ДЕТАЛИ МАШИН И ОСНОВЫ КОНСТРУИРОВАНИ Я

Процесс разработки машин имеет сложную, разветвлённую неоднозначную структуру и обычно называется широким термином проектирование - создание прообраза объекта, представляющего в общих чертах его основные параметры.

Под конструированием некоторые авторы понимают весь процесс от идеи до изготовления машин, некоторые - лишь завершающую стадию его подготовки. Но в любом случае цель и конечный результат конструирования - создание рабочей документации (проекта), по которой можно без участия разработчика изготавливать, эксплуатировать, контролировать и ремонтировать изделие.

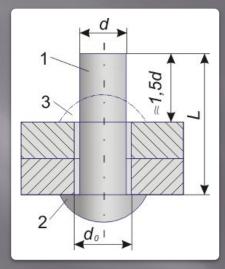
Основным критерием качества машин является надежность - способность выполнять заданные функции, сохраняя во времени значения установленных эксплуатационных показателей в заданных пределах, соответствующих заданным режимам и условиям использования, технического обслуживания, ремонтов, хранения и транспортирования. Проблема повышения надежности - одна из важнейших в машиностроении. Обеспечение надёжности в технике регламентировано системой ГОСТов.

Надёжность - комплексное свойство, которое может включать безотказность, долговечность, ремонтопригодность, сохраняемость. Безотказность и долговечность машины, прежде всего, связаны с ее работоспособностью, т.е. способностью выполнять заданные функции, сохраняя значение заданных параметров в пределах, установленных нормативно-технической документацией. Нарушение работоспособности машины называется отказом.

Основными критериями работоспособности машин являются прочность, жёсткость и износостойкость, а в некоторых случаях теплостойкость и виброустойчивость.

Основные понятия и определения курса ДМиОК

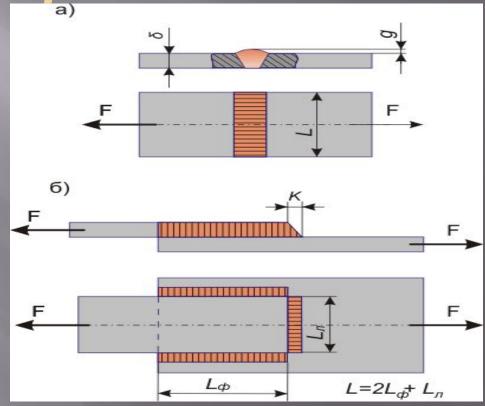
Машины состоят из деталей - изделий из однородного материала, полученных без сборочных операций (болт, шпонка, вал, зубчатое колесо и т.д.), и сборочных единиц - изделий, собранных из деталей на предприятии-изготовителе (муфта, шарикоподшипник, редуктор ѝ т.п.). Сборочная единица, которая может собираться отдельно от других составных частей изделия, назывыается узлом. Укрупненный, обладающий полной взаимозаменяемостью узел, выполняющий определённую функцию, называется машинным агрегатом (например, электродвигатель, силовая головка, насос), а метод компоновки промышленных изделий их отдельных агрегатов называется агрегатированием. Агрегатирование значительно упрощает проектирование сборку, эксплуатацию, ремонт и модернизацию изделий.


СОЕДИНЕНИЯ

Часть производственного процесса, заключающаяся в соединении готовых деталей, сборочных единиц, узлов и агрегатов в изделия, называется сборкой. Применяемая в дальнейшем терминология соответствует ГОСТ 23887-79 «Сборка. Термины и определения».

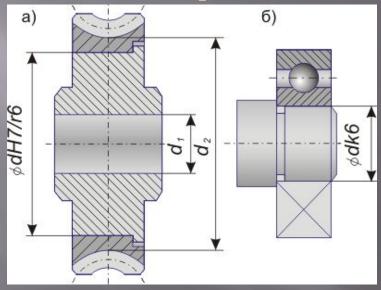
Классификация соединений. Все многообразие сопряжений деталей машин при сборке можно подразделить на следующие виды соединений: - по возможности относительного перемещения деталей (подвижное, неподвижное); - по сохранению целостности деталей при разборке (разъёмное, неразъёмное); - по форме сопрягаемых поверхностей (плоское, цилиндрическое, коническое, сферическое, винтовое, профильное); - по методу образования, определяемого процессом получения соединения или конструкцией соединяющей детали (клёпаное, сварное, паяное, клеевое, прессовое, резьбовое, шпоночное, шлицевое, шрифтовое, клиновое и др.)

Соединения, при разборке которых нарушается целостность составных частей изделия, называют *неразъемными*.


Клёпаные соединения

Клепаным называется соединение деталей с применением деталей из высокопластичного материала, состоящих чаще всего из стержня 1 и закладной головки 2; конец стержня расклепывается для образования замыкающей головки 3.

