# Нормальный закон распределения и его применение

**Нормальное распределение** (распределение Гаусса) характеризуется тем, что крайние значения признака в нем встречаются достаточно редко, а значения, близкие к средней величине – достаточно часто.

Это распределение следует закону, открытому тремя учеными в разное время: Муавром в 1733 г. в Англии, Гауссом в 1809 г. в Германии и Лапласом в 1812 г. во Франции.

Нормальным такое распределение называется потому, что оно очень часто встречалось в естественно-научных исследованиях и казалось "нормой" всякого массового случайного проявления признаков.

#### Оно применимо только для метрических данных!

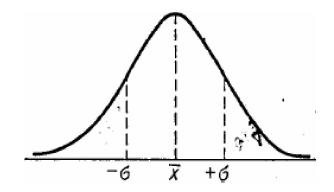
Это распределение описывается формулой:

$$f_{omn} = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x_i - M)^2}{2\sigma^2}}$$

где f отн. – относительные частоты появления каждого конкретного значения случайной величины хі. Предполагается, что переменная хі, может принимать бесконечно большие и бесконечно малые значения, количество измерений бесконечно.

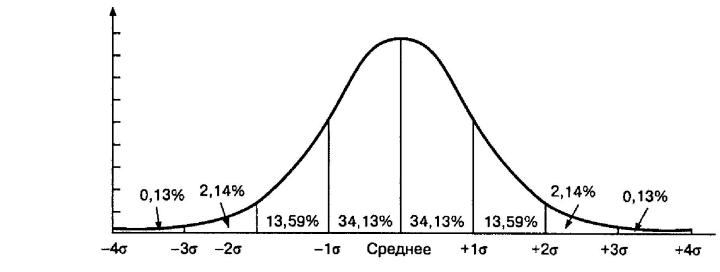
#### Нормальное распределение

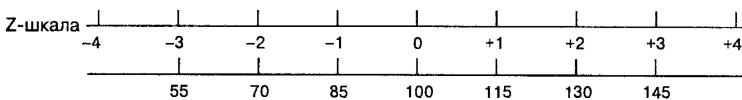
График нормального распределения представляет собой колоколообразную кривую (симметричен относительно среднего арифметического значения).



**Характерное свойство нормального распределения** состоит в том, что 68,26% из всех его наблюдений всегда лежат в диапазоне «плюс - минус» одно стандартное отклонение от среднего арифметического (какова бы ни была величина стандартного отклонения). 95,44% - в пределах двух стандартных отклонений и 99,72% - в пределах трех стандартных отклонений.

#### Нормальное распределение





 $M \pm \sigma$  соответствует  $\approx 68\%$  (точно — 68,26%) площади;  $M \pm 2\sigma$  соответствует  $\approx 95\%$  (точно — 95,44%) площади;  $M \pm 3\sigma$  соответствует  $\approx 100\%$  (точно — 99,72%) площади.

90% всех случаев располагается в диапазоне значений  $M\pm 1,64\sigma$ ; 95% всех случаев располагается в диапазоне значений  $M\pm 1,96\sigma$ ; 99% всех случаев располагается в диапазоне значений  $M\pm 2,58\sigma$ .

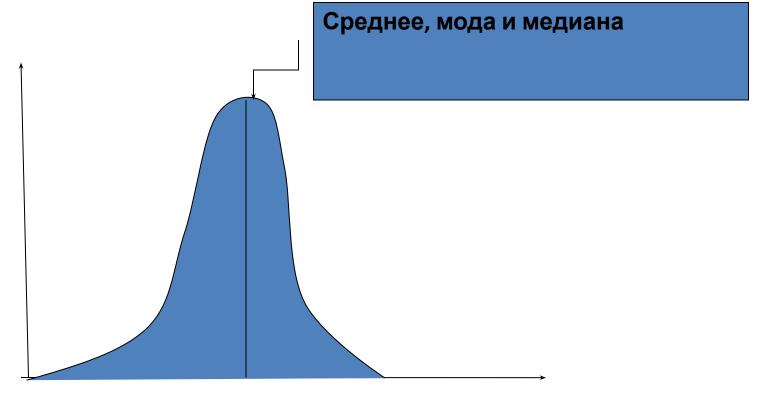


#### Проверка нормальности распределения

- 1. Среднее арифметическое, мода и медиана равны.
- 2. Нормальность распределения результативного признака можно проверить путем расчета показателей асимметрии и эксцесса и сопоставления их с критическими значениями (формулы Н.А. Плохинского и Е.И. Пустыльника).
- 3. Нормальным распределением может быть только распределение с числом наблюдений не менее 30 (при наличии и других условий соответствий).

