Временные ряды

Временной ряд – это совокупность значений какого-либо показателя за несколько последовательных моментов времени:

 $Y_1, Y_2 \cdots Y_n$

Значение временного ряда в каждый момент времени (уровень ряда) формируется под воздействием большого числа факторов, которые можно подразделить на 3 группы:

- долговременные факторы, формирующие тенденцию (тренд) ряда;
 -кратковременные (сезонные) факторы, формирующие сезонные колебания ряда;
- случайные факторы.

Есть только тренд и случайная компонента

Есть и тренд, и сезонная компонента, и случайная компонента

Для построения трендов чаще всего используются следующие функции:

линейный тренд

$$y_t = a_0 + a_1 t$$

Линейный тренд используют в случае постоянного абсолютного прироста

Для построения трендов чаще всего используются следующие функции:

квадратичный (параболический) тренд: $y_t = a_0 + a_1 t + a_2 t^2$

Квадратичный тренд используют в случае увеличивающегося абсолютного прироста

Для построения трендов чаще всего используются следующие функции:

показательный тренд: $y_t = a_0 \cdot a_1'$

Показательный тренд используют в случае увеличивающегося абсолютного прироста

Для построения трендов чаще всего используются следующие функции:

 $y_t = a_0 t^{a_1}$

степенной тренд:

Степенной тренд используют как в случае увеличивающегося абсолютного прироста $a_1 > 1$, так и в случае уменьшающегося

 $a_1 < 1$

Для построения трендов чаще всего используются следующие функции:

логарифмический тренд:

$$y_t = a_0 + a_1 \ln t$$

Логарифмический тренд используют в случае уменьшающегося абсолютного прироста

Для построения трендов чаще всего используются следующие функции:

гиперболический тренд:

Гиперболический тренд используют в случае уменьшающегося абсолютного прироста

Для построения трендов чаще всего используются следующие функции:

модифицированная экспонента:

$$y_t = a_0 - a_1 e^{-t}$$

Этот тренд используют в случае уменьшающегося абсолютного прироста

Для построения трендов чаще всего используются следующие функции:

тренд Гомперца:

 $y_t = a_0 - a_1 r^t$

Тренд Гомперца используют как в случае увеличивающегося абсолютного прироста, так и в случае уменьшающегося

Для построения трендов чаще всего используются следующие функции:

логистический тренд:

$$T_t = \frac{a}{1 + be^{-ct}}$$

Логистический тренд используют как в случае увеличивающегося абсолютного прироста, так и в случае уменьшающегося. Также логистический тренд можно использовать в случае смены типа прироста.

линейный тренд $y_t = a_0 + a_1 t + \xi_t$

Это обычная модель парной регрессии. Расчет параметров трендов осуществляется методом наименьших квадратов.

 a_0 и a_1 выбирают из условия минимума функции

$$f(a_0, a_1) = \sum_{t=1}^{n} (y_t - a_1 t - a_0)^2$$

Для автоматического поиска параметров **линейного тренда** в Excel есть 2 способа

Данные – Анализ данных – Регрессия
 Входной интервал Y – значения временного ряда
 Входной интервал X – столбец, куда занесены числа 1, 2, 3, 4,n

	Коэф фици енты	Стан дарт ная ошибк а	t- cmam истик а	Р- Значе ние	Нижн ие 95%	Верхн ие 95%
Ү- пересечен ие	-3666, 29	844,7 813	-4,339 92	0,000 679	-5478, 16	-1854, 41
y=-3666,2	9 +12732 3 132	3, \$3, \$6 52	19,72 332	1,3E-1 1	1535, 752	1910, 512

Для автоматического поиска параметров линейного тренда в Excel есть 2 способа

 Построить диаграмму график для временного ряда, после чего щелкнуть правой кнопкой мыши и выбрать Добавить линию тренда. Указать тип тренда – линейный.

y=-3666,29+1723,13t

Нелинейные тренды надо свести к линейному, если это возможно. квадратичный (параболический) тренд: $y_t = a_0 + a_1 t + a_2 t^2$

t	t^2	сред.ден. дох., руб.
1	1	1010,2
2	4	1658,9
3	9	2281,1
4	16	3062
5	25	3947,2
6	36	5167,4
7	49	6399
8	64	8088,3
9	81	10154,8

Данные – Анализ данных – Регрессия Входной интервал Y – значения временного ряда Входной интервал X – столбцы t и t^2,

Нелинейные тренды надо свести к линейному, если это возможно.