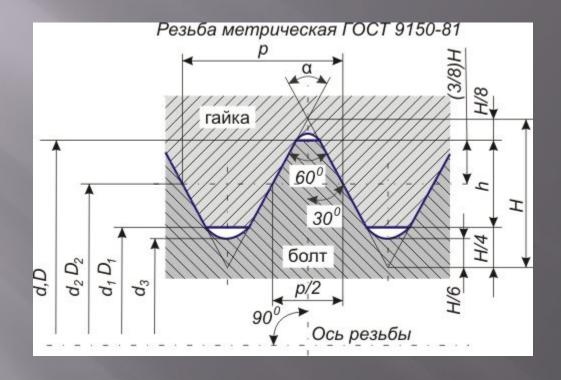
Клепаное соединение является неразъемным и неподвижным, так как в нем отсутствует возможность относительного движения составных частей. Клепаные соединения применяют для изделий из листового, полосового материала или профильного проката в конструкциях, работающих в условиях ударных или вибрационных нагрузок (авиация водный транспорт, металлоконструкции мостов, подкрановых балок и т.д.)


Сварные соединения

Сварным - называется неразъемное соединение, выполненное сваркой, т. е. путём установления межатомных связей между свариваемыми частями при их нагревании или пластическом деформировании.

Сварные соединения являются наиболее распространенными и совершенными из неразъемных соединений, так как лучше других обеспечивают условия равнопрочности, снижения массы и стоимости конструкции Замена клепаных конструкций сварными уменьшает их массу до 25% а замена литых конструкций сварными уменьшает расход металла до 30% и более. Трудоемкость сварных конструкций значительно клепаных, а возможности механизации автоматизации технологического процесса больше. Сварка позволяет соединять детали сложной формы, обеспечивает сравнительно бесшумный технологический процесс и герметичность соединений. В настоящее время сваривают детали, изготовленные из черных, многих цветных металлов, а также из пластмасс. Свариваемость материалов характеризуется их склонностью к образованию трещин при сварке и механическими свойствами соединения. Хорошей свариваемостью обладают низкоуглеродистые стали, плохой высокоуглеродистые стали и чугуны.

Соединения с гарантированным натягом (прессовые)

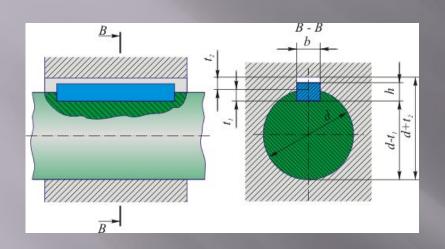

Прессовым называется соединение составных частей изделий с гарантированным натягом вследствие того, что размер охватываемой детали больше соответствующего размера охватывающей детали.

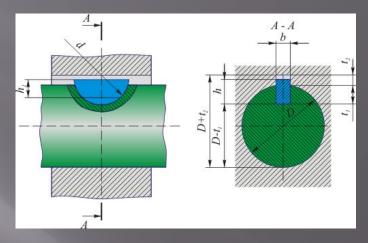
Прессовые соединения передают рабочие нагрузки за счет сил трения покоя между сопряженными поверхностями, которые могут быть цилиндрическими и коническими. Следует отметить, что прессовые соединения занимают промежуточное положение между неразъемными и разъемными соединениями, так как допускают нечастую разборку без нарушения целостности составных частей изделия.

РАЗЪЕМНЫЕ СОЕДИНЕНИЯ ДЕТАЛЕЙ

Разъемными называют соединения, разборка которых происходит нарушения целостности составных частей Разъемные изделия. быть соединения МОГУТ как подвижными, так и неподвижными. Наиболее распространенными B машиностроении видами разъемных резьбовые, соединений ЯВЛЯЮТСЯ шлицевые, шпоночные, клиновые, штифтовые и профильные.

Резьбовые соединения

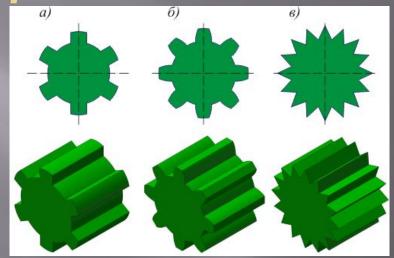

Резьбовым называют соединение составных частей изделия с применением детали, имеющей резьбу.


Резьба представляет собой чередующиеся выступы и впадины на поверхности тела вращения, расположенные по винтовой линии.