## Нормальное распределение

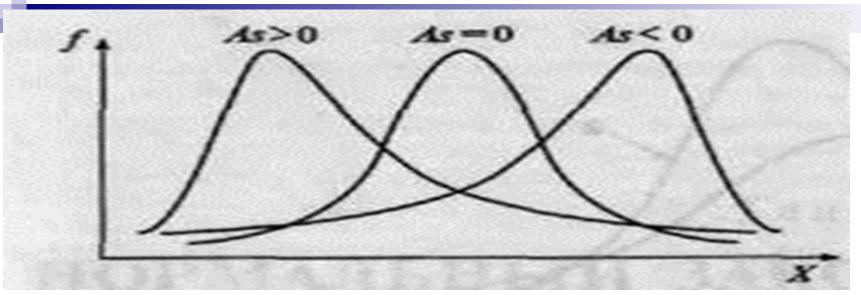
• Частота



Значение переменной

## Меры распределения

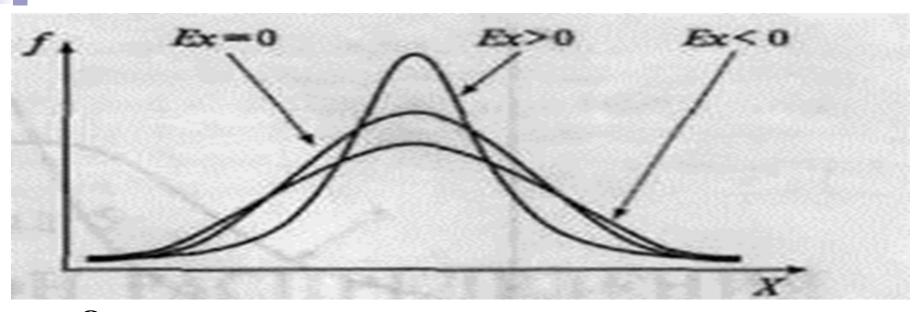
- Асимметрия
- Эксцесс



Если чаще встречаются значения меньше среднего, то говорят о левосторонней, или положительной асимметрии (As > 0).

Если же чаще встречаются значения больше среднего, то асимметрия — правосторонняя, или отрицательная (As < 0).

Чем больше отклонение от нуля, тем больше асимметрия.



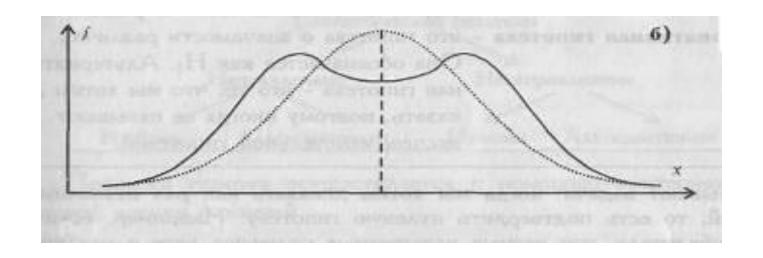
**Островершинное распределение** характеризуется положительным эксцессом (Ex > 0)

**Плосковершинное** - отрицательным (Ex < 0)

«Средневершинное» (нормальное) распределение имеет нулевой эксцесс (Ex = 0).

### Эксцесс (Е, Ех)

Если в распределении преобладают крайние значения, причем одновременно и более низкие, и более высокие, то такое распределение характеризуется отрицательным эксцессом и в центре распределения может образоваться впадина, превращающая его в двувершинное:





Формула показателя асимметрии следующая:

$$As = \frac{\sum (x_i - M)^3}{n\sigma^3}$$

Показатель эксцесса определяется по формуле:

$$Ex = \frac{\sum (x_i - M)^4}{n\sigma^4} - 3.$$



Рассмотрим применение метода Е.И. Пустыльника.

Действовать будем по следующему алгоритму:

- 1) рассчитаем критические значения показателей асимметрии и эксцесса по формулам Е.И. Пустыльника и сопоставим с ними эмпирические значения;
- 2) если эмпирические значения показателей окажутся ниже критических, сделаем вывод о том, что распределение признака не отличается от нормального.

