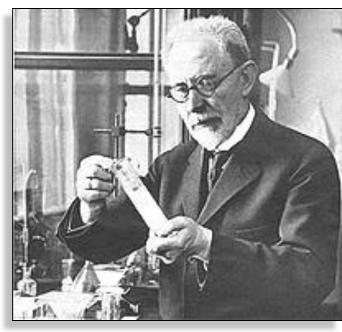
рΗ 6,5 6,0 5,5 5,0 4.5

ДОНЕЦКИЙ НАЦИОНАЛЬНЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ

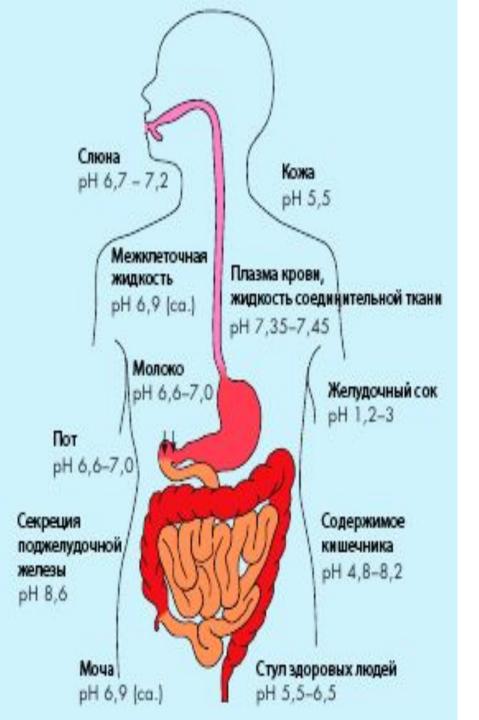
Кафедра физиологии и патологической физиологии

НАРУШЕНИЯ КИСЛОТНО-ОСНОВНОГО СОСТОЯНИЯ

Лекторі


зав. кафедрой проф. С.В. Татарко

Состояние окислительно-восстановительных процессов, каталитическая активность ферментативных систем клетки, а также дыхательные и метаболические сдвиги в организме находятся в тесной зави-СИМОСТИ ОТ КИСЛОТНО-ОСНОВНОГО состояния (КОС).


Сдвиги КОС вызывают серьёзные нарушения жизнедеятельности органов и систем.

Кислотно-основное состояние (КОС) — соотношение концентрации водородных (Н⁺) и гидроксильных (ОН⁻) ионов в биологических средах.

По предложению **Зоренсена (1913)** активную реакцию биологических систем выражают через рН, величина которого численно равна отрицательному логари-фму концентрации ио-нов Н $(pH = - Lg H^+).$

Søren Peter Lauritz Sørensen (1868-1939)

В физиологиче-ских условиях ор-ганизма активная реакция крови слабо щёлочная и колеблется по данным различных авторов в пределах pH 7,35-7,45.

Даже незначительные колебания рН опасны для организма.

- Содержание H⁺ ионов существенно вли-яет практически на все жизненно важ-ные функции:
- на кинетику ферментативных реакций,
- физико-химическое и структурное состояние мембран,
- конформацию макромолекул,
- сродство Нb к кислороду,
- чувствительность рецепторов к БАВ,
- интенсивность генерации активных форм О₂ и липопероксидных процессов,
- возбудимость и проводимость нервных структур.

Отклонения [H⁺] от оптимального диапазона приводят к нарушениям жизнедеятельности клеток (вплоть до их гибели), тканей, органов и организма в целом.

Сдвиг показателя рН в диапазоне:

- ±0,1 обусловливает расстройства дыхания и кровообращения;
- ±0,3 потерю сознания, нарушения гемодинамики и вентиляции лёгких;
- ±0,4 и более чреват гибелью организма.

При снижении рН до 6,95 наступает ко-ма и смерть, при увеличении до 7,7 возникают судороги и остановка сер-дечной деятельности в фазе систолы.

Механизмы регуляции КОС

Для оптимальной реализации процессов жизнедеятельности в эволюции сформировались механизмы регуляции [H⁺].

В норме в организме образуется почти в 20 раз больше кислых продуктов, чем основных. Поэтому доминируют системы, обеспечивающие нейтрализацию, экскрецию и секрецию избытка соединений с кислыми свойствами.

К этим системам относятся:

- химические буферные системы
- физиологические механизмы регуляции КОС.

Химические буферные системы

Буферные системы начинают действовать сразу же при увеличении или снижении [H⁺] — представляют собой первую мобильную и действенную систему компенсации сдвигов рН (буферы крови способны устранить умеренные сдвиги КОС в течение 10-40 с).