квадратичный (параболический) тренд: $y_t = a_0 + a_1 t + a_2 t^2$

	-	Стан		
		дарт	t-	
	Коэф	ная	cmam	P-
	фици	ошибк	истик	Значе
	енты	а	а	ние
Y-	h			
пересечен	290,7	330,5	0,879	0,395
ие	579	593	594	048
	404,1	89,49	4,515	0,000
t and a t	178	656	456	581
Y=290,8+4	04,11+7	//,6t^2	15 16	1 21F-
t^2	908	851	048	09

квадратичный (параболический) тренд: $y_t = a_0$

$$= a_0 + a_1 t + a_2 t$$

2 способ. Построить диаграмму график для временного ряда, после чего щелкнуть правой кнопкой мыши и выбрать Добавить линию тренда. Указать тип тренда – полиномиальный 2-го порядка.

Нелинейные тренды надо свести к линейному, если это возможно.

степенной тренд:

$$y_t = a_0 t^a$$

Прологарифмируем $\ln(y_t) = \ln(a_0) + a_1 \ln(t)$

In t	ln y
0	6,917904
0,6931472	7,41391
1,0986123	7,732413
1,3862944	8,026824
1,6094379	8,280762
1,7917595	8,550125
1,9459101	8,763897
2,0794415	8,998174
2,1972246	9,225702

Данные – Анализ данных – Регрессия Входной интервал Y – столбец In у Входной интервал X – столбец In t,

Нелинейные тренды надо свести к линейному, если это возможно.

степенной тренд:

$$y_t = a_0 t^{a_1}$$

Прологарифмируем $\ln(y_t) = \ln(a_0) + a_1 \ln(t)$

		Стан			
		дарт	t-		
	Коэф	ная	cmam	P-	
	фици	ошибк	истик	Значе	
	енты	а	а	ние	
Y-			1	-	
пересечен	6,502	0,128	50,49	3,04E-	
ln(v) =	6^{293}_{+}	1 3761	$n(t^{476})$	17	
(y_t)	1,261	0,062	20,21	9,32E-	
In t	183	4	141	12	
$y_t = \exp(\theta$	5, 5+1,	26 ln(a	(t)) = 6	66,7.1	.,26 ^t

степенной тренд:

$$y_t = a_0 t^a$$

2 способ. Построить диаграмму график для временного ряда, после чего щелкнуть правой кнопкой мыши и выбрать Добавить линию тренда. Указать тип тренда – степенной.

Тренды, не сводящиеся к линейным (Гомперца и логистический) можно построить, используя сервис Поиск решения

Тренды, не сводящиеся к линейным (Гомперца и логистический) можно построить, используя сервис Поиск решения

0,29

С

значения, дающие
 минимальную сумму квадратов ошибок,
 полученные через Поиск решения

Тренды, не сводящиеся к линейным (Гомперца и логистический) можно построить, используя сервис Поиск решения

Как выбрать подходящую модель тренда?

После того, как построены несколько моделей, лучшую из них выбирают по сумме квадратов ошибок.

