ЛЕКЦИЯ 4

Методы количественного химического анализа

В основе любого химического метода количественного анализа, лежит проведение химической реакции

(весовой анализ)

Масса продукта реакции

- высокая точность определений (относительная погрешность анализа составляет менее 0,1%.);
- широкий диапазон определяемых концентраций;
- отсутствие необходимости градуировки по стандартным образцам
- трудоемкость аналитических операций;
- длительность анализа (от нескольких часов до нескольких суток)

Методы количественного химического анализа

51, 52, 23 — стехиометрические коэффициенты

Объем выделившегося газа

Газоволюмометрический

(газовый анализ)

- сравнительная простота используемого оборудования;
- достаточно высокая экспрессность (длительность анализа не превышает 1 часа)
- достаточно большая относительная погрещность (до 5%);
- сравнительно большой порог чувствительности (10⁻³ моль/д или 0.1%);
- сильное влияние условий эксперимента (температура, давление)

Титриметрический (объемный анализ)

Объем реагента (титранта), вступившего в реакцию

- достаточно высокая точность определений (относительная погрешность анализа составляет 0.1 ÷ 1%);
- быстрота определения (высокая экспрессность);
- простота используемого оборудования
- сравнительно большой порог чувствительности (10⁻³ моль/д, или 0,1%);
- необходимость проведения стандартизации титранта (установления его точной концентрации)

Аналитический сигнал

Достоинства

Недостатки

Схема проведения гравиметрического анализа

Титриметрические методы

Основы титриметрических методов

 $z_1X + z_2R \rightarrow z_3P$

Для использования в титриметрическом анализе, химические реакции должны протекать:

- 1) стехиометрично, т.е. в соответствии с уравнением химической реакции;
- 2) быстро;
- 3) количественно, т.е. химическое равновесие должно быть сдвинуто в сторону образования продуктов реакции (выход продукта реакции должен составлять не менее 99,9 %);
- 4) точка эквивалентности должна фиксироваться надежным, простым и быстрым способом (наиболее часто с помощью соответствующих индикаторов).

Типы химических реакций	Методы титриметрии
кислотно-основные (нейтрализации)	кислотно-основного титрования
окислительно-восстановительные	окислительно-восстановительного титрования
комплексообразования	комплексиметрического титрования
осаждения	осадительного титрования

Титриметрический метод анализа (титриметрия) основан на измерении объема титранта, пошедшего на реакцию с определяемым веществом.

В качестве *титрантов* обычно используют растворы реагентов с точно известной концентрацией, которые называют *стандартными растворами*.

Процесс постепенного прибавления титранта из бюретки (по каплям) к раствору определяемого вещества называется *титрованием*.

Титрование проводят до достижения *точки* эквивалентности (ТЭ), то есть такой точки, в которой количество добавленного титранта химически эквивалентно количеству определяемого вещества, т.е. выполняется закон эквивалентов или эквивалентных соотношений.

Закон эквивалентов или эквивалентных соотношений

$$n(\frac{1}{z_2}X) = n(\frac{1}{z_1}R)$$

Для фиксирования ТЭ применяют индикаторы.

Индикаторы — это вещества, которые резко реагируют на изменение концентрации определяемого компонента или титранта вблизи точки эквивалентности. При этом они переходят в другую равновесную форму, изменяя окраску, люминесценцию или образуя осадок.

Точка, в которой наблюдается резкое изменение окраски индикатора и заканчивается процесс титрования, называется *конечной точкой титрования (КТТ).*

Обычно индикаторы по своей природе идентичны либо определяемому веществу, либо титранту. Действие индикатора основано на смещении равновесия:

$$Ind_1 \longleftrightarrow x + Ind_2$$
, окраска 1 окраска 2

где х – продукт превращения индикатора, отражающий специфику реакции, в которой он участвует (табл. 4.1);

 Ind_1 , Ind_2 - две сопряженные формы индикатора.

Таблица 4.1 - Типы индикаторов

Типы реакций, лежащие в основе титрования	Тип индикатора (примеры)	X
Кислотно-основные	Кислотно-основные индикаторы (метиловый оранжевый, фенолфталеин)	±
Окислительно- восстановительные	Редокс-индикаторы (дифениламин, ферроин)	
Комплексообразования (комплексонометрии)	Металл-индикаторы (эриохром черный Т, мурексид)	M ⁺

Свойства индикаторов

$$K_{Ind}$$
 \leftrightarrow $X+Ind_2$ окраска 2 $K_{Ind}=rac{\left[x
ight]\cdot\left[Ind_2
ight]}{\left[Ind_1
ight]}$

прологарифмируем и заменим (–lg) на p: $px = pK_{Ind} + p\frac{[Ind_1]}{[Ind_2]}$

т.к. $[Ind_1]/[Ind_2]$ =10:1 или 1:10, то каждый индикатор имеет определенный интервал перехода окраски (Δpx) с границами $\Delta px = pK_{Ind} \pm 1$.

