Лекция 14

Химия биогенных элементов

План

- 14.1 Основы биогеохимии
- 14.2 Химия S-элементов
- 14.3 Химия d-элементов

14.4 Химия р-элементов

14.1 Биогеохимия – это наука, изучающая распределение химических элементов и их миграцию в биосфере.

Основным вопросом биогеохимии является вопрос о взаимосвязи живого и неживого вещества.

Становление биогеохимии как науки произошло в 30-е годы XX века.

Ее основоположником является академик В.И. Вернадский.

Академик Вернадскийосновоположник современных наук о Земле - геохимии, биогеохимии, радиогеологии и др. Он создал учение о биосфере и ее эволюции в ноосферу, в которой человеческий разум становятся мощной силой, сравнимой по своему воздействию на природу с геологическими процессами.

В.И. ВЕРНАДСКИЙ (1863-1945)

Биосфера – это единственная область Земли, занятая жизнью. Все живые существа в ней образуют биомассу, причем человечество составляет лишь небольшую ее часть.

Анализируя содержание элементов в земной коре и в живых организмах, Вернадский пришел к выводу, что качественный состав этих объектов близок.

Он предполагал, что в живом организме когда-нибудь будут найдены все элементы ПС, обнаруженные в неживой природе.

Однако по количественному составу объекты живой и неживой природы существенно отличаются друг от друга.

98 % земной коры составляют 8 химических элементов: O, Si, Al, Fe, Ca, Na, K, Mg

В живом организме преобладают б элементов: С, Н, О, N, Р, S, на которые приходится 97,4 % массы тела.

В земной коре преобладают металлы, а в живых организмах

- неметаллы.

Из основных элементов биомассы только кислород и кальций широко представлены в земной коре.

Такие элементы как кремний, алюминий и железо, находящиеся в земной коре в наибольших количествах, в биомассе представлены в невысоких концентрациях.

Согласно теории П. Виноградова, живые организмы легко накапливают те химические элементы, которые образуют газы и пары атмосферы или водорастворимые соединения с главными ионами гидросферы: H⁺, OH⁻, HCO₃⁻, CO₃²⁻, I⁻, SO₄²⁻,

Например: С – макроэлемент, т.к. образуемые им оксиды СО и СО₂ – газы;

Si — микроэлемент, т.к. SiO₂ — нерастворимое в воде твердое вещество.

БИОГЕННЫМИ

называются химические элементы в той или иной форме входящие в состав биомассы и выполняющие в ней определенные жизненные функции.

К важнейшим биогенным элементам относятся:

- •6 неметаллов-органогенов: С, О, H, N, P, S;
- •10 биометаллов (металлов жизни): Na, K, Mg, Ca (s-элементы) и Fe, Co, Cu, Zn, Mn, Mo (d-элементы).

По содержанию в биомассе химические элементы делятся на:

•МАКРОЭЛЕМЕНТЫ (более 10⁻² %): неметаллыорганогены и Cl, а так же биометаллы, относящиеся к **s-блоку**;

•МИКРОЭЛЕМЕНТЫ

(10⁻⁵-10⁻³ %): биометаллы, относящиеся к d-блоку, а так же Ni, Cr, Si, B и др.;

•УЛЬТРАМИКРОЭЛЕМЕНТЫ

(менее 10⁻⁵ %): Hg, Au и др.

Установлена взаимосвязь между содержанием элемента в организме и его положением в ПС.

В подгруппах сверху вниз происходит увеличение токсичности химических элементов и их соединений и, как следствие, уменьшение содержания в биомассе.

Наиболее токсичные металлы

IV A	VA	VIA	VII A	VIII			ІБ	ΠБ
	V *	Cr *	Mn	Fe	Co	Ni *	Cu	Zn
Zr	Nb	Mo	Te	Ru	Rh	Pd	Ag	Cd *
Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg *

* Выделены металлы, признанные остротоксичными

На токсичность химического элемента влияет степень его окисления в соединении. Чем выше степень окисления элемента, тем выше его токсичность.

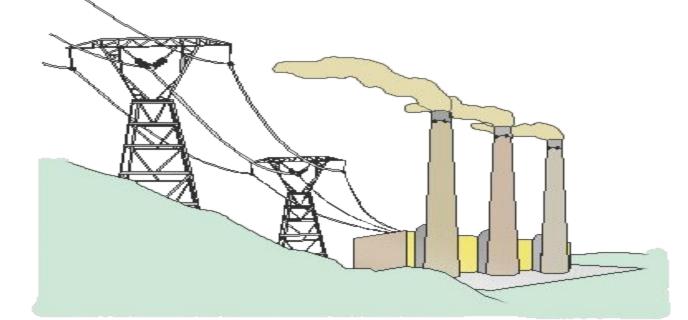
Так, ионы хрома Cr³⁺ являются

малотоксичными, а анионы ${\rm CrO_4^{2-}}$ и ${\rm Cr_2O_7^{2-}}$, содержащие ${\rm Cr}^{6+}$, характеризуются высокой токсичностью.