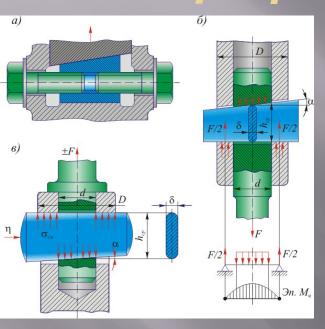
Классификация резьб

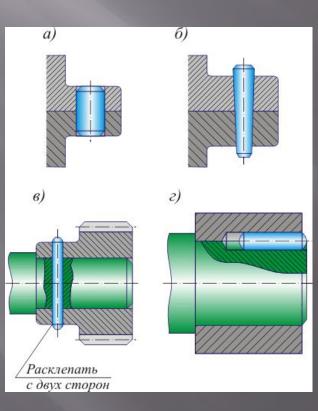
Классифицировать резьбы можно по многим признакам: по форме профиля (треугольная, трапецеидальная, упорная прямоугольная, круглая и др.); по форме поверхности (цилиндрическая, коническая); по расположению (наружняя, внутренняя); по числу заходов (однозаходная, многозаходная); по направлению заходов (правая, левая); по величине шага (с крупным, с мелким); по эксплуатационному назначению (крепежная, крепежно-уплотнительная, ходовая, специальная).

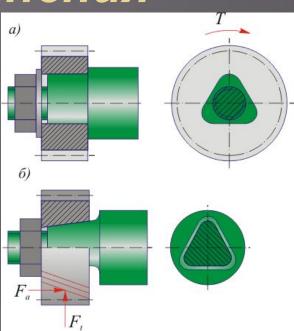
Шпоночные соединения



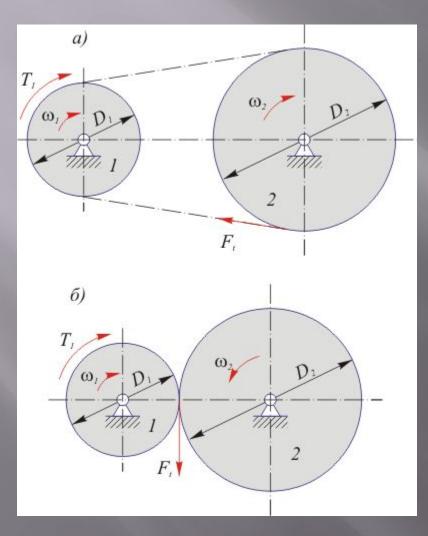
Шпоночными называют разъемные соединения составных частей изделия с применением шпонок. Шпоночные соединения могут быть неподвижными и подвижными и служат обычно для предотвращения относительного поворота ступицы и вала при передаче вращающего момента. Шпоночные соединения широко применяют во всех отраслях машиностроения.


Достоинства шпоночных соединений: простота и надежность конструкции, легкость сборки и разборки соединения, невысокая стоимость. Основной недостаток шпоночных соединений - снижение нагрузочной способности сопрягаемых деталей из-за ослабления их поперечных сечений шпоночными пазами и значительной концентрации напряжений в зоне этих пазов.


Шлицевые соединения



Шлицевое соединение можно представлять как многошпоночное, у которого шпонки выполнены за одно целое с валом. Шлицевые соединения по сравнению со шпоночными обладают значительными преимуществами, а именно: меньшее число деталей в соединении, значительно большая нагрузочная способность за счет большей площади контакта рабочих поверхностей вала и ступицы, меньшая концентрация напряжений в материале вала и ступицы, лучшее центрирование соединяемых деталей и более точное направление при осевом перемещении, высокая надежность при динамических и реверсивных нагрузках.


Клиновые, штифтовые и профильные соединения

ОБЩИЕ СВЕДЕНИЯ О МЕХАНИЧЕСКИХ ПЕРЕДАЧАХ

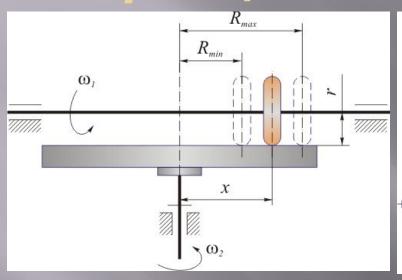
В самом общем виде передачи можно классифицировать по способу передачи движения: передачи трением (фрикционные, ременные); передачи зацеплением (зубчатые, червячные, цепные, винт-гайка); по способу соединения звеньев: передачи контактом непосредственным (фрикционные, зубчатые, червячные, винт-гайка); передачи гибкой связью (ременные, цепные).

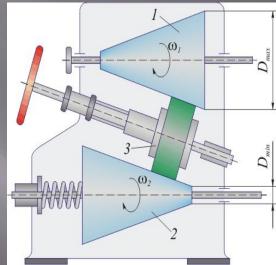
Звено передачи, которое получает движение от машины-двигателя, называется ведущим; звено, которому передается движение, называется ведомым, кроме того, в передачах бывают промежуточные звенья.