Принцип действия химических буфер-ных систем — трансформация сильных кислот и сильных оснований в слабые.

Эти реакции реализуются как внутри- так и внеклеточно (в крови, межклеточной, спинномозговой и других жидких средах), но в большем масштабе — в клетках.

Наряду с мощными и быстродействущими химическими системами в организме функционируют *органные ме*ханизмы компенсации и устранения сдвигов КОС.

Для их реализации и достижения необходимого эффекта требуется больше времени – *от неско- льких минут до нескольких часов*.

К наиболее эффективным физиологическим механизмам регуляции КОС относят процессы, протекающие в:

- лёгких,
- почках,
- печени,
- жкт

Интеграция механизмов поддержания КОС

Механизмы поддержания КОС функционируют одновременно для поддержания рН в нормальных пределах и зависят друг от друга.

Первой линией защиты постоянства активной реакции организма является разбавление во вне-клеточной и внутриклеточной жидкости и буфер-ное связывание.

Второй линией защиты (дыхательной компенсацией) падение pH компенсируется аппаратом дыхания, путем элиминации угольной кислоты при введении в кровь сильной кислоты.

Третья защитная линия представлена более медленными процессами компенсации КОС, происходящими *в почках*.

ПОКАЗАТЕЛИ ОЦЕНКИ КОС

Отрицательный логарифм концентрации ионов H⁺.

Отражает состояние ацидоза или алкалоза

рСО₂ 35-45 мм.рт. ст.

Напряжение углекислого газа в артериальной крови.

Отражает респираторные нарушения КОС

SB

(Standart Bicarbonate)

24,0 ± 2,0 ммоль/л

Стандартный бикарбонат плазмы - концентрация бикарбонатов в крови при стандартных условиях (pH=7,40; $PaCO_2=40$ мм рт. ст.; t=37 °C; $SO_2=100\%$).

Характеризуют бикарбонатную буферную систему крови

ПОКАЗАТЕЛИ ОЦЕНКИ КОС

Буферные основания — общее количество всех анионов крови.

Отражает метаболические нарушения КОС

Избыток или дефицит бу- ферных оснований (отклонение концентрации буферных оснований от нормального уровня).

Отражает метаболические нарушения КОС

Виды нарушений КОС 1. Направленность изменений рН

Ацидоз — типовая форма нарушения КОС, характеризующаяся относительным или абсолютным избытком в организме кислот.

В крови наблюдается абсолютное или относительное **повышение** [H^+] и уменьшение pH ниже нормы (ниже средней величины pH – 7,39).

Алкалоз — типовая форма нарушения КОС, характеризующаяся относительным или абсолютным избытком в организме оснований.

В крови отмечается абсолютное или относительное *сни-* **жение** [H^+] или увеличение pH (выше средней вели-чины pH - 7,39).

Виды нарушений КОС

2. Причины нарушения КОС:

- Эндогенные расстройства КОС
 При многих заболеваниях нарушаются
 функции химических буферных систем и
 физиологических механизмов поддержания оптимального КОС в организме.
- Экзогененые нарушения КОС избыточное поступление в организм веществ кислого или щёлочного характера:
 - лекарственные средства,
 - токсические вещества,
 - продукты питания

3.Компенсированность нарушений КОС

7,35 7,39 7,45

Некомпенсиро ванный

Компенсированный

Компенсированный Некомпенсированный

Ацидоз

Алкалоз

Виды нарушений КОС 3. Компенсированность нарушений КОС

Компенсированные сдвиги КОС – рН крови не отклоняется за пределы диа-пазона нормы: 7,35-7,45 (за среднюю величину условно принимают 7,39)

- рН 7,38-7,35 компенсированный ацидоз
- рН 7,40-7,45 компенсированный алкалоз

При компенсированных нарушениях КОС возможны изменения абсолютной концентрации компонентов гидрокарбонатной буферной системы (H_2CO_3) и $NaHCO_3$). Но соотношение $[H_2CO_3]/[NaHCO_3]$ сохраняется в норме (т.е. 20/1).

Виды нарушений КОС 3. Компенсированность нарушений КОС

Некомпенсированные нарушения КОС — рН крови выходит за диапазон нормы: 7,35-7,45 (за среднюю величину условно принимают 7,39)

- рН 7,34 и ниже некомпенсированный ацидоз
- рН 7,46 и выше некомпенсированный алкалоз

Некомпенсированные ацидозы и алкалозы характеризуются значительными отклонениями как абсолютной концентрации H_2CO_3 и $NaHCO_3$, так и их соотношения.