А.П. Виноградов сформулировал понятие о БИОГЕОХИ-МИЧЕСКОЙ провинции.

1895-1975

Это часть биосферы, характеризующаяся экстремальными геохимическими условиями и определенными постоянными реакциями организмов на них (эндемические заболевания, возникновение мутантов, уродства и др.).


Например, Белорусское Полесье характеризуется крайне низким содержанием йода, что приводит к массовым случаям заболевания щитовидной железы (эндемический зоб).

Спектр йоддефицитных заболеваний весьма широк. Дефицит тиреоидных гормонов у плода приводит к снижению умственного развития, вплоть до кретинизма. В результате исследований выяснилось, что от йодного дефицита страдает мозг ребенка, а также его слух, речь, зрительная память.

Биогеохимия явилась фундаментом для современной экологической химии, изучающей вопросы, связанные с характеристикой основных химических токсикантов, методами борьбы с ними, изысканием новых экологически чистых источников энергии.

К важнейшим токсикантам относятся:

1) CO₂ – энергетика, промышленность, отопление

Избыток CO, B атмосфере создает парниковый эффект

2) CO – металлургия, транспорт, переработка нефти;

СО образует комплекс с гемоглобином (кровь теряет способность переносить кислород);

3) SO₂ – энергетика, химическая промышленность, переработка нефти; является причиной появления кислотных дождей.

4) NO и NO, двигатели внутреннего сгорания, реактивные двигатели,

домны, химическая промышленность; кислотные дожди и разрушение озонового слоя Земли.

5) **Hg** – производство лаков и красок, обогащение руд, целлюлознобумажная промышленность

6) **Pb** – химическая и горнодобывающая промышленность, двигатели внутреннего сгорания

Источники поступления свинца в атмосферный возду

7) фосфаты химические моющие средства, удобрения

8) нефть — нефтеперерабатывающая промышленность, транспортировка нефти

9) пестициды – сельское хозяйство, хлорирование воды (диоксины); 10) радиация – производство ядерного топлива, атомная энергетика.

14.2 Исходя из современной квантово-механической интерпретации периодической системы, классификация химических элементов производится в соответствии с их электронной конфигурацией.

Она основана на характере заполнения орбиталей электронами. В соответствии с этим принципом все элементы s-, p-, d- и f делятся на

- блоки или семейства.

К s-блоку относятся химические элементы с электронной

формулой ns^{x} , где x = 1, 2.

Различают s¹-элементы (щелочные металлы и водород) и s²-элементы (Be, Mg, щелочноземельные металлы и гелий).

Элементы ѕ-блока – это металлы (исключение составляют Н и Не). Самыми активными являются щелочные металлы, легко отдающие валентный электрон и превращающиеся в устойчивые однозарядные катионы: $Me - \overline{e} \rightarrow Me^+$.

Их высокая металличность обусловлена большими атомными радиусами и лишь одним валентным электроном на внешнем уровне.

s²-Элементы уступают им по металличности, так как имеют меньшие радиусы и большее число валентных электронов.

В подгруппах ѕ-элементов сверху вниз металличность атомов усиливается, что обусловлено увеличением атомных радиусов и уменьшением энергии ионизации.

В своих соединениях s-металлы проявляют степени окисления +1 (щелочные) и +2 (Ве, Мд и щелочноземельные металлы). К их важнейшим соединениям относятся:

• оксиды Me₂O и MeO,

• гидроксиды МеОН и Ме(ОН)2,

• гидриды МеН и МеН₂

• соли

Оксиды и гидроксиды s-металлов имеют основной характер, усиливающий с ростом металличности элементов:

NaOH

Mg(OH)

Уменьшение основности

LiOH, NaOH, KOH, CsOH, FrQH

Увеличение основности

Исключением являются **BeO** и **Be(OH)**₂, обладающие амфотерными свойствами:

$$K = 10^{-30}$$
 $K_b = 10^{-18}$
2 $H^+ + BeO_2^{3-2-} \neq Be(OH)_2^2 \neq Be^{2+} + 2 OH^{-1}$

Амфотерность — это кислотно-основная двойственность.

