Физический диктант Тема: Основы молекулярной физики

- 1. Наименьшая частица химического элемента, сохраняющая его химические свойства, называется ...
- 2. За единицу атомной массы принимается ...
- 3. Одним молем молекул вещества называется ...
- 4. Молекулярная (молярная) масса это ...
- 5. Количество вещества можно найти по формуле ...
- 6. Массу одной молекулы можно найти по формуле ...

Самостоятельная работа: Сообщение на тему «Использование низких

температур»

```
1713 - c 16.01.2017 \text{ no } 20.01.2017
```

1714 - c 17.01.2017 no 20.01.2017

2218 – с 19.01.2017 по 20.01.2017

2219 — с 16.01.2017 по 20.01.2017

2220 – с 19.01.2017 по 20.01.2017

2608 - c 19.01.2017 no 21.01.2017

2609 - c 20.01.2017 по 21.01.2017

2911 — с 16.01.2017 по 17.01.2017

2912 — с 16.01.2017 по 17.01.2017

2910 — с 16.01.2017 по 21.01.2017

ОСНОВЫ ТЕРМОДИНАМИКИ

СОДЕРЖАНИ

- 1. Основные понятия и
- определения. 2. Внутренняя энергия

системы.

- 3. Внутренняя энергия идеального газа.
- 4. Работа и теплота как формы передачи

энергии. Первое начало термодинамисть. Удельная теплоемкость.

Уравнение теплового баланса.

Себе стихию покорил

__

огонь он трением

1. Основные понятия и определения

Термодинамика – наука о закономерностях в тепловых процессах, в которых не учитывается молекулярное

Взермодинамине широко используется понятие *термодинамической системы*.

Термодинамическая система – совокупность тел, способных энергетически взаимодействовать между с собой и с другими телами и обмениваться с

ними веществом и энергией. Все тела вне указанной совокупности тел составляют внешнюю среду. Термодинамическим процессом называется переход системы из начального состояния в конечное, через последовательность промежуточных состояний. Процессы бывают обратимыми и

необратимыми.

Обратимым называется такой процесс, при котором возможен обратный переход системы из конечного состояния в начальное через те же промежуточные состояния, чтобы в окружающих телах не произошло никаких изменений.

Любой процесс, сопровождаемый трением или теплопередачей от нагретого тела к холодному, является необратимым.

Примером необратимого процесса является расширение газа, даже идеального, в пустоту. Расширяясь, газ не совершает работы, так как не преодолевает сопротивления среды, но, для того чтобы вновь собрать все молекулы в прежний объём, т.е. привести газ в начальное состояние, необходимо затратить работу. Все реальные процессы являются

2. Внутренняя энергия системы Термодинамическая система как совокупность множества атомов и молекул обладает внутренней энергией.

Försterreit

Внутренняя энергия – это сумма энергий молекулярных взаимодействий (потенциальная энергия) и энергии теплового движения молекул (кинетическая

энергия). Понятие энергии относится всегда к

системе тел.

3. Внутренняя энергия

ИДЕАЛЬНОГО ГАЗА Так как в идеальном газе можно пренебречь силами молекулярного взаимодействия, то его внутренняя энергия представляет собой сумму кинетических $U = N\overline{E}_{noct}$ х его N молекул:

⊏ - _{пост} - средняя кинетическая энергия поступат<u>ельного дви</u>жения

Для одноат**жнож** $\overline{E}_{nocm} = \frac{3}{2}kT$

Для двухатомного газа:

$$\overline{E}_{nocm} = \frac{5}{2}kT$$

Для газа, молекулы которого состоят из трёх и

более \overline{E} атомов:

$$\overline{E}_{nocm} = \frac{6}{2}kT$$

где - число Авогадро.

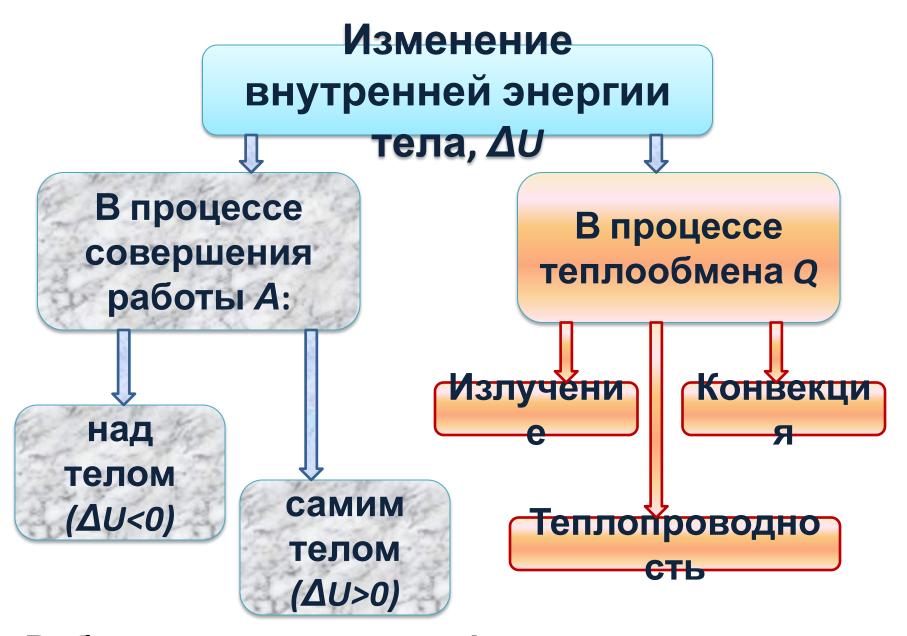
Для *моля* одноатомного газа:

Для *моля* двухатомного газа:

Для *моля* трёхатомного газа:

$$U = \frac{3}{2}RT$$

$$U=\frac{5}{2}RT$$


$$U=\frac{6}{2}RT$$

Для практики важно знать не саму внутреннюю энергию, а её изменение *∆∪*.