Формулы для определения критических значений асимметрии и эксцесса (формулы Е.И. Пустыльника):

$$A_{\text{kp}} = 3 \cdot \sqrt{\frac{6 \cdot (n-1)}{(n+1) \cdot (n+3)}}$$

$$E_{\text{kp}} = 5 \cdot \sqrt{\frac{24 \cdot n \cdot (n-2) \cdot (n-3)}{(n+1)^2 \cdot (n+3) \cdot (n+5)}}$$

где n - количество наблюдений. Для обработки данных понадобятся такие последовательные шаги: вычисление Mx,  $\sigma$ , A, E и подсчет n.

|A|<Aкр  $\} \rightarrow$  распределение совпадает с нормальным |E|<Eкр $\}$ 

| No    | $x_i$ | $(x_i - \overline{x})$ | $(x_i - \overline{x})^2$ | $\left(x_i - \overline{x}\right)^3$ | $\left(x_{j}-\overline{x}\right)^{4}$ |
|-------|-------|------------------------|--------------------------|-------------------------------------|---------------------------------------|
| 1     | 11    | 0,94                   | 0,884                    | 0,831                               | 0,781                                 |
| 2     | 13    | 2,94                   | 8,644                    | 25,412                              | 74,712                                |
| 3     | 12    | 1,94                   | 3,764                    | 7,301                               | 14,165                                |
| 4     | 9     | -1,06                  | 1,124                    | -1,191                              | 1,262                                 |
| 5     | 10    | -0.06                  | 0,004                    | -0.000                              | 0,000                                 |
| 6     | 11    | 0,94                   | 0,884                    | 0.831                               | 0,781                                 |
| 1 7   | 8     | -2,06                  | 4,244                    | -8,742                              | 18,009                                |
| l á i | 10    | -0,06                  | 0.004                    | -0.000                              | 0,000                                 |
| 8 9   | 15    | 4,94                   | 24,404                   | 120,554                             | 595,536                               |
| 10    | 14    | 3,94                   | 15,524                   | 61,163                              | 240,982                               |
| 11    | 8     | -2,06                  | 4,244                    | -8,742                              | 18,009                                |
| 12    | 7     | -3,06                  | 9,364                    | -28,653                             | 87,677                                |
| 13    | 10    | -0,06                  | 0,004                    | -0.000                              | 0,000                                 |
| 14    | 10    | -0.06                  | 0.004                    | -0.000                              | 0,000                                 |
| 15    | . 5   | -5,06                  | 25,604                   | -129,554                            | 655,544                               |
| 16    | 8     | -2,06                  | 4,244                    | -8,742                              | 18,009                                |
| Суммы | 161   |                        | 102,944                  | 30,468                              | 1725,467                              |

Для расчетов в таблице, необходимо значение среднего арифметического, которое вычисляется по формуле:

$$\bar{x} = \frac{\sum x_i}{n}$$

где x<sub>i</sub> - каждое наблюдаемое значение признака; n - количество наблюдений.

В данном случае:

$$\bar{x} = \frac{161}{16} = 10,06$$

Стандартное отклонение (сигма) вычисляется по формуле:

$$\sigma = \sqrt{\frac{\sum (x_i - \overline{x})^2}{n-1}}$$

где  $x_i$  - каждое наблюдаемое значение признака;

 $\vec{x}$  - среднее значение (среднее арифметическое);

п - количество наблюдений.

В данном случае:

$$\sigma = \sqrt{\frac{102,944}{16-1}} = \sqrt{6,893} = 2,62$$

Подставляя в формулы для расчета A и E полученные значения n, σ и соответствующие значения из таблицы, получаем:

$$A = \frac{+30,468}{16 \cdot 2,62^3} = +0,106$$

$$E = \frac{1725,467}{16 \cdot 2,62^4} - 3 = -0,711$$

Теперь рассчитаем критические значения для показателей A и E по формулам E.И. Пустыльника:

$$A_{\text{kp}} = 3 \cdot \sqrt{\frac{6 \cdot (n-1)}{(n+1) \cdot (n+3)}}$$

$$E_{\text{kp}} = 5 \cdot \sqrt{\frac{24 \cdot n \cdot (n-2) \cdot (n-3)}{(n+1)^2 \cdot (n+3) \cdot (n+5)}}$$

где п - количество наблюдений.