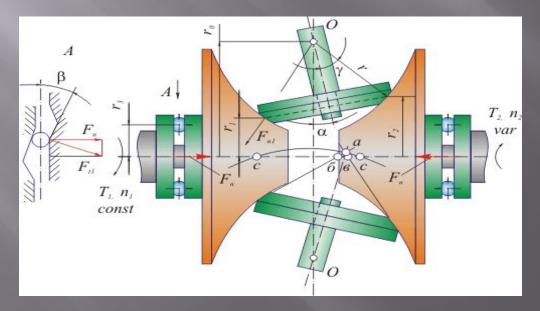
ФРИКЦИОННЫЕ ПЕРЕДАЧИ

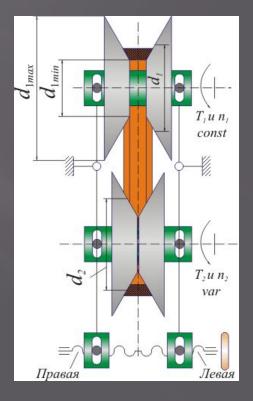
Фрикционной передачей называется механизм, служащий для передачи вращательного движения от одного вала к другому с помощью сил трения, возникающих между насаженными на валы и прижатыми друг к другу дисками, цилиндрами или конусами.

Фрикционные передачи можно классифицировать по нескольким признакам:

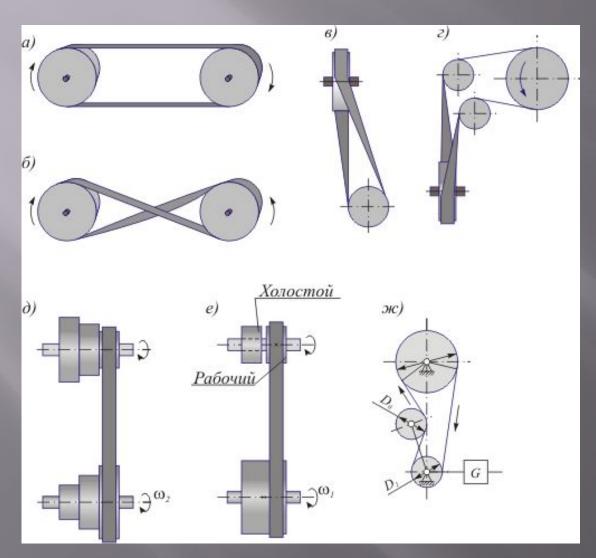

По расположению осей валов (с параплельными осями, с пересекающимися осями и соосные);

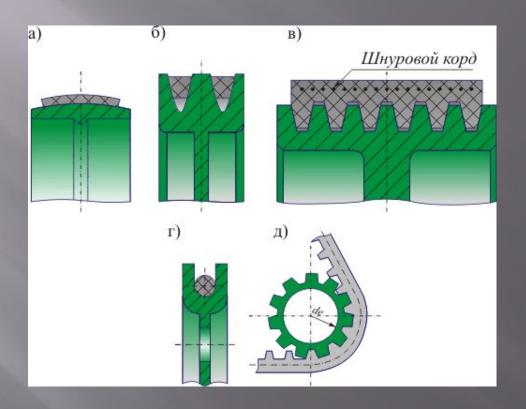

по форме тел качения (с гладкими цилиндрическими катками, рис. 5.1,а; катками с клинчатым ободом, рис. 5.1,б; с коническими катками, рис. 5.4; торовые, рис. 5.8; сферические и др.);


по условиям работы (открытые - работающие всухую и закрытые - работающие в масляной ванне);

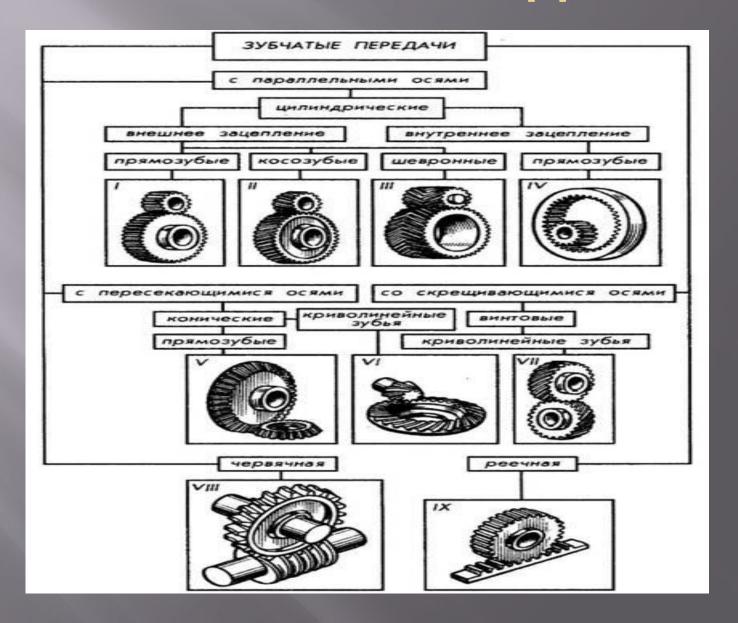

по возможности регулирования передаточного числа (с условно постоянным передаточным понные ω_1 ω_2 ω_3 ω_4 ω_4 ω_4 ω_4 ω_4 ω_5 $\omega_$

Фрикционные вариаторы




РЕМЕННЫЕ ПЕРЕДАЧИ

Ременной передачей называется механизм, служащий для преобразования вращательного движения при помощи шкивов, закрепленных на валах, и бесконечной гибкой связи - приводного ремня, охватывающего шкивы.

