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[TepBbIn BOMPOC, Mbl AOITKHbI CMPOCUTD - KakuM 06pa3om CBET
npoxXoauT Yyepes cpeny?

UTOObI OTBETUTL HA 3TOT BOMNPOC, Mbl AOSMKHbI AYMaTb O
B3aUMO4ENCTBME CBETA C aTOMaMN U Mornekynamun. Kak Bbl XOpoLUo
OCBEOOMJSIEHbI, CBET SIBNSIETCA 3MEeKTPpOMarHuTbiMu KkonebaHmnsamu.
Y10 nponcxoaouT, Korga aTa BOSIHA NonagaeT Ha atoM U MONeKyIny?
OauH BapuaHT 3aknoyaeTcst B TOM, YTO POTOH MOXKET ObITb
nornouieH. Bo3byxaeHHbIM aTOM 3aTeM penakcupyeT Yepes
POHOHHBLIX NPOLECCOB HA OCHOBE B 3TOM Clly4yae 0ObekT
HarpeBaeTcq.

Lpyron BapnaHT B TOM, 4TO POTOH MOrMoLLAaETCs, a 3aTeM U3NyYeHne
NpPOXO4AWUT B ApYrou AnnHa BOSHbI oriyopecueHunn.

Yawye Bcero, Bxoadume BofiHa MHOYLUMPYET Koneodntowerocst Aunorss
9JIEKTPOHOB MOJIEKYIbI, B pe3yribTtaTte NpoucxoanT NoBToOpHas
9MUNCCUA HA TOM XKe OSINHE BOSIHbI.



ObpaTnTte BHUMaHMe, YTO YeM Dnmxe K IMHUKX NOrMOLEHNS MaTepuana, Tem
aonblle 3agepXKka nepeunsnyyeHunst - (BCNoMHUM, O NoKasaTtene rnperoMmreHus,
KOTOPbIW CYLLECTBEHHO BO3pacTaeT BONIM3M NUHUK MOTTOLWEHNS, T.€.
PEe30HaHCOoB).

COOTBETCTBEHHO MPOXOXAEHME CBETA 3aMeNAETCs Yepes NOCPEaCTBO
yBenuyeHne nokasarensi NperioMieHuns.
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Trigonometric ldentities

sin?0 + cos?0 = 1 cos?0 = ¥z (1 + cos20)
cos(A+ B)+cos(A" B)
2

cos A cos B=

cos(-0) = cos(0)



Mathematical formalisation.
For the sake of convenience we will define our light wave as:
E(t) = E_ cos(wt)

Note here that w is the angular frequency = 2af — we will use the words
frequency and angular frequency interchangeably from here on in.

When this wave interacts with an atom / molecule, we obtain an
induced dipole polarisation moment: p;.

We can then write the induced dipole moment per unit volume as:
P=)p,
—_—
[

Under normal circumstances we can write:

P=¢yE

go IS the free-space permittivity



% 1S the polarizability or dielectric susceptibility

How do we obtain the generated field? Remember back to Maxwell’s
equations for a dielectric material:

Electric displacement D:

D =¢E+P

= goE + goxE

eo(1+x)E
= gog,E

Where ¢, is the relative permitivity of the medium.



As the light intensity increases, this linear model begins to breakdown,
iInstead we now use a power series to model the dipole response:

P =¢o (x\VE + x'7E* + "B’ +......)

So what does this mean?

Let’'s imagine our wave interacting with only the first 2 terms of this
equation:

P = eo(y'VE,_cos(mt) + ¥'? cos?(wt))



Key importance here is to know and remember trigonometric identities:

cos’0 =% (1 + cos26)  You must known this!
So we can now write:
P = eo(xVE_cos(mt) + ¥?E_*( V2 + V2 cos 2mt))

So now you can see we have 3 terms involved in the induced dipole
polarisation:

Vs x“9E 2 —  DC non- oscillating term

v VE _cos(ot) - Term oscillating at frequency o (linear
propagation)

vay?E 2 cos(2wt) -  Term oscillating at frequency 2w (non-linear

generation)



So our beam, as well as propagating through the medium as before also
begins to generate radiation at a frequency of 2w (wavelength = A/2.)
This behaviour is known as second harmonic generation and is a key
result in non-linear optics. Note that this result increases with E_* — this
is where the expression NON-LINEAR comes from.