Гидриды s-металлов — твердые солеподобные вещества ионного типа, легко разлагающиеся водой и кислотами:

$$MgH_2 + 2 H_2O \rightarrow Mg(OH)_2 + 2 H_2$$

 $MgH_2 + 2 HCl \rightarrow MgCl_2 + 2 H_2$

Особое положение среди sэлементов занимает водород. Согласно современным представлениям, водород с электронной конфигурацией 1s¹ нельзя отнести к какой-либо группе; его следует считать просто первым элементом периодической системы.

К важнейшим биогенным элементам s-блока, кроме H, относятся Na, K, Са и Mg. Все они являются макроэлементами.

К высокотоксичным элементам относится барий. Например, высшей летальной дозой BaCl, является 1 г/ 70 кг массы тела человека.

Эле-	Ткани с преиму- ществен- ным накопле- нием элемента	Биологи- ческая роль	Содер- жание элемен- та in vivo	Лекарс- твен- ные ве- щества	
1	2	3	4	5	

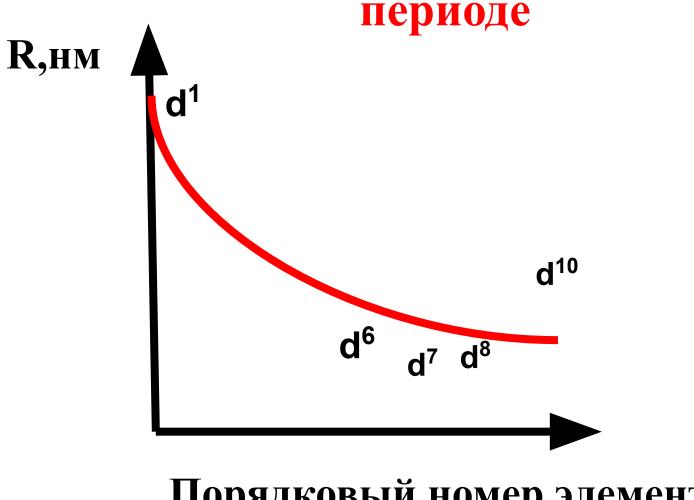
14.3 Элементами d-блока (или переходными элементами) называются элементы, атомы которых имеют электронную конфигурацию $ns^2(n-1)d^x$, где x = 1-10.

Исключение составляют Ag, Cu, Au, Cr, Pt, Nb, Ru, Rh и некоторые другие элементы, для которых формула валентного слоя $ns^{1}(n-1)d^{x}$, что связано с электронным проскоком.

= 5 или 10

Появление электронного проскока объясняется повышенной стабильностью d-подуровня:

- а) полностью заполненного электронами (d¹⁰),


Элементы d-блока расположены в побочных подгруппах I Б –VIII Б; они являются металлами средней и низкой активности, уступая по металличности элементам s- и p-блоков.

Особенностью dэлементов является отсутствие монотонности в изменении их свойств как в подгруппах сверху вниз, так и в периодах слева направо.

Причиной этого явления является эффект d-сжатия, вызванный проникновением внешних d-электронов к ядру и приводящий к уменьшению атомного радиуса.

Сильнее всего эффект d-сжатия проявляется у d^1 , d^2 и d^3 –элементов, он практически отсутствует у d⁹ и d¹⁰ – элементов.

Зависимость атомных радиусов dэлементов от их порядкового номера в

Порядковый номер элемента

Наличие эффекта d - сжатия является причиной появления триад d-элементов, относящихся к VIII Б группе.

Триада железа: Fe, Co, Ni. Триады платиновых металлов: Ru, Rh, Pd, Os, Ir, Pt.

Элементы триад имеют сходные физикохимические и биологические свойства из-за близкого значения атомных радиусов.

Триада железа

Fe

Co

Ni

 d^6

 \mathbf{d}^7

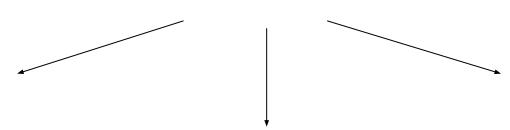
 $\mathbf{q_8}$

R, HM 0,123

0,118

0,114

090


1,64

1,70

1,75

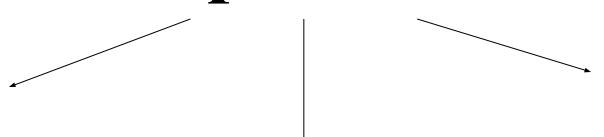
К важнейшим соединениям d-элементов относятся:

оксиды

основные

FeO

MnO


амфотерные

ZnO, Fe₂O₃ Cr₂O₃

кислотные

FeO₃ Mn₂O₇

Гидроксиды

Основания

Кислоты

Fe(OH),

Амфотерные основания

H₂FeO₄

Zn(OH)₂, Fe(OH)₃ Cr(OH)₃

Гидриды

Большинство d- элементов образуют гидриды переменного состава $(TiH_{1.7}; TiH_{0.9}),$ а платиновые металлы образуют с водородом твердые растворы.

