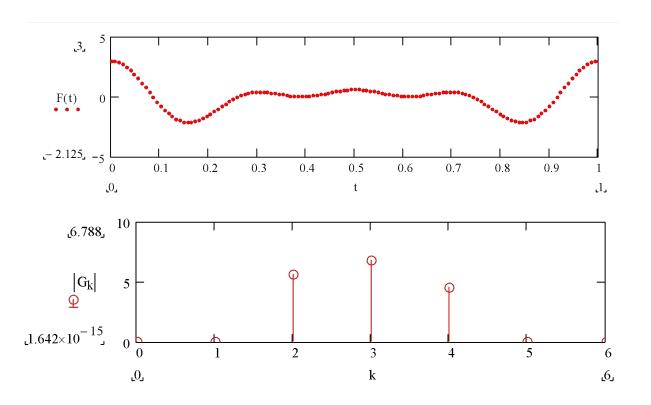
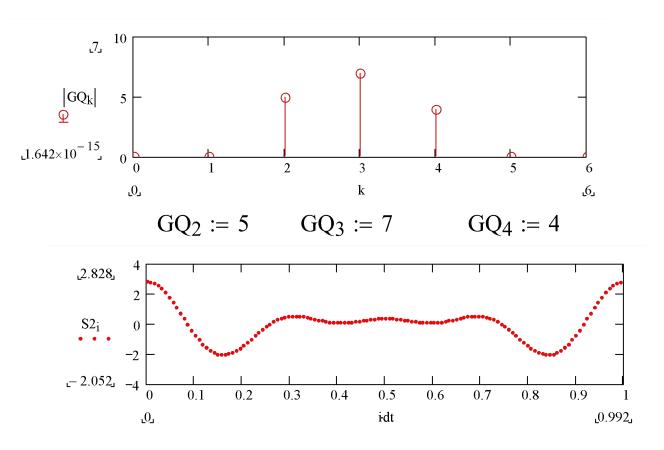
Принцип ортогонального сжатия

Дискретная реализация процесса и ее Фурье - спектр



$$|G_2| = 5.657$$
 $|G_3| = 6.788$ $|G_4| = 4.525$

Квантованный спектр и восстановленный сигнал



Îáúåì èíôîðìàöèè: 3 áèòà íà àìïëèòóäó ãàðìîíèêè 1- 2-3 áèòà íà íîìåð ãàðìîíèêè

Векторное представление сигналов

- Пусть задан сигнал s(t), t∈[0,T] с энергией E_s<∞.
- Векторным представлением сигнала в с базисом{ ϕ_k } называется соотношение

•
$$s(t) = \sum_{k=1}^{N} a_k \phi_k(t)$$
 $a_k = (s, \psi_k) = \int_T s(t) \psi_k(t) dt$

• Системы $\{\phi_k\}$, $\{\psi_k\}$ называются *биортогональными*, если

$$\int \varphi_k(x) \psi_m(x) dx = (\varphi_k, \psi_m) = \delta_{k,m} = \begin{cases} 1, & k = m \\ 0, & k \neq m \end{cases}$$

• Система называется *ортонормальной,* если $\psi_k(x) = \phi_k(x)$

$$\int \varphi_k(x) \varphi_m(x) dx = (\varphi_k, \varphi_m) = \delta_{k,m}$$

Классы базисных функций с непрерывным временем

- Гармонические $\phi_k(x) = (1/\sqrt{2}) \exp(j\pi kx)$
- Ортогональные полиномы
 - Лагерра
 - Чебышева, Лежандра
 - Эрмита
- ФУНКЦИИ ОТСЧЕТОВ $\phi_k(t) = \frac{\sin[\Omega(t k\Delta)]}{[\Omega(t k\Delta)]}$
- Уолша Wal_k(x)
- Функции Хаара har_k(x)