We will come back and study this behaviour further as the course goes
on.

Let's now turn our attention briefly to ™ . %™ is, in general a tensor of
rank n+1. A tensor is a mathematical formalism that allows a quantity to
be expressed as a multi-element array. A tensor of rank 0 is familiar to
us as a scalar, a tensor of rank 1 as a vector — things get more
complicated.

This type of notation is required as we have to think about the
environment within which the induced dipole polarisation is being
formed. Using tensor notation allows us to take the spatial environment
into account and this leads to some important conclusions.

The material type now becomes very important. Think about refractive
index. In a glass the refractive index IS NOT a function of the direction
of propagation (it is a function of A, material type though.) Why is this?



A glass is an isotropic material — this means that whatever direction you
go in, it appears the same! In this case, the refractive index is a scalar
quantity.

Many crystals do not behave like this — the direction of propagation
matters — crystals have different symmetries and thus certain material
properties change depending on direction.

As an example, we’ll consider conductivity c and Ohm’s law.

Let's consider an electric field E = [E,, E,,E;] where E,, ;) are the
components in the X, y, z directions respectively.

Now applying Ohm’slaw:|=c E

In the isotropic case: jx = ox Eyx , Jy = oyEy and j; = o,E;



This then is simple, vector-like behaviour so o can be represented as a
1% rank tensor (ie. a vector.)

In the non-isotropic case we also have to consider the coupling between
the different axes:

Jx = oxEx *+ OxyEy + oxE>
Jy = opEx + oy Ey + oyE,

== OzxEx + O'zyEy + 0E;

In this case, o = a tensor of 2" rank. We can simplify the way that we
write this by using the Einstein convention:

3
J. = E GU.E ;
Jj=1
Or more simply still:

Ji = ojjE; Where the repeated indicies indicate the variables to be
summed over.



So a second rank tensor has 9 terms except that through symmetry
argeuments, oy, = oy etc, so in fact there are only 6 independent terms.

Our example here was for conductivity, but ¥ also behaves in an
identical way. It's properties are STRONGLY dependent on the material
through which the light is propagating. For example in glass, or for that
matter any isotropic material, x(z) IS zero meaning second harmonic

generation is impossible!



Alternative Notation for Non-Linear optics

We can write the second order non-linear susceptibility:

2)
Pi=e X £ Ey ijk=123

Now the tensor %% is a tensor with 27 coefficients, but taking into
account symmetry leaves us with a a two dimensional 3 x 6 tensor. This
is the d tensor, with coefficients from dq4 to dse.

Using the d-tensor notation allows us to rewrite the second order non-
linear polarisation as:

P =¢,dEE

In fact most crystals only have a few non-zero d coefficients giving us
the preferred directions for non-linear generation. Often for a particular
direction, we can reduce d to a scalar quantity d.¢, the effective non-
linear coefficient for a particular direction of propagation for that material.



[ eHepauund 2-1 rapMOHUKN
HENMMHEUHOCTb BTOPOIro
nopsaaka



P=£0 (X(1)E + X(2)E2 + X(3)E3 +...... )
D=€OE+P

So intense radiation incident on a particular
material can cause nonlinear

terms to be generated. For the next couple of
lectures, we are

going to examine the behaviour of non-linear optics
based on the ¥X(2) tensor — these are called second
order effects.



E(t) = Ewcos(wt) into the expression for P gave rise to a
number of terms:

S x(2)Ew

2 — DC non- oscillating term

X(1)Ewcos(wt) - Term oscillating at frequency w (linear
propagation)

Sx(2)Ew

2 cos(2wt) - Term oscillating at frequency 2w (non-linear
generation)



Remember also that ¥(2) is a tensor and that the
value changes

depending of the direction of propagation in the
material. In isotropic (iso — the same, tropic - in
space) materials (eg. glasses, liquids etc) ¥X(2) =0
throughout the material so second harmonic

generation is impossible. In the case of anisotropic
materials this is not the case and the ¥X(2) tensor

has some non-zero elements resulting in second
harmonic generation.




Now we need to consider how the second harmonic radiation
IS

generated as we travel along the length of our crystal.