Для большинства d-элементов характерно многообразие степеней окисления атомов в соединениях.

Степени окисления d-элементов

Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn
+3	+4	+5	+6	+7	+6	+5	+4	+3	+2
	+3	+4	+5	+6	+5	+4	+3	+2	
	+2	+3	+4	+5	+4	+3	+2	+1	
	+1	+2	+3	+4	+3	+2	+1		
		+1	+2	+3	+2	+1			
			+1	+2	+1				

С ростом степени окисления:

- а) увеличивается кислотность оксидов и гидроксидов,
- б) возрастают окислительные свойства атомов и их соединений

d-Элементы являются ЛУЧШИМИ комплексообразователями, так как для них характерны маленькие ионные радиусы и сравнительно высокие степени окисления.

Самыми сильными комплексообразователями являются элементы триад. Это обусловлено эффектом d- сжатия.

В биосистемах dэлементы присутствуют только в форме комплексных соединений с биолигандами.

К биогенным элементам d-блока относятся Fe, Co, Mo, Cu, Zn, Mn. Они являются микроэлементами, выполняющими в организме многочисленные функции:

- активируют ферменты,
- входят в состав гормонов и витаминов,
- участвуют в процессах кроветворения и тканевого дыхания

14.4 К р-блоку относятся элементы с общей формулой

ns²np^x,

где x = 1-6

Они расположены в III A – VIII A группах.

- •Халькогены (VI A группа),
- Галогены (VII А группа),
- Инертные газы (VIII А группа),
- Элементы подгрупп бора, углерода и азота.

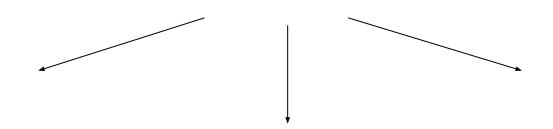
Диагональ В – At

делит рэлементы на металлы (под диагональю) и неметаллы (над

диагональю)

10,811 5B 5eP 1s'2s'2p'	12,0107 6 6 9 9 9 15 ² 25 ² 2p ² 4 2 4	14,00674 30 N 7 N A30T 1s ² 2s ² 2p ³ 3 1 2 3 4 5	15,9994 39 O 8 O 18 25 22 22 1 2	18,9984032 (19 F 9 F 1s ² 2s ² 2p ⁵	20,1797 P Ne 10 Ne HEON 1s ² 2s ² 2p ⁸
26,981538 13 А 13 А Алюминий [Ne]3s ² 3p ¹	28,0855 14 Si 14 Si RPEMBHH (Ne]3s ² 3p ² 4 2 44	30,973761 2,70 15 15 0000000 [Ne]3s ² 3p ³ 3 4 4 45	32,066 28 S 16 CEPA [Ne]3s ² 3p ⁴	35,4527 2,83 CI 17 CI NHOP [Ne]3s'3p' -1 4 4 4 5 4	39,948 18Ar 18Ar APTON [Ne]3s²3p°
69,723 133 Ga 104 FAIJANN [Ar]3d ¹⁰ 4s ² 4p ⁴	72,61 20 Ge 32 Ge 1EPMAHHĤ [Ar]3d [®] 4s ² 4p ²	74,92160 230 AS 33 AS MBHHBMH [Ar]3d ¹⁰ 4s ² 4p ³ 3 43 45	78,96 24 Se 34 Se CEREN [Ar]3d ¹⁰ 4s ² 4p ⁴ 2 2 444	79,904 27 Br 35 Br 6POM [Ar]3d ^M 4s ² 4p ⁵ -1 4 3 6 47	83,80 36 Kr RPMNTON [Ar]3d ¹⁰ 4s ² 4p ⁶
114,818 19 In 49 In (Kr)4d ¹⁰ 5s ² 5p ¹	118,710 120 50 6,000 (Kr)4d ¹⁰ 5s ² 5p ²	121,760 2.19 Sb 51 Sb CVPLMA [Kr]4d ¹⁶ 5s ² 5p ³	127,60 20 Te 52 Te TEHRYP [Kr]4d ¹⁰ 5s ² 5p ⁴	126,90447 27 53 100,0 [Kr]4d 5s 5p 5 3 1 9 9 9 9	131,29 2.0 Xe 54 Xe RCENON [Kr]4d ⁰ 5s ² 5p ⁶
204,3833 129 TI 81 TI TAMMM [Xe)4f*5d*6s²6p*	207,2 2,19 Pb 82 Pb CRMMEN [Xe]4f*5d*6s*6p*	208,98038 2.79 Bi 83 Bi висилт [Xe]4f*5d*6s*6p*	[209] 2.0 PO 84 PO 10.00000 10.00000 10.00000 10.00000000000000000000000000000000000	[210] 2,19 At 85 At ACTAT X6)41 50 63 60 1 1 3 5 7	[222] 28 Rn 86 Rn PAJOR [Xe)4"5d"66'6p' +2 4 4
[282] 113 Uut [Rn]5f*6d*7s*7p*	[285] 114 UUQ [Rn]5f*6d*7s³7p ²		[289] 116 Uuh [Rn]5f*6d*7s²7p′		[293] <mark>118UUO</mark> [Rn]5f*6d*7s*7p ⁶