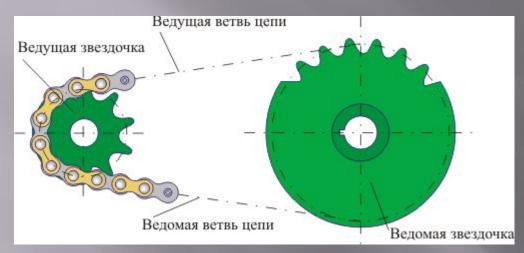

Достоинства ременных передач: простота конструкции и эксплуатации; плавность и бесшумность работы, обусловленные значительной податливостью приводного ремня; возможность передачи вращения валам, удаленным на большие расстояния (до 15м и более); невысокая стоимость. Недостатки: малая долговечность приводных ремней; сравнительно большие габариты; высокие нагрузки на валы и их опоры; непостоянство передаточного числа большинства ременных передач.

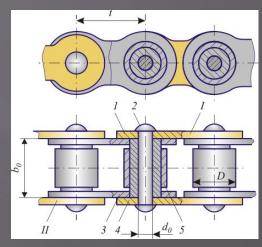
Классификация ременных передач

В зависимости от профиля сечения ремня передачи можно классифицировать следующим образом: а - плоскоременная; б - клиноременная; в - поликлиноременная; г - круглоременная; д - зубчатоременная; первые четыре являются переданами трением, последняя - передача зацеплением.

ЗУБЧАТЫЕ ПЕРЕДАЧИ

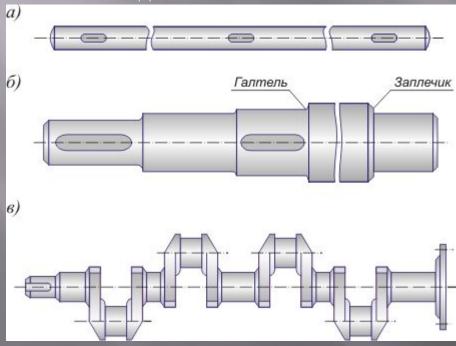
- Зубчатой передачей называется трехзвенный механизм, в котором два подвижных зубчатых звена образуют с неподвижным звеном вращательную или поступательную пару. Зубчатое звено передачи может представлять собой колесо, сектор или рейку. Зубчатые передачи служат для преобразования вращательных движений или вращательного движения в поступательное.
- Зубчатое зацепление представляет собой высшую кинематическую пару, так как зубья теоретически соприкасаются между собой по линиям или точкам, причем меньшее зубчатое колесо пары обычно называется *шестерней*, а большее просто *колесом*. Сектор цилиндрического зубчатого колеса бесконечно большого диаметра называется зубчатой рейкой.
- Зубчатые передачи можно классифицировать по многим признакам, а именно: по расположению осей валов (с параллельными, пересекающимися; скрещивающимися осями и соосные); по условиям работы (закрытые работающие в масляной ванне и открытые работающие всухую или смазываемые периодически); по числу ступеней (одноступенчатые, многоступенчатые); по взаимному расположению колес (с внешним и внутренним зацеплением); по изменению частоты вращения валов (понижающие, повышающие); по форме поверхности, на которой нарезаны зубья (ципиндрические, конические); по окружной скорости колёс (тихоходная при скорости до 3м/с, среднескоростные при скорости до 15м/с, быстроходные при скорости выше 15м/с); по расположению зубьев относительно образующей колеса (прямозубые, косозубые, шевронные, с криволинейными зубьями), по форме профиля зуба (эвольвентные, круговые, циклоидальные).
- Кроме перечисленных существуют передачи с гибкими зубчатыми колёсами, называемые *волновыми*.
- Достоинства зубчатых передач заключаются, прежде всего, в том, что при одинаковых характеристиках они значительно более компактны по сравнению с другими видами передач. Кроме того, зубчатые передачи имеют более высокий КПД (до 0,99 в одной ступени), сохраняют постоянство передаточного числа, создают относительно небольшую нагрузку на опоры валов, имеют большую долговечность и надежность работы в широких диапазонах мощностей (до десятков тысяч киловатт), окружных скоростей (до 150м/с) и передаточных чисел (до нескольких сотен).