Now let’s rewrite our wave propagating in the +z direction:
E(t,z) = Ewcos(wt-kwz)

Can easily show that the second harmonic wave will have the
form:

E sen (t,z) = const cos(2wt — kaz)

Where kw is the absolute value wave propagation vector:
kw=21Tn / A (nw is the refractive index, n(w))

kw =wn_ / c (cis the speed of light in a vacuum)



What about the propagating second harmonic wave?
E»,, prop(t,Z) = const cos(2wt — kp,,Z)

kgw = 2(0”2(0/C

Key point —in general np =n_ this means that there is a PHASE
MISMATCH (Ak) between generated and propagating second harmonic!

Ak =k, - 2k, = 47”[/12(0 -n, ] where A is the fundamental wavelength



T T

ka

What does this mean?

Can show that (see Koechner pp.592-594 if you're interested) :

. AkzY
sin

Lo (2) % 10—

2

l,,(z) = second harmonic intensity at z
l,(0) = incident intensity of fundamental



This function has a maximum where Ak.z = 0 and a 0 where Ak.z = 2nm.
This shows that for the most efficient SHG Ak=0. This condition is

known as phase matching — ie. a constant phase relationship is
maintained between the generated and propagating waves.

Phase matching — constant phase relationship maintained between
waves. Ildeally for SHG k, = 2k

In general though, Ak=0. What does this imply for second harmonic
generation as a function of z?



=~ 05 F

zZl,
So, the intensity of SHG varies as a function z between a maximum (at z

= rl, r- odd integer) and 0 (at z=sl, s- even integer). | is the coherence
length.

Coherence length — the effective interaction length for SHG when Ak=0.



So, the maximum useful length for the SHG crystal = |, when no phase
matching is present.

For our maximum |,_, we know that: sin Akl./2 = 1
So Akl./2 = nt/2
Therefore |, = / Ak

Example:

A=800nm, n,=1.4,n,,=1.5

A =800nm, n,= 1.4, n,, = 1.401
|. =800 x 10° / 0.004 = 0.2mm

So the typical coherence length is VERY short — does this make SHG
impossible?



No — we have to think up clever ways to do phase matching. One key
way to do this is to make Ak=0 through using birefringence properties of

materials.
The Efficiency of SHG

In a simple scenario where we neglect any depletion of the fundamental
beam, we can express the generated second harmonic intensity I, as:

2122 Sin*(AKL /2)
Ly =C LT .
(AkL/2)

2w D)

B ()]

Where L is the crystal length, |, = fundamental intensity and C is a

constant:

2 32
) 8m°d,,

2 .3
80(’)\'60”(0



Laser focussed to 10um spot size, des = 4.7pm/V, n=2.2, A=1.06um,

L=5mm. Calculate maximum conversion efficiencies. (ie assuming
perfect phasematching)

Power Intensity Mo
1MW 3MW/m? 4x10°
1W 3GW/m? 4x10°7
100W 300GW/m? 0.4




Phase Matching was of key importance for non-linear optics.
Remember that phase matching

occurs when a constant phase relationship is maintained between the
generated and propagating waves. In general, this does not occur, so a
repeated build up and decline of radiation is observed with a

characteristic length given by the coherence length |0. In order to
make

phase matching occur, we need to arrange a circumstance where n2Ww
=nW. In order to do this we can use birefringent materials.

Birefringence is a property of certain materials where different

polarisations have different refractive indicies. You may be familiar
with the c oncept of double refraction in calcite — this is an example of
birefringence where the two rays formed have different polarisations —

these are the ordinary, o-ray and the extraordinary, e-ray.



We’'ll consider the case of the negative uniaxial crystal — n, > n.. There is
a special direction where n, = n. — this is called the optical axis. Making

a plot of n. and n, as a function of angle generates the refractive index
ellipsoids.

Ontical Axis




So, the crystal has different refractive indices for the ordina
extraordinary ray. Now let's expand this picture to include the
harmonic index ellipses: n°, and n®,:




We can see that there’s an angle, 6, where the ordinary polarised

fundamental and the extraordinary polarised second harmonic have the
same refractive index. This implies that when the radiation propagates
in the crystal at angle 6y relative to the optical axis, perfect phase

matching is possible. This technique is sometimes known as
birefringent phase matching — BPM.