В данном случае:

$$A_{\text{kp}} = 3 \cdot \sqrt{\frac{6 \cdot (16 - 1)}{(16 + 1) \cdot (16 + 3)}} = 3 \cdot \sqrt{\frac{90}{323}} = 1,58$$

$$E_{\text{kp}} = 5 \cdot \sqrt{\frac{24 \cdot 16 \cdot (16 - 2) \cdot (16 - 3)}{(16 + 1)^2 \cdot (16 + 3) \cdot (16 + 5)}} = 5 \cdot \sqrt{\frac{69888}{115311}} = 3,89$$

$$A_{\text{sum}} = 0,106$$

$$A_{\text{som}}\angle A_{\text{xp}}$$

$$E_{3M\Pi} = -0.711$$

Так как эмпирические значения A и E меньше критических значений, то можно сделать следующий вывод: распределение результативного признака в данном примере не отличается от нормального распределения.

## v

### Процедура стандартизации

Приведение распределения к стандартной форме. Любое множество значений показателя со средним значением Mx и стандартным показателем  $\sigma$  можно преобразовать в другое множество, среднее значение которого равно 0, а стандартное отклонение - равно 1.

Необходимость в таком преобразовании возникает когда требуется сопоставить значения показателей, имеющих разную размеренность, т.е. измеренных по шкалам с различными единицами измерения (баллы, секунды, см и т. д.).

Такое преобразование называется стандартизация или нормирование и позволяет получить стандартизированные или нормированные значения исходных данных.



 Стандартизация (нормирование) осуществляется по формуле:

$$Z_i = \frac{X_i - Mx}{\sigma}$$

где Zi – стандартная тестовая оценка i-го испытуемого,

Хі – нормальная оценка і-го испытуемого.

Смысл этой процедуры состоит в том, что на шкале интервалов **вводится новая единица измерения**, равная значению средне квадратичного отклонения  $\sigma$  и исходное значение показателя хі и его отклонения от среднего хі — Mx начинают измеряться в единицах этого средне квадратичного отклонения.

Чтобы избежать дробных и отрицательных значений z используют линейное преобразование значений показателя:



- Из наиболее известных шкал, образованных путем указанной процедуры стандартизации исходных значений показателя:
- а) **шкала Гилфорда**, построенная им для оценки интеллекта:

$$IQ = 100 + 15 * \frac{Xi - Mx}{\sigma}$$

б) шкала Векслера, которая была построена для этих же целей:

$$IQ = 10 + 3 * \frac{Xi - Mx}{\sigma}$$

в) шкала общего значения Мак-Колла (шкала Т-баллов):

$$T=50+10*\frac{Xi-Mx}{\sigma}$$

18

v

В проведенном школьном обследовании по следующим методикам (логического мышления, воображения, объема памяти, общительность) ученик получил следующие результаты (см. таблицу).

Рассчитайте Т-баллы данного ученика и постройте его индивидуально-психологический профиль.

| Методика<br>измерения: | Индивидуальные<br>показатели<br>ученика | Среднее значение<br>по группе | σ по<br>группе |  |
|------------------------|-----------------------------------------|-------------------------------|----------------|--|
| Воображение            | 13                                      | 10,2                          | 2,3            |  |
| Логическое             | 92                                      | 103                           | 12,4           |  |
| мышление               |                                         |                               |                |  |
| Объем памяти           | 6                                       | 5,4                           | 1,3            |  |
| Общительность          | 6                                       | 7,7                           | 1,6            |  |

## м

#### Статистическая норма

Принято считать, что в пределах  $Mx \pm 2\sigma$  располагаются значения, относящиеся к статистической норме, то есть те значения, которые включены в так называемый 95%-ный доверительный интервал. Знание Mx и  $\sigma$  можно использовать для выведения статистической нормы.

Обязательные для этой процедуры условия: *соответствие* распределения нормальному и  $n \ge 30$ .

**Например,** необходимо определить границы нормы для российской выборки у переведенного недавно с английского языка теста. После перевода и адаптации мы проводим исследование на оптантах, чьим родным языком является русский.