Виды нарушений КОС

- 4. Механизмы нарушений КОС
- Газовые (респираторные) расстройства КОС

Характеризуются первичным изменением содержания в организме CO_2 и как следствие — концентрации уголь-ной кислоты в соотношении: [HCO $_3^-$] / [H $_2$ CO $_3$].

При газовом ацидозе знаменатель соотношения (т.е. концентрация угольной к-ты) увеличива-ется, при газовом алкалозе — уменьшается.

Обычно газовые ацидозы и алкалозы длительное время остаются *компенсированными*.

Виды нарушений КОС

- 4. Механизмы нарушений КОС
- Негазовые расстройства КОС:
 - Метаболические
 - **выделительные**
 - Экзогенные

Негазовые нарушения КОС характеризуются *первичным изменением содер-жания гидрокарбоната* в соотноше-нии: [HCO₃⁻]/[H₂CO₃].

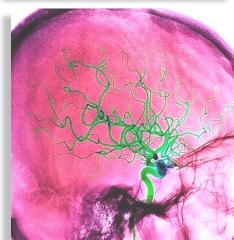
При *негазовых ацидозах* числитель соотношения (т.е. концентрация гидрокарбонатов) уменьшается, а при *негазовых алкалозах* увеличивается.

Респираторный ацидоз

Респираторный ацидоз характеризуется снижением рН крови и гиперкапнией (повышением рСО₂ крови более 40 мм рт.ст.).

Линейной зависимости между степенью гиперкапнии и клиническими признаками респираторного ацидоза нет. Последние определяются причиной гиперкапнии, особенностями основного заболевания и реактивностью организма пациента.

Компенсированный ацидоз существенных изменений в организме не вызывает.

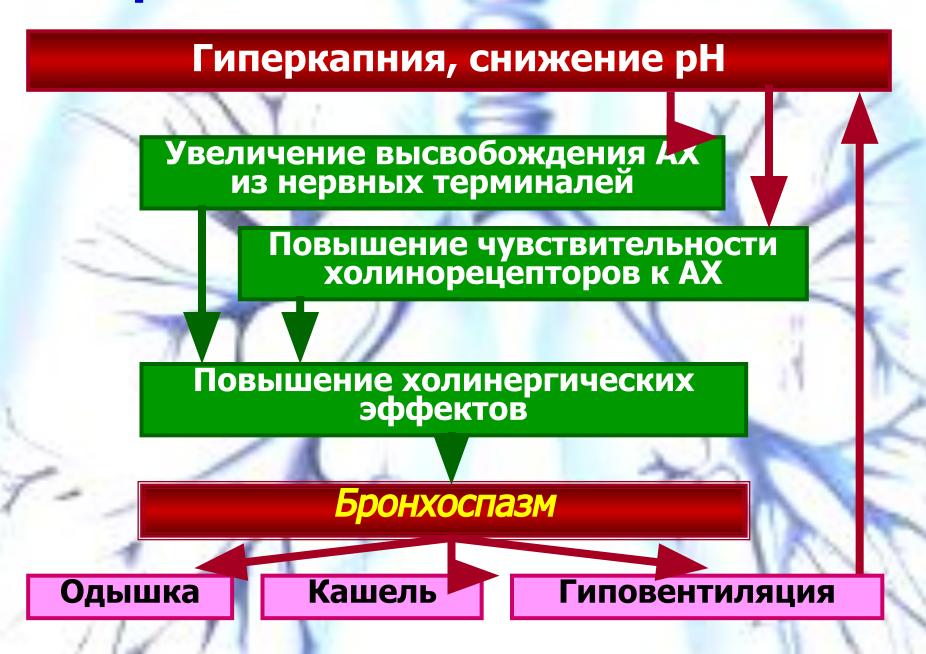

Некомпенсированный ацидоз приводит к значительным нарушениям жизнедеятельности организма и развитию в нём комплекса характерных изменений.

Респираторный ацидоз Причины

- 1.Снижение объёма альвеоляр-ной вентиляции
- **обструкция дыхательных путей** (при БА, бронхитах, эмфиземе лёгких, аспирации инородных тел),
- нарушение растяжимости лёгких (при пневмонии или гемотораксе, ателектазе, инфаркте лёгкого, парезе диафрагмы),
- увеличение функционального «мёртвого» пространства (при пневмосклерозе или гипоперфузии ткани лёгкого),
- **нарушение регуляции дыхания** (при энцефалитах, ОНМК).