Индикатор характеризуют также величиной **рТ – показателем титрования индикатора.**

Показатель титрования - это та величина pH, потенциала, либо pM, при достижении которых происходит резкое изменение окраски индикатора и титрование заканчивается (достигается конечная точка титрования).

Основные расчетные формулы титриметрии

Расчеты титриметрических определений основаны на использовании закона эквивалентов или эквивалентных соотношений:

$$n(\frac{1}{z_2}X) = n(\frac{1}{z_1}R)$$

Данное уравнение можно выразить через молярную концентрацию эквивалента определяемого вещества и титранта

$$C(\frac{1}{z_2}X) \cdot V(X) = C(\frac{1}{z_1}R) \cdot V(R)$$

Данное выражение называют основным уравнением титриметрии.

Закон эквивалентов можно выразить и через массу определяемого вещества:

$$\frac{m(X)}{M(\frac{1}{z_2}X)} = C(\frac{1}{z_1}R) \cdot V(R) \cdot 10^{-3}$$

Решив последнее выражение относительно *m(X)*, получим **вторую** основную расчетную формулу титриметрии:

$$m(X) = C(\frac{1}{z_1}R) \cdot V(R) \cdot M(\frac{1}{z_2}X) \cdot 10^{-3}$$

которую используют для вычисления массы определяемого вещества (в граммах) в растворе, взятом для анализа (метод отдельных навесок).

В том случае, если используется **метод пипетирования (метод аликвотных частей)** и титруется только часть пробы (аликвота), в расчетную формулу необходимо ввести коэффициент, учитывающий данный эффект:

$$m(X) = C(\frac{1}{z_1}R) \cdot V(R) \cdot M(\frac{1}{z_2}X) \cdot \frac{V_{M.K.}}{V_{an.}} 10^{-3}$$

	Способы титрования (Тт)	
Прямое титрование	Титрование по остатку (обратное титрование)	Титрование по заместителю
Тт основано на измерении объема титранта (R), затраченного на взаимодействие с определяемым веществом (X) по реакции	Тт проводят, когда прямое титрование невозможно. В этом случае выбирают вспомогательный реагент (вещество В), который способен взаимодействовать и с определяемым веществом X, и с титрантом R.	Тт применяют, когда не подходящей реакции или индикатор для прямого титрования. І определяемому веществу добавляют вспомогательный реаген В, с которым определяемое веществ образует эквивалентное количеств нового соединения, называемог заместителем У, образовавшийс заместитель оттитровываю раствором титранта
$X + R \rightarrow P$	1 стадия. $X + B(uзбыток) \to P + B(oстаток),$ $B(oстаток) + R \to P$, измеряют $V_1(R)$. 2 стадия. $B(uзбыток) + R \to P$, измеряют $V_2(R)$.	$X+B \rightarrow P_{l}+Y$, $Y+R \rightarrow P_{2}$, измеряют $V(R)$.
Maccy ar	нализируемого вещества находят по	формуле
$m(X) = C(\frac{1}{z_1}R) \cdot V(R) \cdot M(\frac{1}{z_2}X) \cdot 10^{-2}$	$m(X) = C(\frac{1}{z_1}R)[V_2(R) - V_1(R)] \cdot M(\frac{1}{z_2}X) \cdot 10^{-3}$	$m(X) = C(\frac{1}{z_1}R) \cdot V(R) \cdot M(\frac{1}{z_2}X) \cdot 10^{-2}$, T.E.
		$n(\frac{1}{z}X) = n(\frac{1}{z}Y) = n(\frac{1}{z}R)$

Метод кислотно-основного титрованияПротолитические равновесия

Современные представления о кислотах и основаниях:

- **1. Теория Аррениуса** была создана в конце XIX века. Согласно теории Аррениуса кислотой является электронейтральное вещество, которое при растворении диссоциирует с образованием иона водорода (H^+) , а основанием вещество, которое диссоциирует с образованием гидроксид-иона (OH^-) .
- 2. Теория Бренства и Лоури была разработана в 1923 году. В соответствии с ней кислота вещество, способное отдавать протон, а основание вещество, способное принимать протон.
- 3. Теория Льюиса была также создана в 1923 году. Согласно теории Льюиса кислота вещество, являющееся акцептором электронов, основание донором электронов, а кислотно-основное взаимодействие сводится к образованию донорно-акцепторной связи.