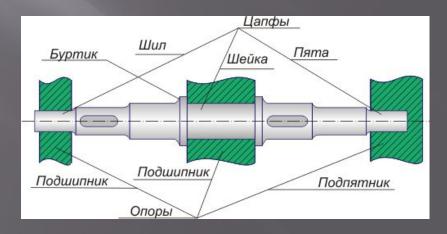

Недостатки зубчатых передач: сложность изготовления точных передач, возможность


ЧЕРВЯЧНЫЕ ПЕРЕДАЧИ

Червячной передачей называется механизм, служащий для преобразования вращательного движения между валами со скрещивающимися осями. Обычно червячная передача состоит из червяка 1 и сопряженного с ним червячного колеса 2. Угол скрещивания осей обычно равен 90°. Червячные передачи относятся к передачам зацеплением, в которых движение осуществляется по принципу винтовой пары. Червячную передачу можно получить из рассмотренной ранее винтовой зубчатой передачи, если уменьшить число зубьев одного из косозубых колес до z_1 =1...4 и увеличить их угол наклона к оси, превратив таким образом косозубое колесо в винт (червяк). Поэтому червячные передачи относят к категории зубчато-винтовых.

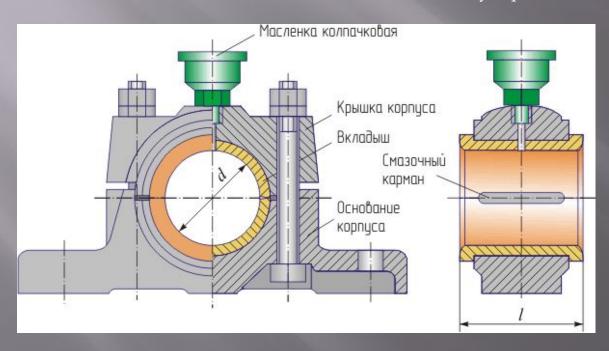
ЦЕПНЫЕ ПЕРЕДАЧИ


Цепной передачей называется механизм, служащий для преобразования вращательного движения между параллельными валами при помощи двух жесткозакрепленных на них зубчатых колес - звездочек и надетой на них бесконечной цепи. Цепь - многозвенная гибкая связь, которая может использоваться для перемещения грузов (тяговые цепи), подвески или подъема и опускания грузов (грузовые цепи), для передачи движения (приводные цепи).


Достоинства цепных передач заключаются в том, что они позволяют передавать вращение удаленным (до 8м) валам, а также приводить в движение одной цепью несколько валов; в цепной передаче отсутствует проскальзывание, а радиальная нагрузка на валы в два раза меньше, чем в ременной передаче; цепные передачи имеют высокий КПД (при благоприятных условиях η =0,97...0,99), могут осуществлять передачу значительных мощностей (до нескольких тысяч киловатт), допускают скорости движения цепи до 35м/с и передаточные числа до u=10.

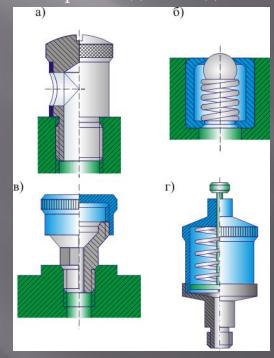
Недостатки цепных передач: повышенная виброактивность и шум при работе вследствие пульсации скорости цепи и динамических нагрузок; интенсивный износ шарниров вследствие трения и трудностей смазывания, вытягивание цепи вследствие износа шарниров и удлинения пластин.

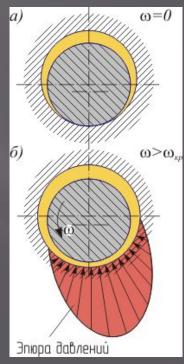
ВАЛЫ И ОСИ


Вал - деталь машин, предназначенная для передачи крутящего момента вдоль большинстве случаев валы В своей осевой линии. поддерживают вращающиеся вместе с ними детали (зубчатые колеса, шкив, звездочки и др.). гибкие, карданные, торсионные) Некоторые (например, валы поддерживают вращающиеся детали. Валы машин, которые кроме деталей передач несут рабочие органы машины, называются коренными. Коренной вал станков с вращательным движением инструмента или изделия называется шпинделем.

ОПОРЫ ВАЛОВ И ОСЕЙ (ПОДШИПНИКИ)

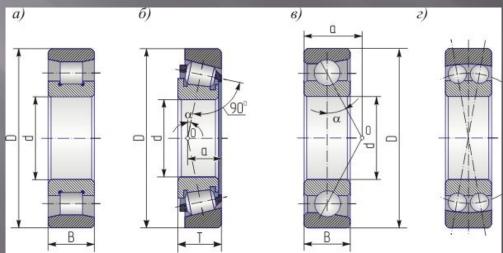
Валы и вращающиеся оси монтируют на опорах, которые определяют положение вала или оси, обеспечивают вращение, воспринимают нагрузки и передают их основанию машины. *Основной частью опор являются подшипники*, которые могут воспринимать радиальные, радиально-осевые и осевые нагрузки; в последнем случае опора называется *подпятником*, а подшипник носит название упорного.