Дискретные преобразования

Общие соотношения для дискретных преобразований

Рассмотрим общность и различие непрерывного и дискретного преобразований

Непрерывный сигнал	Дискретный сигнал
$t \in [0,T]$	$t = t_n = n\Delta T, \ n = 0N - 1$
s(t)	$\mathbf{s}(\mathbf{n}) = \mathbf{s}(\mathbf{t_n})$
$\varphi_k(t)$	$s(n) = s(t_n)$ $\varphi_k = (\varphi_k(0)\varphi_k(1)\varphi_k(2)\varphi_k(N-1))$
$(\phi_k, \phi_m) = \int_T \phi_k(t) \phi_k^*(t) dt = \delta_{km}$	$(\overset{\mathbb{N}}{\varphi_k},\overset{\mathbb{N}}{\varphi_m}) = \sum_{n=0}^{N-1} \varphi_k(n) \varphi_m^*(n) = \delta_{km}$
$C_{k} = \int_{T} s(t) \varphi_{k}^{*}(t) dt$	$C_k = \sum_{n=0}^{N-1} s(n) \phi_k^*(n)$
$s(t) = \sum_{k=0}^{\infty} C_k \varphi_k(t)$	$s(n) = \sum_{k=0}^{\infty} C_k \phi_k(n)$

Дискретные базисные функции

•
$$\prod \Phi$$
 $\phi_k(n) = \exp\left(j2\pi \frac{kn}{N}\right) = W^{kn}$ $W = \exp\left(j\frac{2\pi}{N}\right)$ $n = 0..N - 1, k = 0..N - 1$

•
$$C_k = \frac{1}{N} \sum_{n=0}^{N-1} s(n) W^{kn}$$
 $s(n) = \sum_{k=0}^{N-1} C_k W^{-kn}$

• Дискретное косинусное преобразование

$$\varphi_k(n) = \sqrt{\frac{2}{N}} \cdot g_k \cdot \cos\left(\pi k \frac{n+0.5}{N}\right), \qquad g_k = \begin{cases} \sqrt{0.5} & , & k=0\\ 1 & , & k \neq 0 \end{cases}$$

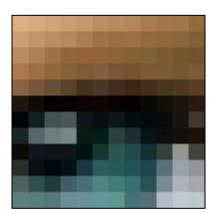
•
$$C_k = \sqrt{\frac{2}{N}} \cdot g_k \sum_{n=0}^{N-1} s(n) cos \left(\pi k \frac{n+0.5}{N} \right)$$
 $s(n) = \sqrt{\frac{2}{N}} \sum_{k=0}^{N-1} g_k C_k cos \left(\pi k \frac{n+0.5}{N} \right)$

Двумерное ДКП- DCT преобразование

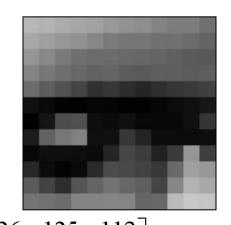
Прямое и обратное ДКП (DCT- IDCT) преобразование

$$\begin{aligned} \mathbf{C} &= \Phi \mathbf{S} \Phi^{\mathrm{T}} \,, & \mathbf{S} &= \Phi^{\mathrm{T}} \mathbf{C} \Phi \,. \\ \mathbf{S} &= \left[\mathbf{s}(\mathbf{i}, \mathbf{j}) \right] \, - \text{исходный блок}, & \mathbf{i}, \, \mathbf{j} &= [0, \, \text{N-1}] \\ \mathbf{C} &= \left[\mathbf{C}_{km} \right] \, - \text{ его спектр} & \mathbf{k}, \, \mathbf{m} &= [0, \, \text{N-1}] \\ & \text{Матрица преобразования DCT} \\ \Phi &= \left\| \phi_{\mathbf{k}}(\mathbf{i}) \right\|_{\mathrm{NN}} = \sqrt{\frac{2}{\mathrm{N}}} \begin{bmatrix} \sqrt{0.5} \\ \cos(\pi \mathbf{k} \frac{(\mathbf{i} + 0.5)}{\mathrm{N}} \end{bmatrix}, & \begin{bmatrix} k &= 0 \\ k \neq 0 \end{bmatrix} \\ & \mathbf{k} &= 0... \text{N-1}, \, \mathbf{i} &= 0... \text{N-1} \end{aligned}$$

Исходное изображение «Masha»



Исходный блок «Глаз»



