REVISION SDP5

Zhanerke Gabidenkyzy

THREE TYPES OF DESIGN?

THREE TYPES OF DESIGN?

- Evolutionary
- Planned
- Minimal planned

XP?

SOFTWARE DEVELOPMENT PROCESSES

- Examples:
- •
- 2.
- 3.
- 4.
- 5.

SOFTWARE DEVELOPMENT PROCESSES

Process	Up-front design	Nature of design	Prioritization of work	Iteration length	
Waterfall	In analysis & design phases	Planned design; no redesign	Open	Open	
Iterative	Optional	Planned or evolutionary; redesign allowed	Open, often feature-centric	Open, usually 1-8 weeks	
Spiral	None	Planned or evolutionary	Riskiest work first	Open	
UP / RUP	Optional; design activities front-loaded	Planned or evolutionary	Riskiest work first, then highest value	Usually 2-6 weeks	
XP	None, but some do in iteration zero	Evolutionary design	Highest custo- mer value first	Usually 2-6 weeks	

Figure 3.4: Examples of software development processes and how they treat design issues. For comparison purposes, a waterfall process is treated as having a single long iteration.

RISK-DRIVEN MODEL

Steps:

- Ι.
- 2
- 3

RISK-DRIVEN MODEL

- Steps:
- I. Identify and Prioritize Risks
- 2. Select and Apply a Set of Techniques
- 3. Evaluate Risk Reduction

NAME 3 OF THE ARCHITECTURAL STYLES DESCRIBED IN FAIRBANKS AND BRIEFLY DESCRIBE EACH?

NAME 3 OF THE ARCHITECTURAL STYLES DESCRIBED IN FAIRBANKS AND BRIEFLY DESCRIBE EACH?

	Viewtype	Elements & Relations	Constraints / guide rails	Qualities Promoted
Layered	Module	Layers, uses relationship, callback channels	Can only use adjacent lower layers	Modifiabilty, portability, reusability
Big Ball of Mud	Module	None	None	None, but many inhibited
Pipe-and-Filter	Runtime	Pipe connector, filter com- ponent, read & write ports	Independent filters, incremental processing	Reconfigurability (modifiability), reusability
Batch- Sequential	Runtime	Stages (steps), jobs (batches)	Independent stages, non-incremental processing	Reusability, modifiability
Model-Centered (Shared Data)	Runtime	Model, view, and controller components; update and notify ports	Views and controllers interact only via the model	Modifiability, extensibility, concurrency
Publish- Subscribe	Runtime	Publish and subscribe ports, event bus connector	Event producers and consumers are oblivious	Maintainability, evolvability
Client-Server & N-Tier	Runtime	Client and server components, request-reply connectors	Asymmetrical relationship, server independence	Maintainability, evolvability legacy integration
Peer-to-Peer	Runtime	Peer components, request-reply connectors	Egalitarian peer relationship, all nodes clients and servers	Availability, resiliency, scalability, extensibility
Map-Reduce	Runtime & allocation	Master, map, and reduce workers; local and global filesystem connectors	Divisible dataset amenable to map & reduce functions, allocation topology	Scalability, performance, availability
Mirrored, Farm, & Rack	Allocation	Varies	Varies	Varies: Performance, availability

Figure 14.1: A condensed summary of the architecture styles in this chapter. Refer to text for a full listing of elements, relationships, constraints, and quality attributes.

CANONICAL MODEL STRUCTURE

- Models:
- •
- 2.
- 3.

CANONICAL MODEL STRUCTURE

- Models:
- I. Domain
- 2. Design
- 3. Code

- Architecture
- Architecting
- Architect

- Designation
- Refinement