Респираторный ацидоз Причины

- 2.Повышенное образование эндоген-ного CO₂
- активация катаболических процессов (лихорадка, сепсис, длительные судороги),
- парентеральное введение большого количества углеводов (например, глюкозы),
- включение избытка углеводов в метаболизм.


Респираторный ацидоз Причины

- 3.Избыточное поступление углекислого газа в организм
- подача газовой смеси для дыхания с неадекватно повышенным содержанием СО₂ (в скафандрах, подводных лодках, летательных аппаратах),
- при нахождении большого количества людей в замкнутом пространстве (в шахте или небольшом помещении).

Гиперкапния, снижение рН, ↑К+

Снижение базального мышечного тонуса стенок артериол мозга

Расширение артериол мозга, развитие артериа-льной гиперемии ткани мозга, ↑ в/ч давления

Цефалгия и психомоторное возбуждение, затем сонливость и заторможенность

Повышение активности нейронов n.vagus (при сдавление вещества ГМ)

↓ АД ↓ ЧСС АСИСТОЛИЯ

Гиперкапния, снижение рН, ↑К+

Гиперкатехоламинемия

Гиперсенситизация а-адренорецепторов периферических артериол

Спазм артериол и ишемия органов мозга!)

(кроме

Ишемия органов и тканей

Полиорганная дисфункция

Доминируют признаки ишемии почек. Снижение клубочковой фильтрации приводит к повышению ОЦК. Это может привести к развитию сердечной недостаточности

Гиперкапния, снижение рН, ↑К+

Спазм артериол и ишемия органов (кроме мозга!)

СН, ведущая к снижению перфузионного давления крови в артериолах и нарушению её оттока по венулам

Нарушение тока крови и лимфы в сосудах микроциркуляторного русла

Расстройства микрогемоциркуляции являются одним из главных патогенетических звеньев развития полиорганных расстройств

Гиповентиляция лёгких

Нарушение перфузии лёгких в связи с СН

Уменьшение сродства Hb к кислороду

Нарушение процессов биологиче-СКОГО ОКИСЛЕНИЯ В ТКАНЯХ (обусловлено нарушением микрогемоциркуляции, гипоксемией, снижением активности ферментов тканевого дыхания и гликолиза)

Гипоксемия и гипоксия

Гиперкапния, снижение рН

Гипоксия и нарушения энергетического обеспечения клеток

Увеличение концентрации Н⁺ во внеклеточной жидкости (при этом вхождение Н⁺ в клетки сопровождается выходом из них К⁺)

Дисбаланс ионов (увеличение содержания ионов К+ в межклеточной жидкости (гиперкалиемия), гиперфосфатемия, гипохлоремия)

Снижение порога возбудимости клеток (в том числе кардиомиоцитов)

Нарушения ритма сердца

Компенсация респираторного ацидоза

Респираторный ацидоз

Механизмы компенсации

Показатели респираторного ацидоза

Основной патогенетический фактор — увеличение рСО₂ в крови

Типичные изменения показате-лей КОС при газовом ацидозе (капиллярная кровь):

- ***** рН снижается
- ***** [H⁺] повышается
- * рСО₂ повышается *основное* нарушение
- * [HCO₃-] повышается *реакция компенсации*

Респираторный алкалоз

Респираторный алкалоз характеризуется увеличением рН и гипокапнией (снижением рСО₂ крови до 35 мм рт.ст. и более).

Причина газового алкалоза: гипервентиляция лёгких.

Объём альвеолярной вентиляции выше необходимого для выделения того количества СО₂, которое образуется в процессе обмена веществ за определённый период времени.

Гипервентиляция лёгких обусловливает гипокапнию, снижение уровня угольной кислоты в крови и развитие газового алкалоза. Соотношение [HCO₃⁻] /[H₂CO₃] увеличивается за счёт уменьшения знаменателя, [H⁺] снижается, а рН крови увеличивается.

Респираторный алкалоз

Причины гипервентиляции

- Выраженная лихорадочная реакция.
- Невротические и истерические состояния.
- Повреждение ГМ (сотрясение, инсульт, опухоль).
- **Заболевания лёгких** (например, пневмония, астма).
- Гипертиреозе.

Респираторный алкалоз

Причины гипервентиляции

- Интоксикация ЛС (салицилатами, симпатомиметиками).
- ПН.
- Чрезмерное и длительное болевое или термическое раздражение.
- Нарушение режима ИВЛ, приводящее к гипервентиляции.
- Высотная и горная болезнь

1. Проявления газового алкалоза

Гипокапния, повышение рН

Повышение тонуса стенок сосудов Гм

Снижение тонуса стенок артериол в органах и тканях (кроме мозга!)