В подгруппах сверху вниз металлические свойства р-элементов усиливаются, а неметаллические ослабевают.


Об этом свидетельствует уменьшение энергии ионизации, сродства к электрону и электроотрицательнос-TU.

В периодах слева направо усиливаются неметаллические свойства и ослабевают металлические.

Наиболее активными неметаллами являются галогены и халькогены.

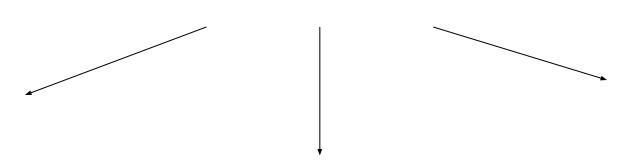
К важнейшим соединениям р-элементов относятся:

оксиды

основные

Bi₂O₃

амфотерные


SnO, PbO Al₂O₃

кислотные

SO₃ Cl₂O₇ Кроме того, неметаллы рблока образуют несолеобразующие оксиды, имеющие высокую физиологическую активность

N₂O, NO, CO, SiO.

Гидроксиды

Основания

Амфотерные

основания

H₂SO₄

Кислоты

 $Bi(OH)_3$

Al(OH)₃ Pb(OH)₂ Sn(OH)₂

HNO₃

С увеличением металличности атомов усиливается основность оксидов и гидроксидов, а с увеличением неметалличности возрастает кислотность указанных соединений.

H₃BO₃ H₂CO₃ HNO₃

Увеличение кислотности

HNO₃

 H_3PO_4

H₃AsO₄

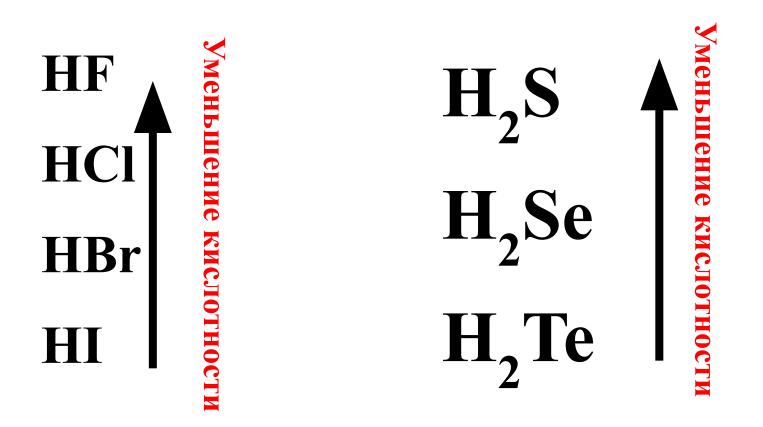
Уменьшение кислотности

Подобно d-элементам, р-элементы характеризуются многообразием степеней окисления атомов в их соединениях.

С увеличением степени окисления атомов возрастает кислотность оксидов и гидроксидов элементов р-блока:

HCIO HCIO₂ HCIO₃ HCIO₄

Увеличение кислотности


Гидриды р-металлов (AlH₃)_x, SnH₂ – это твердые кристаллические вещества, разлагаемые водой и кислотами.

Водородные соединения рнеметаллов — газы, растворяющиеся в воде с образованием:

- б) оснований (NH₃, PH₃, AsH₃),

Кроме того, элементы IV А- группы углерод и кремний образуют водородные соединения CH₄ u SiH₄ He растворимые в воде и не взаимодействующие с

В подгруппах сила бескислородных кислот уменьшается с ростом активности соответствующих неметаллов:

Важнейшими биогенными элементами р-блока являются неметаллы-органогены С, O, N, P, S. Они, а также Cl, содержатся в организме человека в макро количествах.

Благодарим

3a

внимание!!!