Chapter 4 Vertical curves

\square Shape: Parabolic not circle

- Types:-

1. Crest
2. Sag

G_{1} and $G_{2}=$ Tangent grades in percent

$$
\begin{aligned}
A & =\text { Algebraic difference } \\
L & =\text { Length of vertical curve } \\
\text { CPI } & =\text { Vertical point of intersection } \\
\text { UPC } & =\text { Vertical point of curvature } \\
\text { VAT } & =\text { Vertical point of tangency }
\end{aligned}
$$

\square Design: Curve length (L).
\square Crest -(L): depends on sight distance.

- Sag- (L): depends on :

1. head light distance
2. Drainage
3. Driver comfort

Crest

S.S.D: (S)

When S is less than L,

$$
L=\frac{A S^{2}}{658}
$$

When S is greater than L,

$$
L=2 S-\frac{658}{A}
$$

Crest

- P.S.D (S):

When $S<L$,

$$
L=\frac{A S^{2}}{864}
$$

When $S>L$,

$$
L=2 S-\frac{864}{A}
$$

Sag

When S is less than L,

$$
L=\frac{A S^{2}}{200\left[0.6+S\left(\tan 1^{\circ}\right)\right]}=\frac{A S^{2}}{120+3.5 S}
$$

When S is greater than L,

$$
L=2 S-\frac{200\left[0.6+S\left(\tan 1^{\circ}\right)\right]}{A}=2 S-\left(\frac{120+3.5 S}{A}\right)
$$

Example

A vertical curve of $\mathrm{G} 1=+3 \%, \mathrm{G} 2=+1 \%$, on a two-lane two way road. Find the curve length? Assume S.S.D=220ft, P.S.D=730ft, H.L.D=500ft.
b) If the road is widened and divided by island, Find the curve length?

Solution

a) As the road is two lane two way road, then P.S.D is control.
$\mathrm{A}=|\mathrm{G} 2-\mathrm{G} 1|$
$=|+1-+3|=2$

Assume P.S.D<L
$\mathrm{L}=2\left(730^{2}\right) / 864=1233.6 \mathrm{ft} \quad$ ok.
b) As road now is widened with two lanes per direction then P.S.D has no meaning and S.S.D is control.

Assume S.S.D<L
$\mathrm{L}=2\left(220^{2}\right) / 658=147.1$ not ok.

Assume S.S.D>L
$L=2(220)-(658 / 2)=111 \mathrm{ft}$ ok.