↓ АД, депонирование крови в расширенных сосудах

↓ ОЦК, ↓ венозного давления, ↓ УО, МОК

Нарушения центрального и органно-тканевого кровообращения

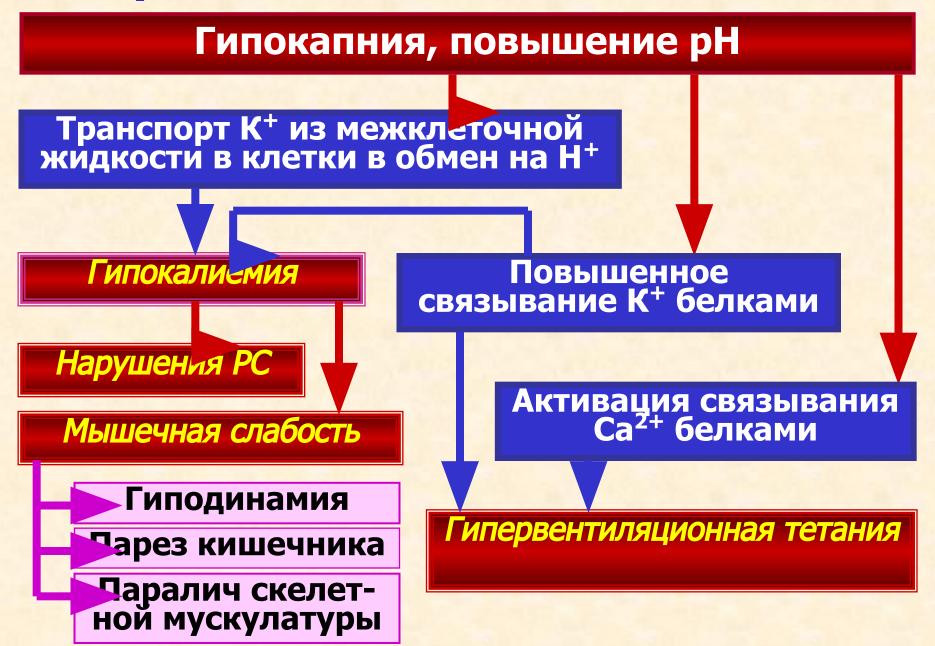
Уменьшение кровоснабжения тканей и органов

2. Проявления газового алкалоза

Гипокапния, повышение рН

Недостаточность кровообращения

Увеличение сродства Hb к O2, снижающее диссоциацию HbO2 в тканях


Нарушение карбоксилирования ПВК и превращения её в оксалоацетат и его восстановление в малат

Торможением активности ферментов гликолиза (при ↓ pCO₂ до 15-18 мм рт.ст.)

Гипоксия

Усиление энергодефицита, условия для развития метаболического ацидоза

3. Проявления газового алкалоза

Механизмы компенсации респираторного алкалоза

Срочные Активация гликолиза Гиповентиляция лёгких Гидрокарбонатного Фосфатного Активация клеточных буферов Гемоглобинового Белкового **↑Обмена СІ⁻ клеток на** НСО₃⁻ межклеточн. среды Активац. внеклет. буферов

Долговременные

Торможение ацидогенеза

Торможен. аммониогенеза

↑ Секреции Na₂HPO₄

Повышение выведения К+

Устранение (уменьшение) респираторного алкалоза

Показатели респираторного алкалоза

Основной патогенетический фактор — снижение рСО₂ в крови

Типичные изменения показате-лей КОС при газовом алкалозе (капиллярная кровь):

- ***** рН повышается
- ***** [H⁺] снижается
- * pCO₂ снижается *основное* нарушение
- * [HCO₃-] снижается *реакция компенсации*

Метаболический ацидоз

Метаболический ацидоз — одна из наиболее частых и опасных форм нарушения КОС, в основе которой лежит накопление в крови т.н. нелетучих кислот (молочной, β-оксимасляной, ацетоуксусной и др.) или потеря организмом буферных оснований.

Такой ацидоз может наблюдаться при СН, многих типах гипоксии, нарушениях функций печени и почек по нейтрализации и экскреции кислых веществ, истощении буферных систем (например, в результате кровопотери или гипопротеинемии).

Причины метаболического ацидоза

1. Нарушения метаболизма, приводящие к накоплению избытка нелетучих кислот и др. в-в с кислыми свойствами.

Лактат-ацидоз и повышение уровня ПВК в тканях:

- гипоксия,
- интенсивная физическая работа,
- патология печени.

