clock unit comparator,
2 bit 8 clock unit comparator,

4 bit 4 clock unit comparator, 8
bit 2 clock unit comparator, 16

bit 1 clock unit comparator,

The threshold is 245.
Range of input word A in an

normal mode is 5

The comparator checkability
increases from 50% up to 100%

Particularities of the S-CES digital components:

1. High level of the input data consistency in a normal mode.

9.4.2. Reasons of low checkability of the S-CES digital components

2. High value of ratio of the threshold per noise.

9.4. The ways to increase a checkability of S-CES digital
components

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems291

3. High level of the circuit parallelism.

There are results of use of the high technology

Particularities of the S-CES digital components:

9.4.2. Reasons of low checkability of the S-CES digital components

1. The limited change of input data in the normal mode.

3. Processing of input data in a parallel code using the
simultaneous circuits.

Aftermath:

9.4. The ways to increase a checkability of S-CES digital
components

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems292

1. High level of the input data consistency in a normal mode.

2. High value of ratio of the threshold per noise.

3. High level of the circuit parallelism.

2. The limited persent of input data in the normal mode.

1. Change of input data alternating a normal mode
with a simulated one

2. Reducing the threshold accuracy

9.4. The ways to increase a checkability of S-CES digital
components

 9.4.3. Conditions to overcome a low checkability

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems293

3. Reuse of the circuit points during data
processing in a serial code.

1. Simulated mode is aimed at testing of the digital
components on input words of an emergency mode.

3. Reduction of these risks demands to check application of
the simulated mode using the on-line testing methods and
means.

2. Transition of the digital component in a simulated mode
is associated with risks of its total exclusion from operation in
a normal or simulated mode and creation of emergency mode.

9.4. The ways to increase a checkability of S-CES digital
components

 9.4.3.1. Change of input data alternating a normal mode with a
simulated one

294 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

 9.4.3.2. Reducing the threshold accuracy

1. The threshold accuracy can be as high as to difference a
normal and an emergency modes in both directions:

• from a normal mode to an emergency one;
• from an emergency mode to a normal one.

9.4. The ways to increase a checkability of S-CES digital
components

295 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

 9.4.3.3. Reuse of the circuit points during data processing in
a serial code

1. Frequency of data processing can be reduced taking into
account some certain degree of inertia of the controlled
objects, sensors and analog-to-digital converters in
comparison with that of high-rate digital components.

• possibilities to parallel the serial code processing, without
essential lowering of the S-CES component checkability.

• high frequency of the bits processing in a serial code;

2. Frequency of serial data processing can be increased using

9.4. The ways to increase a checkability of S-CES digital
components

296 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

9.4.4.1. Influence of the serial code processing on
controlability and observability of the circuit points.

1. Reuse of circuit points can change the values of them.
This increases controlability of the circuit points.

2. The serial code processing shortens ways from circuit
points up to check points. This can increase observability of
the circuit points.

9.4.4. Processing input data in a serial code using the clocked
circuits

9.4. The ways to increase a checkability of S-CES digital
components

297 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

9.4.4.2.Influence of the serial code processing on a
checkability of the S-CES components.

1. Increase of controlability and observability in a normal
mode leads to reducing an amount of the dangerous points.

2. Increase of controlability and observability in an
emergency mode results in increase of an amount of the
dangerous points.

3. A checkability of the S-CES components can be increased
or reduced by the serial code processing.

298 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

9.4. The ways to increase a checkability of S-CES digital
components

9.4.4.3. Dominant role of a checkability of the points in a
normal mode.

1. In case the circuit point is checkable (controlable and
observable) in a normal mode it is not dangerous one
irrespectively of an emergency mode.

2. That’s why increase of a checkability of the circuit points
in both normal and emergency modes should increase a
checkability of the S-CES components.

299 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

9.4. The ways to increase a checkability of S-CES digital
components

Reading List

300 Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

1. Drozd A. On-line testing of safety-critical I&C systems in normal and
emergency modes: Problems and solutions / A. Drozd, V. Kharchenko, S.
Antoshchuk, M. Drozd // First International Workshop “Critical Infrastructure
Safety and Security“ (CrISS-DESSERT’11). – Kirovograd, Ukraine, 11 – 13
May, P. 139 – 147, 2011.

2. Drozd A. Checkability of safety-critical I&Cc system components in normal
and emergency modes / A.Drozd, V.Kharchenko, S.Antoshchuk, M.Drozd //
Journal of Information, Control and Management Systems. – 2011. – Vol. 1,
No.1.

3. Drozd A. Checkability of the digital components in safety-critical systems:
problems and solutions / A. Drozd, V. Kharchenko, S. Antoshchuk, J. Sulima,
M. Drozd // Proc. IEEE East-West Design & Test Symposium. – Sevastopol,
Ukraine. – 9-12 Sept., 2011. – P. 411 – 416.

 Conclusion

301

1. The fault tolerant technology does not solve a problem of
safety for the S-CES.

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

2. The reason of this follows from peculiarities of the S-CES like
two-modes systems and consists of low checkability of the
digital components.

3. This conclusion is confirmed by using the method for
checkability estimation. The method is based on analysis of
controllability and observabiity of the digital component
points in both an normal and an emergency modes.

4. The reasons of the low digital component checkability follow
from use of the high technologies, such as high level of the
input data consistency in a normal mode, high value of ratio
of the threshold per noise, high level of the circuit parallelism.

5. The ways to increase checkability are based on rational use of
the high technologies.

Questions and tasks

302

1. Why the fault tolerant technology does not allow to solve a
problem of safety for the S-CES?

2. What is the reason of low checkability of the S-CES digital
components?

3. Describe the main issue of the method for the checkability
estimation.

4. What ways to increase the checkability of the S-CES digital
components do you know?

Master Course. Co-Design and Testing of Safety-Critical Embedded Systems