Применительно к аналитической химии удобнее всего использовать теорию Брнстеда-Лоури. Обозначим кислоту, способную отдавать протон, как *НА*, основание — как *В*, уравнение реакции между ними можно записать следующим образом:

HA + B \rightarrow HB^+ + A^- кислота 1 основание 2 сопряженная сопряженное кислота 2 основание 1

Данное уравнение показывает, что кислота и основание взаимосвязаны: каждой кислоте соответствует сопряженное основание, образующееся при отщеплении протона, а каждому основанию соответствует своя кислота, образующаяся в результате присоединения протона.

Сопряженную кислотно-основную пару называют протолитической парой. Примеры протолитических пар:

1)
$$HA - A^{--}$$
; 2) $BH^{+} - B$.

Кислоту и основание протолитической пары называют протолитами.

Некоторые соединения могут проявлять как свойства кислот, так и свойства оснований; их называют **амфипротными соединениями** или **амфолитами.** Типичным представителем амфолитов является вода.

Автопротолиз – протолитическая реакция между двумя молекулами амфипротного растворителя, одна из которых проявляет протонодонорные свойства (кислота), а другая – протоноакцепторные свойства (основание):

$$H_2O + H_2O \leftrightarrow H_3O^+ + OH^-$$
 ион гидроксония гидроксид - ион

В общем случае:

$$HSolv + HSolv \leftrightarrow H_2Solv^+ + Solv^-$$
 ион лиония ион лиата

Выражение для константы равновесия автопротолиза воды

$$K = rac{a_{H_3O^+} \cdot a_{OH^-}}{a_{H_2O}}$$
 или $K \cdot a_{H_2O}^{-2} = a_{H_3O^+} \cdot a_{OH^-}$

При постоянной температуре в воде $\ a_{H_2O} = const$, поэтому произведение

 $K \cdot a_{H_2O}^{-2}$ тоже является постоянной величиной и называется

константой автопротолиза воды или ионным произведением воды и обозначается

$$K_{H_2O}$$
 или K_W

$$K_W = K_{H_2O} = a_{H_3O^+} \cdot a_{OH^-}$$

Поскольку в чистой воде $\gamma_{H_3O^+} = \gamma_{OH^-} = 1$

$$K_W = K_{H_2O} = [H^+] \cdot [OH^-] = 10^{-14}$$

Из значения K_W получим, что при 25°С в водном растворе $[H^+] = [OH^-] = 10^{-7}$ моль/л (среда нейтральная). Если $[H^+] > 10^{-7}$ среда кислая; при $[H^+] < 10^{-7}$ – среда щелочная.

Поскольку концентрация протонов (правильнее – ионов гидроксония) в абсолютных единицах очень мала, на практике пользуются величиной *pH* – водородным показателем:

$$pH = -\lg a_{H^+}$$
 , а точнее: $pH = -\lg a_{H_3O^+}$

В упрощенной форме: $pH = -\lg[H^+]$; $pOH = -\lg[OH^-]$.

Поэтому константу автопротолиза воды или ионное произведение воды можно представить в следующем виде:

$$pH + pOH = 14$$
.

Откуда в нейтральной среде pH = pOH = 7; если среда щелочная, то pH > 7; в кислой среде pH < 7.

Кислоты (*HA*) и основания (*BOH*) в водных растворах способны диссоциировать на ионы:

$$HA + H_2O \leftrightarrow H_3O^+ + A^-$$
 или $HA \leftrightarrow H^+ + A^-$, $B + H_2O \leftrightarrow BH^+ + OH^-$ или $BOH \leftrightarrow B^+ + OH^-$.

В зависимости от способности к диссоциации различают сильные и слабые кислоты (основания).

Сильные кислоты и основания диссоциируют в растворах практически полностью, т.е. приведенные выше равновесия смещены вправо. В качестве примеров сильных кислот можно привести HCI, HNO_3 , $HCIO_4$; сильных оснований: NaOH, KOH.

Слабые кислоты (основания) диссоциируют частично, т.е. в растворе устанавливается равновесие, которое можно охарактеризовать соответствующей константой диссоциации (ионизации) кислоты – $K_{_{A}}$ или основания – $K_{_{B}}$:

$$K_{A} = \frac{\left[H^{+}\right] \cdot \left[A^{-}\right]}{\left[HA\right]} \qquad K_{B} = \frac{\left[B^{+}\right] \cdot \left[OH^{-}\right]}{\left[BOH\right]}$$

Чем больше константа диссоциации, тем сильнее проявляются свойства кислоты или основания.

$$pK_A = -lg K_A$$
 $pK_B = -lg K_B$

 $pK_{a}\left(pK_{e}\right)$ – показатель силы кислоты (основания): чем больше $pK_{a}\left(pK_{e}\right)$, тем слабее кислота (основание).