Причины метаболического ацидоза

Накопление органических и неоргани-ческих К-Т (при патологических процессах, поражающих большие массивы тканей)

- обширные ожоги кожи и СО,
- различные виды воспаления (перитонит, гнойный плеврит),
- **массивные травмы** (при синдроме длительного раздавливания, множественных травмах тела).

Причины метаболического ацидоза Кетоацидоз

- сахарный диабет,
- продолжительное голодание,
- длительные лихорадочные состояния.
- алкогольная интоксикация,
- обширные ожоги и воспаления.
- 2. Недостаточность буферных систем и физиологических механизмов по нейтрализации и выведению избытка нелетучих кислот из организма.

Механизмы компенсации метаболического ацидоза

Срочные

Активация внеклеточных буферов

Увеличение объёмов лёгочной вентиляции

Активац. клеточн. буферов

Долговременные

Активация аммониогенеза

↑ Секреции NaH₂PO₄

Активац. гидрокарбонатного и фосфатного буферов кости

Увеличение образования **HCl** в желудке

усиленеие ацидогенеза

Довыш. реабсорбц. Na⁺

↑ **Активности печёночных** механизмов компенсации

Устранение (уменьшение) метаболического ацидоза

Показатели метаболического ацидоза

Основной патогенетический фактор — истощение НСО₃ (гид-рокарбонатного буфера) в связи с накоплением нелетучих соединений (лактата, КТ).

Типичные изменения показателей КОС при негазовом ацидозе (капиллярная кровь):

- рН снижается
- **☀** [H⁺] повышается
 - [HCO₃-] снижается *основное нарушение*
- рСО₂ снижается реакция компенсации

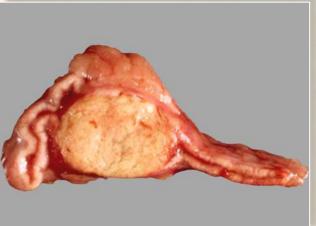
Метаболический алкалоз

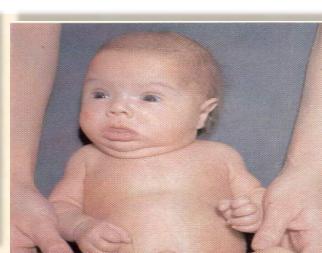
Метаболический алкалоз — характеризуется повышением рН крови и *увеличением концентрации бикарбоната*.

Понятие о метаболическом алкалозе наиболее спорное в патофизиологии КОС.

В клинической практике метаболическими алкалозами называют состояния, возникающие в результате расстройств обмена ионов Na⁺, Ca²+ и K⁺.

Причины метаболического алкалоза


Гиперальдостеронизм (первичный и вторичный)


Альдостерон контролирует активность $Na^+, K^+-AT\Phi$ азы и как следствие — влияет на метаболизм Na^+ и K^+).

Гипофункция паращитовидных желёз

Сопровождается снижением содержания в крови Ca^{2+} (гипокальциемией) и повыше-нием концентрации Na_2HPO_4 (гиперфосфат-емией).

Механизм развития метаболического алкалоза

Повышенная секреция эпителием канальцев почек в первичную мочу H⁺ и K⁺

Повышенная реабсорбция Na⁺ из первичной мочи в кровь

Накопление в клетках H⁺ с развитием внутриклеточного ацидоза

Задержка в клетках Na+

Гипергидратация клеток в связи с повышением осмотического давления, обусловленного избытком Na⁺

Снижение содержания в крови Са²⁺ и повышение концентрации Na₂HPO₄

Механизмы компенсации метаболич. алкалоза

Срочные

Долговременные

Снижение объёма альвеолярной вентиляции

Белкового буфера

Гликолиза

Цикла трикарбоновых кислот Активация клеточн. механизмов

↑Обмена СІ⁻ клеток на НСО₃⁻ межклет. среды

Активация внеклеточных буферов Увеличение выделения почками избытка НСО,-

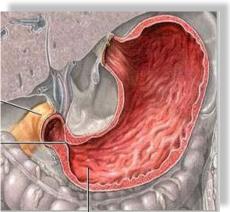
Устранение метаболического алкалоза

Показатели метаболического алкалоза

Основной патогенетический фактор — увеличение НСО, (гидрокарбонатного буфера), ги-покалиемия

Типичные изменения показателей КОС при негазовом алкалозе (капиллярная кровь):

- рН повышается
- [H⁺] снижается
 - [HCO₃⁻] повышается *основное нарушение*
- рСО₂ повышается *реакция ком*пенсации


Выделительные расстройства КОС

Выделительные расстройства КОС являются результатом нарушения выделения из организма (избыточной потерей им или задержкой в нём) кислот либо оснований с развитием ацидозов или алкалозов.