So in this case:

n°(0) + n°(0) = 2n%,(0) — This is known as Type | phase matching.

There are a range of other non-linear processes that can take place and
requiring phasematching and sometimes the following condition is

satisfied:

n’(6) + n°(B) = 2n°,(0) — This is known as Type Il phase matching.



In order to tune for different wavelengths of operation, we can simple
change the angle 6, — this gives rise to so-called angle tuning. This
technique is very sensitive dependent on the angle of propagation — get
the angle only a little bit wrong and no phase matching occurs. This
type of phase matching is also therefore known as CRITICAL PHASE
MATCHING.

Problems:

1. Limited range of uni- and bi-axial crystals.

2. Critical dependence on angle.

3. Walk-off occurs between generating beam and second harmonic
limiting interaction length.

4. XZ varies with angle (it's a tensor remember!) giving variable

efficiency with wavelength.



Non-critical phase matching (NCPM)

In order to circumvent some of these problems, another approach, non-
critical phasematching can sometimes be adopted. In this case, the
beams propagate down one of the axes of the non-linear crystal and the
temperature of the crystal is adjusted. The propagation direction is
normally at 90° to the optical axis, so this techniques is also sometimes
known as 90° phase matching. Often, the n® is much more temperature
sensitive than n° meaning a phase matching condition can be set up.



Quasi Phase Matching (QPM)

But what happens if your material is not birefringent (eg. GaAs) or has a
large non-linear coefficient in a direction in which it's impossible to do
BPM or NCPM (eg. LINbO3)? In this case we can physically engineer the
material itself to perform phase matching. From before:

Now what would happen if we were to change the sign of the phase
every coherence length? Instead of seeing a periodic reduction in non-
linear signal, it would continue to grow — this is the basis of quasi-phase
matching. Imagine that we do this in a periodic way with a period given
by Ag4, Where A4 is the period of the grating (= 2I..)
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(diagram from http://www.rp-photonics.com/quasi_phase_matching.html)

In the frequency domain, we can represent the grating wave vector:
Kg = 2m/ Aq
And the phase matching relationship becomes:

Ak =2k, - ko, -Kq



Which allows us to write:

2x  4n
—= —[nw - nzw]
A, A
Therefore :
A

Aj=—""—
> 2n,-n;,)

Example: LINbO;

For BPM, we are forced to use a direction which has a non-linear
coefficient = 4.3pm/V, using QPM allows us to access a coefficient =
27pm/V giving a large enhancement in non-linear optical efficiency.

Let’s calculate the grating period required — use a Sellemeir Equation:

0.11768
22 -0.04750

(n°) =4.9048 + ~0.027169 2

Note that for this equation A is in um!

2=1.064um = n = 2.2364
2=0.532um = n = 2.3231

= Grating period = 6.1um.



Fabrication of QPM structures is complex and has developed in the last
15 years. The simplest approach is to take very thin slices of material
and re-orientate them every coherence length. This has done with GaAs
where up to 50 layers of GaAs slices have been formed.

Where we want to use a ‘standard’ non-linear crystal, a different
approach is taken. Here we use crystals that are ‘ferroelectric.
Ferroelectric crystals can be given a permanent electrical polarization by
the application of electricity. This process is known as ‘periodic poling.’
An example of such a crystal is LINbO; which has a high non-linear
coefficient in a direction that is impossible to access using BPM. To do
this, we pattern electrodes onto the top surface of the crystal and apply a
sophisticated electric field. This causes a permanent change giving us a
‘domain engineered’ structure. The electric field required for this in LN is
of the order of 21kV/mm !



Advantages of QPM

Allows phase matching in non-birefringent materials.
Can access directions with high non-linear coefficients.
Permits non-critical phasematching.

Can be tunable for a range of applications.

Gives direct control over the non-linear materials.

Disadvantages of QPM.

Limited range of materials for e-field poling.
Cost and complexity of fabrication.
Limited widths of grating period (<4um is almost impossible.)



Practical implementations of non-linear optics.