Изменение внутренней энергии *△U* зависит от вида процесса, при котором она изменяется, а также от начальных и конечных значений термодинамических

параметров *p. V. T.*

ИЗОХОРНЫЙ ПРОЦЕСС (V=const, m=const.)		

Работа и теплота – две формы передачи энергии.

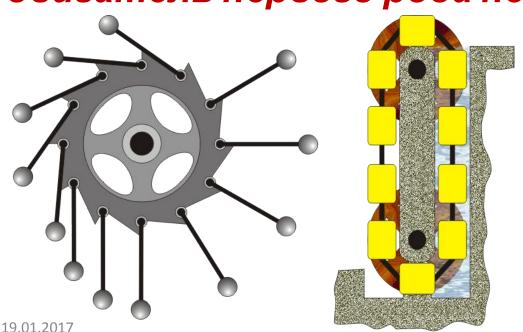
Способы изменения внутренней энергии

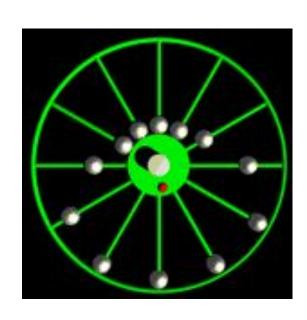
Теплопередача		
Теплопроводность	Конвекция	Излучение
Q		
Механическая работа (деформация)		
Изменение формы: сгибание подковы	Изменение объема: вспыхивание ваты при сжатии воздуха	Трение: опыт Джоуля

4. Первое начало термодинамики

В изолированной термодинамической системе внутренняя энергия не изменяется при любых взаимодействиях

внутри этой системы. Этот закон является частным случаем всеобщего закона сохранения и превращения энергии, который гласит, что энергия не появляется и не исчезает, а только переходит из одного вида в другой. Невозможно возникновение или уничтожение энергии (эта формулировка говорит о невозможности возникновения энергии из ничего и уничтожения её в

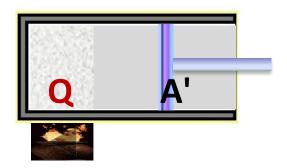

Если считать работу А, совершаемую телом над окружающими телами, за положительную, а над телом со стороны окружающих тел отрицательной, то первый закон термодинамики в математической форме



Количество теплоты, сообщённое телу, идёт на увеличение его внутренней энергии и на совершение телом работы над внешними

Отсюда следует, что любая машина может совершать работу А над внешними телами только за счёт уменьшения внутренней энергии △U или получения извне некоторого количастатороты Q:

Из 1 закона термодинамики следует: вечный двигатель первого рода невозможен.


1 закон термодинамики имеет и другую формулировку и математическую запись :

Приращение внутренней энергии тела равно сумме сообщённой телу количеству теплоты и произведённой

над ним работы:

$$\Delta U = Q + A'$$

где А'= - А

5. Теплоёмкость. Удельная теплоёмкость.

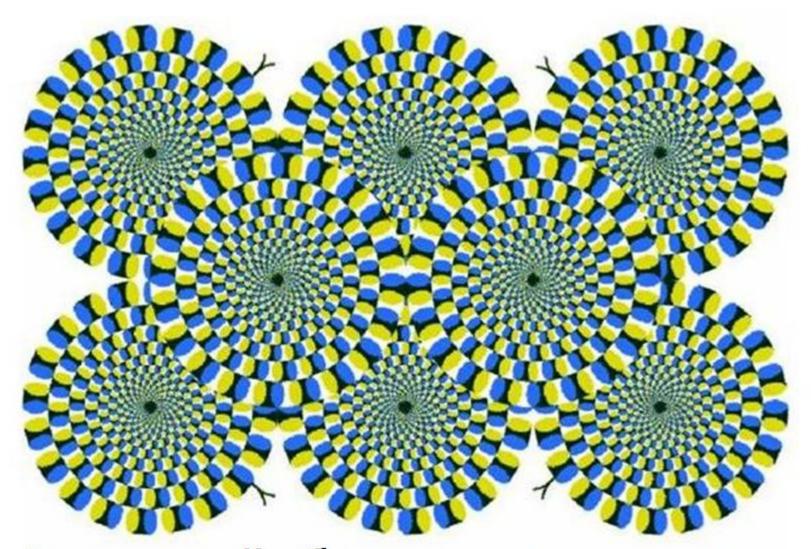
Уравнение теплового баланса. Теплоемкостью тела называют отношение количества теплоты Q, необходимого для повышения его температуры от значения T_1 до значения T_2 , к разности этих температур

$$\Delta T = T_2 - T_1$$
:

$$C = \frac{\mathsf{Q}}{\Delta T}$$

Теплоёмкость тела *C* зависит от его природы и пропорциональна массе тела.

Величина, равная отношению теплоёмкости тела к его массе, называется удельной


теплоёмкостью: $c = \frac{C}{m} = \frac{Q}{m \cdot \Delta T}$

Отсюда $Q = cm\Delta T = cm(T_2 - T_1)$

Если в теплообмене участвуют несколько тел с различными массами и температурами, то для них справедливо выполнение уравнения тепрового баланса:

Q - общее количество теплоты отданное одними телами при теплообмене;

Q_{получ}-общее количество теплоты полученное другими телами при теплообмене.

Оптический обман вечного движения