Между константами одной протолитической пары в одном и том же растворителе существует взаимосвязь через константу автопротолиза растворителя. Для водных растворов:

$$K_A \cdot K_B = 10^{-14}$$
 или $pK_A + pK_B = 14$.

Чем больше $pK_{A'}$ тем слабее кислота и тем сильнее сопряженное с ним основание.

Вычисление рН растворов сильных кислот и оснований

В водном растворе сильной кислоты имеет место равновесие :

$$HA \leftrightarrow H^+ + A^-$$
.

С целью упрощения записей введем следующие обозначения:

C(HA) – общая концентрация кислоты (моль/л),

 $C(H^+)$ – общая концентрация протонов (моль/л),

 $[H^{+}]$ – равновесная концентрация протонов (моль/л).

Так как кислота сильная, и она практически полностью диссоциирует в растворе, то:

$$C(H^+) = [H^+] = C(HA).$$

Следовательно, *pH* раствора сильной кислоты можно вычислить по формуле:

$$pH = -\lg[H^+] = -\lg C(HA)$$
, r.e. $pH = -\lg C(HA)$.

Для сильных оснований:

$$pOH = -\lg[OH^{-}] = -\lgC(BOH)$$
, T.e. $pOH = -\lgC(BOH)$.

Учитывая, что pH = 14 - pOH, получим: $pH = 14 + \lg C(BOH)$.

Вычисление рН растворов слабых кислот и оснований

Пусть HA – слабая кислота, которая диссоциирует в водном растворе частично. При этом устанавливается равновесие, которое характеризуется соответствующей константой диссоциации (ионизации) кислоты – K_A :

$$\mathcal{K}_{A}$$
 $HA \leftrightarrow H^{+} + A^{-}$

Обозначим общую концентрацию слабой кислоты — C(HA), а равновесную концентрацию (точнее — активность) ионов водорода через x, причем $x = [H^+] = [A^-]$.

Подставим соответствующие обозначения в формулу, отвечающую константе диссоциации слабой кислоты:

$$K_{A} = \frac{\left[H^{+}\right] \cdot \left[A^{-}\right]}{\left[HA\right]} = \frac{x \cdot x}{C(HA) - x}$$

Поскольку C(HA) >> x, то $C(HA) - x \approx C(HA)$, тогда уравнение можно упростить :

$$K_A = \frac{x^2}{C(HA)}$$
, откуда $x = [H^+] = \sqrt{K_A \cdot C(HA)}$

При отрицательном логарифмировании выражения получим уравнение для вычисления *pH* в растворах слабых кислот:

$$pH = \frac{1}{2} pK_A - \frac{1}{2} \lg C(HA)$$

Проведя аналогичные рассуждения для слабого основания, с общей концентрацией *C(BOH)*, получим:

$$pOH = \frac{1}{2} pK_B - \frac{1}{2} \lg C(BOH)$$

$$pH = 14 - \frac{1}{2}pK_B + \frac{1}{2}\lg C(BOH)$$

Вопросы для самопроверки по теме

- 1. Раскройте сущность титриметрического метода анализа. Перечислите типы реакций, применяемых в титриметрии, и требования, предъявляемые к ним.
- 2. Дайте определения понятиям: *титрование, титрант, точка эквивалентности, конечная точка титрования, степень оттитровывания, кривая титрования и скачок титрования.*
- 3. Сформулируйте закон, лежащий в основе титриметрических методов, и приведите основные расчетные формулы титриметрии.
- Расскажите о способах фиксирования точки эквивалентности. С какой целью в титриметрии используют индикаторы? Какие типы индикаторов Вы знаете? Что характеризует интервал перехода окраски индикатора и показатель титрования индикатора? Сформулируйте принцип выбора индикаторов при титровании.
- 5. Расскажите о способах приготовления титрантов. Приведите основные расчетные формулы, применяемые для этой цели.
- 6. Каким образом, и с какой целью проводится процедура стандартизации титрантов? Что такое фиксанал, и для чего он используется?
- 7. Перечислите требования, которым должны отвечать вещества, используемые в качестве первичных стандартов (установочных веществ).
- 8. Опишите основные способы титрования (*прямое*, *обратное* или титрование *по остатку* и титрование *заместителя*). Каким образом проводят расчеты результатов титриметрических определений при использовании этих методов?
- 9. Опишите основные приемы титрования с использованием метода отдельных навесок и метода пипетирования.
- 10. Перечислите преимущества и ограничения титриметрических методов анализа.