The simplest implementation is the placing a crystal in the extra-cavity
configuration:

Non-linear ’

K —p (| 15>
<

Depleted
Pump

Laser Cavity

This implementation was first used to demonstrate NLO in the early
1960’s. However in this implementation, the efficiency is generally rather
low as the incident electric field on the crystal is not high, however using
short pulses with high peak powers can work very successfully in this
arrangement.

Eg. A Ti:Sapphire laser generates 100fs pulses at 100MHz with a CW
average power of 1W — what is the peak power?

So: Pulse energy = 1/100x10° = 1x10%J/pulse
= Ppeak = 10°/100x107"° = 100kW! — very handy for NLO!



A refinement on this design can also be undertaken to improve pump
conversion to second harmonic:

HR-2w HR-w
SHG
K — () =) —»
B B Non-linear
Crystal

Laser Cavity

A final refinement that is often used with CW lasers is to place the non-
linear crystal within the laser cavity — the so-called intra-cavity
configuration.

HR/OC-w
HR/OC-w HT-2w
HR-2w Non-linear
Crystal SHG ‘
s
< >

| aser C.avitv



The key benefit is that the non-linear crystal is now exposed to the
circulating power within the laser cavity. ie. A laser with a 1% output
coupling that emits 1W of power has a circulating power within the cavity
of 100W! This offers a clear enhancement for NLO. This approach can
also give very compact systems (think about green laser pointers.)

The disadvantages of intracavity NLO:

* Cavity alignment becomes mores sensitive.
Mirror coatings become more expensive
NLO crystal quality must be good to avoid laser losses.
Cavity design must be changed to incorporate crystal.
Angle tuning can be difficult.

In general these cavity configurations can be used for all non-linear
processes, not just SHG.



What happens if we can to generate 3w? We could use X3 as we will

see later, but this is often not very efficient — instead we can carefully
cascade two X2 processes — second harmonic generation and sum
frequency mixing.

Sum frequency mixing.

Now lets imagine a situation where we have two beams incident on our
non-linear crystal:

E =E+E> =E(01COS((D1t)+E200$((L)2t)
Let's examine the behaviour of the %®’ component of the induced dipole
polarisation:



P 2= const ?E?
= const ' (E,1cos(m1t)+E,2c08(wat))(E, 1c08(w1t)+E, 2c08(wat))

= const ¥'?( E_;?cos?(wqt)+ E_o°cos?(mwat)+2E_{E > cos(wit) cos(ws,t))

The terms in cos® lead to SHG of w; and w, as before, but of interest
here is the last term and remembering the trig ID

cosAcosB = 72 (cos(A+B) + cos(A-B)):

2E 1E_ > cos(mwqt) cos(w,t) = const [cos(mq+w;)t + cos(wq-wy)t]

We have now generated two new waves with frequencies = w4+w, and
w1-my. These are the so-called sum and difference frequencies and
allow us to look at other uses for x(z) non-linearities when appropriately

phase matched.



For example, we can now use this to generate efficiently our third
harmonic radiation.

>

Difference frequency mixing

Frequency Doubler

o — 20

—
—

Sum-Frequency

Generation

®+20 —p 3()

We can exploit difference frequency mixing to generate waves of
different frequencies or to transfer energy from a strong pump wave to a

-~



weak input (signal) wave. This is called parametric amplification. In the
process, assuming phase matching takes place, a new longer
wavelength (idler) wave is generated subject to:

Optical Parametric

Amplifier
Pump Amplified Signal
> W; = Wy-0g
—» Idler I

Signal

Eg. if we wish to transfer energy from a wave at 800nm to a wave at
1000nm, we will also generate an idler wave at: 4000nm.

If we now form a cavity where the signal, idler or both are resonated, a
device called an optical parametric oscillator can be made. Depending
on the phase matching conditions, a wide range of tunable signal and
idler wavelengths can be formed.



Optical Parametric Oscillator
(Resonant for Signal)

Signal
—

Pump

Idler

Summary for x? processes

We have seen that the coupling between waves offered by the ¥(2) coefficient has
opened a rich seam of non-linear optical effects — from SHG through to OPQO'’s.
Remember also that for all of the processes discussed, phase matching must be
achieved whether through BPM or QPM type techniques. As we move to a wider
range of wavelengths it’s also very important to consider the transparency range of
your crystals, eg. if we wish to generate 7um