По окончании обработки результатов получаем:  $n = 80, Mx = 30, \sigma = 5,9.$ 

Границы статистической нормы для теста лежат в диапазоне  $Mx \pm 2 \sigma$ , то есть  $30 \pm 11.8$ . Таким образом, верхняя граница нормы = 18, нижняя = 42.



#### Схема деления выборки на подгруппы

• Деление выборки на три подгруппы.

Первая центральная подгруппа образуется из испытуемых, имеющих значение показателя в пределах  $Mx \pm \sigma$ . Во вторую подгруппу выделяются испытуемые со значениями показателя, превышающего  $Mx + \sigma$ . Третью группу образуют испытуемые, у которых значение показателя ниже  $Mx - \sigma$ .

Значения показателей центральной подгруппы испытуемых рассматривают в качестве **нормы**; второй и третье подгрупп — соответственно, **выше и ниже нормы**.

v

Другой распространённой шкалой являются **стены**, для которых Mx = 5.5 и  $\sigma = 2$  (стен – от англ. sten, сокр. standart ten – стандартная десятка).

Для перевода в стены можно использовать формулу стандартизации, но чаще всего используют более формальную процедуру: находят среднее (Mx), стандартное отклонение ( $\sigma$ ), от среднего в обе стороны отсчитывают по пять интервалов по  $\sigma/2$  (половине  $\sigma$ ). Получившиеся 10 интервалов и являются стенами.

Таким образом, **первый стен** получен при  $Mx - 2 \cdot \sigma$ , а **10 стен** — при  $Mx + 2 \cdot \sigma$ . К среднему диапазону принято относить стандартные оценки **от 4 до 7 стенов**. Говорить о значимых отклонениях, выходящих за границы средней нормы, можно при получении стандартных оценок до 3

v

Выбор типа шкалы зависит от исходных данных.

Если сырой балл принимает значения от 0 до 100 и мы стандартизируем его в стены, то явно теряем слишком много информации, т.к. внутри одного стандартного интервала может находиться достаточно много сырых баллов. Это неприемлемо.

Поэтому, при большом диапазоне сырых баллов используются Т-баллы. В тестах интеллекта традиционно используется IQ, если интервал значений сырых баллов невелик, то можно использовать стены.



#### Нормализация исходных данных

Процедура приведения распределения к нормальному виду носит название **нормализация**, а преобразованные исходные данные называются **нормализованными**.

Нормализованные значения могут быть найдены с помощью таблиц, в которых приводится процент случаев (процентили) разных отклонений в единицах о от среднего значения для нормальной кривой.

Алгоритм: сначала определяется процент испытуемых в исследуемой выборке с тем же или более высоким исходным значением показателя (вычисляются соответствующие кумуляты распределения - распределение признака в вариационном ряду по накопленным частотам). Затем этот процент отыскивается в таблице нормального распределения частот и по нему находится соответствующее значение нормализованного стандартного показателя. Далее распределению этих нормализованных значений путем соответствующего линейного преобразования можно придать любую удобную для последующего анализа форму. 24

### Примеры

1. Процедура нормализации исходного распределения испытуемых по возрасту.

| Возраст испытуемого (лет)            | 17 | 18 | 19 | 20 | 21 | 22 | 23  |
|--------------------------------------|----|----|----|----|----|----|-----|
| Кол-во испытуемых данного возраста   | 2  | 15 | 14 | 6  | 6  | 5  | 2   |
| Доля испытуемых данного возраста (%) | 4  | 30 | 28 | 12 | 12 | 10 | 4   |
| Кумулята распределения (%)           | 4  | 34 | 62 | 74 | 86 | 96 | 100 |



• С помощью таблицы соответствия процентилей и нормированных значений z для нормального распределения по значениям кумулят находим соответствующие нормализованные значения возраста:

| Нормализованные | -1,75 | -0,41 | 0,31 | 0,64 | 1,08 | 1,75 | 3,09 |
|-----------------|-------|-------|------|------|------|------|------|
| значения Z      |       |       |      |      |      |      |      |

Преобразуем полученные значения z в более удобные значения T-баллов: T = 50 + 10 \* z (при нормальном распределении Mx=0,  $\sigma=1$ ).

| Значения Т -баллов | 32,5 | 45,9 | 53,1 | 56,4 | 60,8 | 67,5 | 80 |
|--------------------|------|------|------|------|------|------|----|
|                    |      |      |      |      |      |      | ,9 |