Примеры патологических состояний и воздейст-вий, вызывающих выделительный ацидоз

Почечная недостаточность

Интоксикация сульфаниламидами

Нефрит

Гипоксия почек

Диарея

Фистула тонкой кишки

Открытая рана тонкой кишки

Стоматиты

Отравление никотином, препаратами ртути

Токсикоз беременных

Гельминтоз

Механизмы компенсации выделительного ацидоза

Механизмы компенсации аналогичны таковым при метаболическом ацидозе.

Они включают *срочные* (клеточные и неклеточные буферы) и *долговремен-ные реакции*.

При *почечном ацидозе* ренальные механизмы устранения избытка нелетучих кислот из организма *малоэффективны*.

Это существенно осложняет ситуацию, поскольку другие механизмы долговременной компенсации выделительного ацидоза не всегда способны ликвидировать избыток H⁺ в организме.

Выделительный алкалоз

Виды

Желудочный

Почечный

Кишечный

Причи-ны Потеря соляной кислоты с желудочным СОКОМ

Реабсорбции оснований

↑ Выведения хлоридов, К+

Усиление экскреции Н+ в почках

Увеличение выведения К+ через кишечник

Примеры патологических оснований и воздействий, вызывающих выделительный алкалоз

Токсикоз беременных

Пилороспазм, пилоростеноз.

Кишечная непроходимость (с повторной рвотой желудочным содержимым)

Длительное применение диуретиков

Злоупотребление слабительными

Повторное применение клизм

Механизмы компенсации выделительного алкалоза

- Механизмы компенсации выделительного алкалоза такие же, как и при метаболическом алкалозе.
- Они направлены на уменьшение содержания гидрокарбоната в плазме крови.
- Реализуются за счёт включения сроч-ных реакций (активации клеточных и неклеточных механизмов, повышения альвеолярной вентиляции) и долговременных процессов, направленных на сниже-ние уровня гидрокарбоната в плазме крови.

Экзогенные расстройства КОС

Экзогенные расстройства КОС развиваются в результате попадания в организм экзогенных агентов с кислыми или основными свойствами.

Экзогенный ацидоз является следствием поступления в организм нелетучих кислот или соединений с кислыми свойствами.

Экзогенный алкалоз является следствием попадания в организм либо избытка гидрокарбоната, используемого в составе буферных растворов, либо щёлочей в составе пищи и питья.

Экзогенный ацидоз Причины:

- Приём растворов кислот либо по ошибке, либо с целью отравления.
- Продолжительное употребление продуктов питания и питья, со-держащих большое количество кислот (например, лимонной, яблочной, соляной, салициловой).
- Применение ЛС, содержащих кислоты и/или их соли (например, салициловой, аспирина, хлористого кальция).
- * Трансфузия препаратов донорской крови (консервированной лимоннокислым натрием).

Патогенез экзогенного ацидоза

Увеличение концентрации H⁺ в организме в связи с избыточным поступлением растворов кислот

Истощение буферных систем

Высвобождение избытка Н⁺ в связи с диссоциацией солей кислот (NaH2CO3, NaH2PO4 и CaHCO3, лимоннокислого натрия)

Вторичные нарушения метаболизма в тканях и органах (сопровождается одновременным накоплением как экзогенных, так и эндогенных кислых валентностей)

Повреждение печени и почек

Ацидоз

Экзогенный алкалоз Причины:

- **Введение в течение короткого времени избытка НСО**₃--содержащих буферных растворов (при лечении состояний, сопровождающихся ацидозом: лактат-ацидозом или кетоацидозом у пациентов с сахарным диабетом).
 - Продолжительное использование продуктов питания и питья, содержащих большое количество щёлочей (молока, щёлочных минеральных вод, мучных продуктов, приправ и др.)

Патогенез развития экзогенного алкалоза

Увеличение концентрации вводимого в организм HCO₃

Повышенное образование эндогенного гидрокарбоната

Нарушение экскреции эндогенного гидрокарбоната (при ОПН, ХПН)

Алкалоз

1. Увеличение (компенсаторное) альвеолярной вентиляции

При тяжёлом ацидозе может регистрироваться глубокое и шумное дыхание — периодическое дыхание Куссмауля. Нередко его обозначают как «ацидотическое дыхание».

Причина:

увеличение содержания H^+ в плазме крови (и др. биологических жидкостях) — стимул для инспираторных нейронов дыхательного центра.

Однако по мере уменьшения рСО₂ и нарастания степени повреждения НС возбудимость дыхательного центра снижается: *развивается периодическое дыхание*.