$$\sum_{t=1}^{n} \left(y_t - T_t \right)^2$$

год	у	$\stackrel{\boxtimes}{{\mathcal Y}}_{\ddot{\imath}\dot{a}\check{\sigma}\dot{a}\check{a}}$	$\overset{\bowtie}{{\mathcal Y}_{\ddot{\imath}\hat{\imath}\hat{e}}}$	$\stackrel{\bowtie}{{\mathcal Y}}_{ ilde{{\it n}}{\it o}}$ åï	$(y - y_{\ddot{x}\dot{a}\dot{a}\dot{a}\dot{a}\dot{a}\ddot{c}\dot{a}\dot{a}})^2$	$(y-\overset{\boxtimes}{y_{\hat{i}\hat{i}\hat{e}}})^2$	$(y - y_{\tilde{n}\tilde{o}\tilde{a}\tilde{i}\tilde{a}\tilde{i}\tilde{i}\tilde{a}\tilde{y}})^2$
1998	1010,2	772,5	1564,4	666,7	56518,1	307084,4	118013,7
1999	1658,9	1409,3	1927,3	1598,0	62275,3	72022,0	3714,5
2000	2281,1	2201,4	2374,4	2664,7	6350,0	8701,2	147144,1
2001	3062	3148,7	2925,2	3830,2	7508,9	18709,4	590082,8
Сумма	квадрато	ов ошибок			1944942,5	146311222,6	49357881,0

Точечный прогноз строим, подставив вместо t в уравнение тренда соответствующее значение

год	t	Точечный
		прогноз
2014	17	29584,0
2015	18	32703,7
2016	19	35978,7

Формула для лучшей модели

Доверительный интервал для прогноза на момент времени $t^{'} > n$

1. Задаем 📿 - вероятность ошибки прогноза, обычно 0,05, 0,01.

2. Вычисляем стандартную ошибку прогноза по формуле

$$s_{y}(t^{*}) = S \sqrt{1 + \frac{1}{n} + \frac{(t^{*} - \overline{t})^{2}}{\sum_{t=1}^{n} (t - \overline{t})^{2}}}$$

S – стандартная ошибка уравнения регрессии. Берем из таблицы регрессионного анализа

Регрессионная ста	тистика	
Множественный R	0,99907	
R-квадрат	0,99814	
Нормированный R- квадрат	0,997854	S
Стандартная ошибка	386,7958	
Наблюдения	16	

Доверительный интервал для прогноза

- 1. Задаем 🛛 вероятность ошибки прогноза, обычно 0,05, 0,01.
- 2. Вычисляем стандартную ошибку прогноза по формуле

$$s_{y}(t^{*}) = S_{v} \sqrt{1 + \frac{1}{n} + \frac{(t^{*} - \overline{t})^{2}}{\sum_{t=1}^{n} (t - \overline{t})^{2}}}$$

n – длина временного ряда (число наблюдений)

t момент времени, для которого строится прогноз

- среднее по столбцу, содержащему 1,2,n

Доверительный интервал для прогноза

3. Для заданного lpha вычисляем квантиль распределения Стьюдента

 $t_{\alpha}(n-k)$

к – число оцениваемых параметров, например для линейного тренда к=2, для параболического к=3.

Вычисляем с помощью функции Excel

Доверительный интервал для прогноза

4. Вычисляем доверительный интервал по формуле

$$\left(\overset{\boxtimes}{y}_{t^*} - s_y(t^*) \cdot t_\alpha(n-k); \overset{\boxtimes}{y}_{t^*} + s_y(t^*) \cdot t_\alpha(n-k)\right)$$

 $\overset{\boxtimes}{\mathcal{Y}}_{n+t}$ - точечный прогноз на t периодов времени вперед

год	t^{*}	Точечный прогноз	стандартная ошибка прогноза	нижняя граница	верхняя граница
2014	17	29584,0	412,3	28693,4	30474,6
2015	18	32703,7	415,6	31806,0	33601,5
2016	19	35978,7	419,2	35073,0	36884,3

Sv

$$\bigvee_{t^*}^{\mathbb{N}} = a_0 + a_1 t^* + a_2 (t^*)^2$$

$$(t^{*}) = S \sqrt{1 + \frac{1}{n} + \frac{(t^{*} - \overline{t})^{2}}{\sum_{t=1}^{n} (t - \overline{t})^{2}}}$$

Задание

На сайте <u>www.gks.ru</u> выбрать временной ряд по одному из

социально-экономических показателей, не содержащих сезонную составляющую.

 Подобрать кривую роста (трендовую модель) к выбранному временному ряду.

2) Получить точечные и интервальные прогнозы показателя на следующие 3 периода времени.