	183	178	171	166	161	151	146	142	131	126	125	113	
S* =	168	158	150	144	134	123	118	119	113	112	108	101	
	148	136	122	111	108	108	105	103	101	96	90	89	
	131	120	111	104	99	102	93	90	95	95	92	96	
	108	94	84	71	52	59	49	43	51	57	60	67	
	23	12	3	3	7	7	3	3	8	15	22	30	
	2	27	78	82	18	14	21	12	9	10	21	57	
	35	98	120	129	22	21	58	41	16	14	17	19	
	11	20	19	18	13	42	73	63	39	61	149	66	
	44	15	5	14	47	77	75	68	60	106	159	150	
	92	69	50	86	101	116	105	96	71	134	178	168	
	116	114	109	131	132	133	132	102	105	185	199	197	

Ортогональное преобразование

$$C = \Phi S \Phi^T$$

$$\Phi = \sqrt{\frac{2}{N}} \begin{bmatrix} \sqrt{0.5} \\ \cos(\pi m \frac{(n+0.5)}{N} \end{bmatrix}$$

$$C = \begin{bmatrix} 788 & 20 & 57 & 17 & -9 & -21 & -18 & -15 \\ -70 & 182 & 31 & 13 & 2 & -27 & -22 & -5 \\ 303 & 25 & 5 & -11 & 13 & -22 & -12 & 17 \\ 62 & -26 & 15 & -6 & 4 & 0 & 11 & 22 \\ -44 & -51 & -9 & 26 & -19 & 16 & 22 & -4 \\ 0 & -27 & -15 & 19 & -22 & 14 & 13 & -14 \\ 14 & 34 & 0 & -16 & 1 & -5 & -10 & 1 \\ -30 & 47 & 19 & -26 & 10 & -16 & -15 & 9 \end{bmatrix}$$

Квантование

$$C_{i,j}^* = Round(\frac{C_{i,j}}{Q_{i,j}})$$

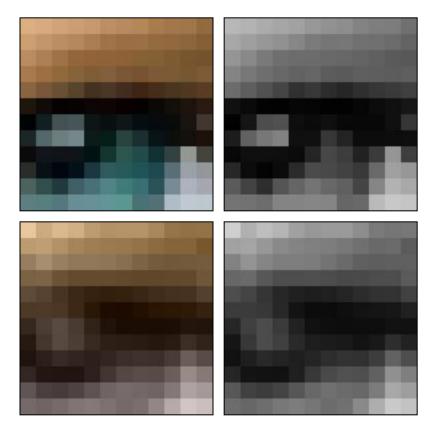
$$C^{2} = \begin{bmatrix} 788 & 6 & 11 & 2 & -1 & -1 & -1 & -1 \\ -23 & 36 & 4 & 1 & 0 & -2 & -1 & 0 \\ 60 & 3 & 0 & -1 & 1 & -1 & 0 & 0 \\ 8 & -2 & 1 & 0 & 0 & 0 & 0 & 1 \\ -4 & -4 & 0 & 1 & -1 & 0 & 1 & 0 \\ 0 & -2 & -1 & 1 & -1 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\ -2 & 2 & 1 & -1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Деквантование

$$C_{i,j} = C_{i,j}^* \cdot Q_{i,j}$$

$$C^{2} = \begin{bmatrix} 788 & 18 & 55 & 14 & -9 & -11 & -13 & -15 \\ -69 & 180 & 28 & 9 & 0 & -26 & -15 & 0 \\ 300 & 21 & 0 & -11 & 13 & -15 & 0 & 0 \\ 56 & -18 & 11 & 0 & 0 & 0 & 0 & 21 \\ -36 & -44 & 0 & 15 & -17 & 0 & 21 & 0 \\ 0 & -26 & -15 & 17 & -19 & 0 & 0 & 0 \\ 13 & 30 & 0 & 0 & 0 & 0 & 0 & 0 \\ -30 & 34 & 19 & -21 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Результат восстановления



RLE: 14953 байт (сжатие: 25,29)

RLE+Huffman: 11047 байт (сжатие: 34,24) RLE+Arithm: 11022 байт (сжатие: 34,32)

PSNR(Y)=20,578 дБ, сжатие: 34,32