2. Нарастающее угнетение нервной си-стемы и ВНД

Проявляется сонливостью, заторможенностью, сопором, комой.

Причины: Нарушения энергетического обеспечения нейронов мозга (из-за снижения его кровоснабжения, дисбаланса ионов), последующие изменения физико-химических и электрофизиологических свойств нейронов дыхательного центра, ведущие к снижению их возбудимости.

з. Недостаточность кровообращения

Причины: снижение тонуса сосудов (вызванное гипокапнией), вплоть до коллапса, и уменьшение МОК.

- 4. Снижение кровотока в мозге, мио-карде и почках
 - Это усугубляет нарушение функций НС, сердца, обусловливает олигурию (уменьшение диуреза).
- **5.** Гиперкалиемия
- Причина: транспорт избытка ионов Н⁺ в клетку в обмен на К⁺, выходящий в м/к жидкость и плаз-му крови.
- б. Гиперосмия (гиперосмолярный с-м)
- Причины: увеличение концентрации К⁺ в крови вследствие повреждения клеток и повышение Na⁺ в плазме крови («вытеснение» Na⁺ из их связи с молекулами белков избытком H⁺).

7. **Отёки**

Причины:

- Гиперосмия тканей в связи с увеличением диссоциации органических и неорганических соединений (электролитов) в условиях ацидоза.
- Гиперонкия тканей в результате повышения гидролиза и дисперсности белковых молекул при увеличении содержания ионов H⁺ в жидкостях.
- Снижение реабсорбции жидкости в микрососудах в связи с венозным застоем, характерным для недостаточности кровообращения.
- Повышение проницаемости стенок артериот ол и прекапилляров в условиях ацидоза.

- 8. Потеря ионов Ca²⁺ костной тканью с развитием остеодистрофии
- **Причина:** расходование гидрокарбоната и фосфата кальция костной ткани на забуферивание избытка H⁺ в крови и др. жидкостях организма. Этот процесс регулирует ПГ. Стимулом для повышенного образования гормона является снижение Ca²⁺ в крови в связи с его включением в буферные системы. Развивается **остеопороз**, **остеодистрофия**, у детей **рахит**.

Указанные изменения кальциевого обмена и состояния костной ткани получили название «феномен расплаты» за компенсацию негазового ацидоза.

1. **Гипоксия**

Причины:

- Гиповентиляция лёгких, обусловленная снижением [H⁺] в крови и как следствие уменьшением функциональной активности инспираторных нейронов дыхательного центра.
- Увеличение сродства Нb к кислороду вследствие уменьшения содержания H⁺ в крови. Это вызывает снижение диссоциации HbO₂ и поставки кислорода тканям.

2. Гипокалиемия

Причины:

- Увеличение выведения К⁺ почками в условиях альдостеронизма.
- Активация обмена Na⁺ на K⁺ в дистальных отделах канальцев почек в связи с повышением в первичной моче Na⁺.
- Потеря К⁺ (в связи со рвотой).

Последствия:

- Транспорт H⁺ в клетку с развитием в ней ацидоза.
- Нарушения обмена веществ, особенно торможение протеосинтеза.
- Ухудшение нервно-мышечн. возбудимости

 З. Недостаточность центрального и органнотканевого кровотока

Причины:

- Тонуса стенок артериол в связи с нарушением энергообеспечения и ионного обмена.
- ↓АД (уменьшение тонуса артериол, МОК, ОЦК).
- 4. Нарушение микрогемоциркуляции

Причины:

- Расстройства центрального и органно-тканевого кровотока.
- Нарушение реологии крови в связи с гемоконцентрацией (наиболее выражено при повторной рвоте и полиурии).

- 5. Ухудшение нервно-мышечной возбудимости
 - —**Проявления:** мышечная слабость, нарушение перистальтики желудка и кишечника.

Причины:

- гипокалиемия, изменение содержания др. ионов в крови и межклеточной жидкости,
- гипоксия клеток.

6. Расстройства функций органов

Причины:


- гипоксия,
- гипокалиемия,
- нарушения нервно-мышечной возбудимости.

Смешанные расстройства КОС

В клинической практике нередко наблюдаются признаки смешанных (ком-бинированных) форм нарушения КОС у одного и того же пациента, т.е. газовых и негазовых ацидозов или алкалозов одновременно.

Пример: Сердечная недостаточность

У пациента может развиться смешанный ацидоз: газовый (в связи с нарушением перфузии альвеол и отёком лёгких) и негазовый метаболический (в результате циркуляторной гипок-сии) и выделительный почечный (обусловлен-ный гипоперфузией почек).