Подшипники, работающие по принципу трения скольжения, называются подшипниками скольжения. Простейшим подшипником скольжения является отверстие, расточенное непосредственно в корпусе машины, в которое обычно вставляют втулку (вкладыш) из антифрикционного материала.


Достоинства подшипников скольжения: малые габариты в радиальном направлении, хорошая восприимчивость ударных и вибрационных нагрузок, возможность применения при очень высоких частотах вращения вала и в прецизионных машинах, большая долговечность в условиях жидкостного трения, возможность использования при работе в воде или агрессивной среде.

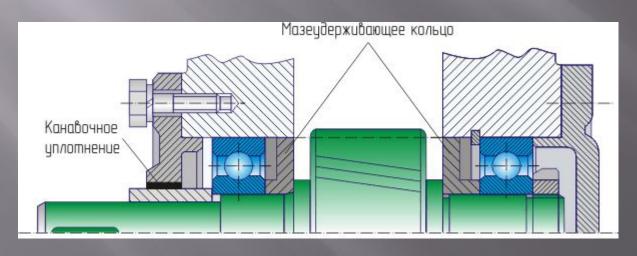
Недостатки подшипников скольжения: большие габариты в осевом направлении, значительный расход смазочного материала и необходимость систематического наблюдения за процессом смазывания, необходимость применения дорогостоящих и дефицитных антифрикционных материалов для вкладышей.

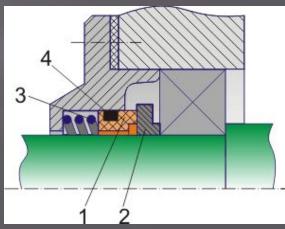
Для уменьшения потерь энергии на преодоление трения, обеспечения износостойкости, отвода теплоты из зоны контакта, удаления продуктов изнашивания, и предохранении от коррозии применяют смазывание трущихся поверхностей.


Подача смазочного материала в зону смазывания осуществляется самотеком или под давлением с помощью разнообразных смазочных устройств.

Подшипники качения

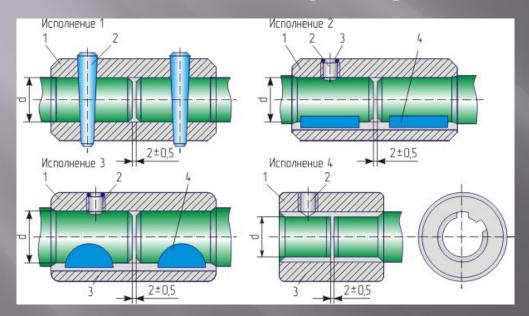
- Подшипники работающие по принципу трения качения, называются подшипниками качения. В настоящее время такие подшипники имеют наибольшее распространение.
- Достоинства подшипников качения: малые потери на трение и незначительный нагрев, малый расход смазки, небольшие габариты в осевом направлении, невысокая стоимость (массовое производство) и высокая степень взаимозаменяемости.
- К недостаткам подшипников качения относятся: чувствительность к ударным и вибрационным нагрузкам, большие габариты в радиальном направлении, малая надежность в высокоскоростных приводах.
- Классификация подшипников качения может осуществляться по направлению воспринимаемой нагрузки (радиальные, радиально- упорные, упорно-радиальные, упорные, комбинированные); по возможности самоустановки (самоустанавливающиеся, несамоустанавливающиеся); по габаритным размерам (серии диаметров и ширин); по конструктивным особенностям (с контактным уплотнением, с защитной шайбой, с фланцем на наружном кольце и т.д.); по виду тел качения и по количеству их рядов.

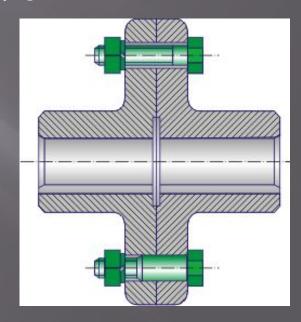


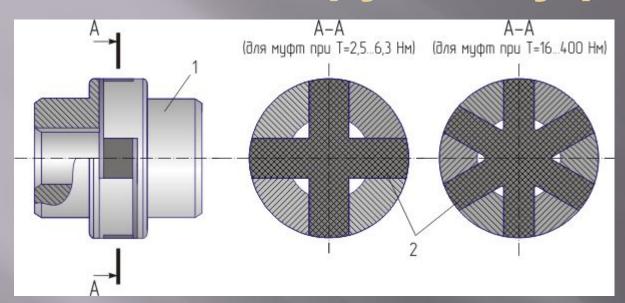

Конструкции подшипниковых узлов

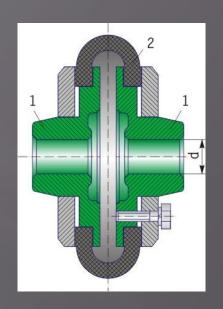
Работоспособность подшипников качения в значительной степени зависит от рациональности конструкции подшипникового узла, качества его монтажа и регулировки.

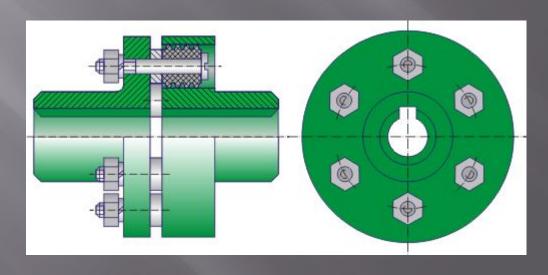
Кольцо подшипника, вращающееся относительно вектора нагрузки, устанавливается на вал или в корпус посадкой с небольшим натягом во избежание обкатывания этого кольца по сопряженной поверхности и ее изнашивания; другое кольцо подшипника соединяется посадкой с очень малым зазором, достаточным для возможности осевых перемещений кольца при монтаже и температурных деформациях валов. Для предотвращения вытекания смазочного материала и защиты подшипников от попадания извне пыли, грязи и влаги применяются уплотнительные устройства.

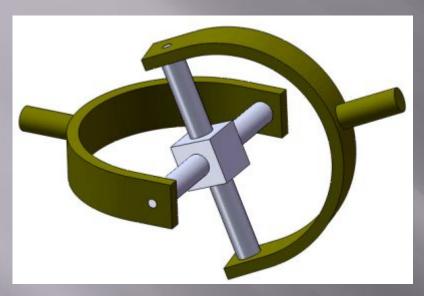

По принципу действия эти устройства подразделяют на контактные, щелевые, лабиринтные, центробежные и комбинированные.

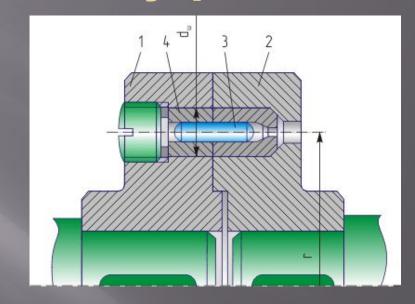


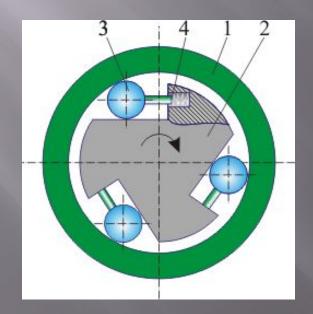

МУФТЫ

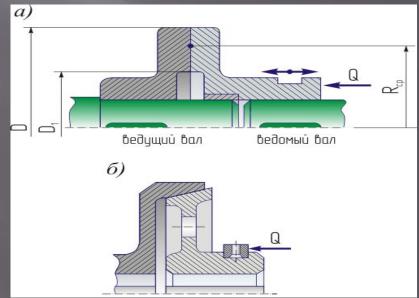

Приводными муфтами (обычно просто муфтами) называются устройства, служащие для кинематической и силовой связи валов в приводах машин и механизмов. Муфты передают с одного вала на другой вращающий момент без изменения его величины и направления, а также компенсируют монтажные неточности и деформации геометрических осей валов, разъединяют и соединяют валы без остановки двигателя, предохраняют машину от поломок аварийных режимах, в некоторых случаях поглощают толчки и вибрации, ограничивают частоту вращения и т.д.



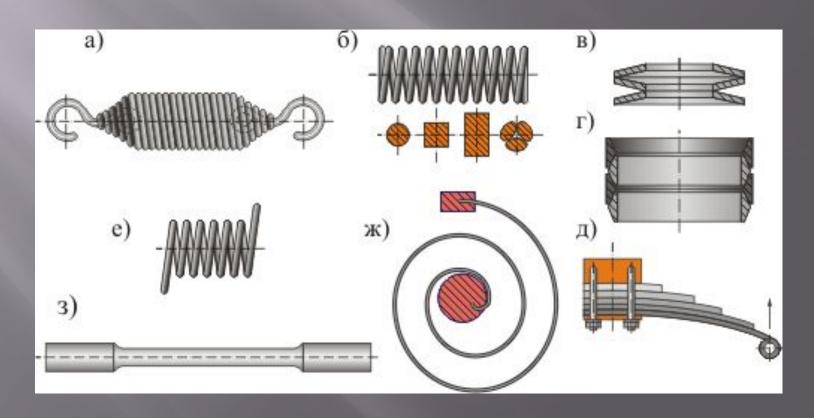

Упругие муфты







Специальные муфты



УПРУГИЕ ЭЛЕМЕНТЫ В МАШИНАХ

Упругие элементы— детали, жёсткость которых намного меньше, чем у остальных, а деформации выше.

Благодаря этому своему свойству упругие элементы первыми воспринимают удары, вибрации, деформации.

Чаще всего упругие элементы легко обнаружить при осмотре машины, как, например, резиновые покрышки колёс, пружины и рессоры, мягкие кресла водителей и машинистов.

