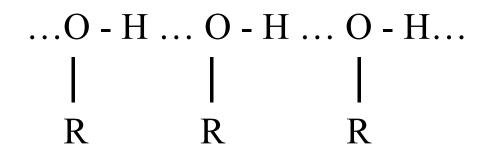

Тема урока:

Спирты.

Предельные одноатомные спирты.

Физические свойства


1. Агрегатное состояние:

$${\rm C_{1}}\text{--}{\rm C_{11}}\text{--}$$
 жидкости ${\rm C_{12}}$ -- ${\rm C}$ -- твердые вещества

- 2. Запах
 - C_1 C_3 «спиртовой» запах, жгучий вкус
 - ${\rm C_4-C_5}$ «сивушный» запах ${\rm C_6-C_{11}}$ - неприятный запах ${\rm C_{12}$ - C - запаха нет
- 3. $C_1 C_3 P$, с $C_4 P$ уменьшается, с $C_8 H$
- 4. Бесцветны
- 5. CH₃OH- сильный яд!
- 6. $C_{2}H_{5}$ ОН- слабый наркотик

Водородная связь - связь между атомами водорода одной молекулы и атомами сильно электроотрицательных элементов (кислорода, азота, фтора) другой молекулы.

ассоциатов

Влияние водородной связи на физические свойства соединений

Этан	Этанол	Этиленгликоль
Т кип = -89°C	Ткип = 78 °C	Т кип = 189°C

Пропан	Пропанол - 1	Глицерин
Т кип = - 42 °C	Т кип = 97°C	Т кип = 290°C

[УВ и УВНаl] —— Одноатомные —— Многоатомные спирты

Химические свойства спиртов

І. Реакции замещения

Реакции, идущие с участием атома водорода гидроксильной группы

Химические свойства спиртов

1.Взаимодействие спиртов с металлическим

Этилат натрия

$$2CH_3-CH_2-OH+2Na \rightarrow 2CH_3-CH_2-ONa+H_2 \uparrow$$

Реакция этерификации

$$R - C + HO - R \xrightarrow{H_2SO_4, t^0} + R - C$$

$$OH O - R$$

Кислота

Спирт

Сложный эфир

$$CH_3$$
- $COOH + HOC_2H_5 \leftrightarrow CH_3$ - $COO-C_2H_5 + H_2O$

этиловый

уксусная

кислота спирт

этиловый эфир уксусной кислоты

Реакции, идущие с участием гидроксильной группы

3.Взаимодействие с галогеноводородами C2H5OH+HBr →C2H5Br +HOH

<u>II. Реакции отщепления</u>

1. Дегидрирование(стр.146)

Составьте уравнения реакций, заменив радикал R на CH3.

Назовите продукты реакций.

2. Дегидрирование и дегидратация(стр.110) – реакция Лебедева

Реакция дегидратации

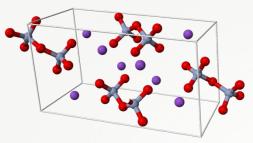
А)Внутримолекулярная

$$CH_3$$
 - CH_2 - OH $\xrightarrow{H_2SO_4, t>140}$ + $CH_2 = CH_2$ Этилен

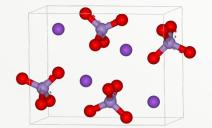
Б)Межмолекулярная

$$C_2H_5$$
-ОН + НО- C_2H_5 + C_2H_5 + C_2H_5 -О- C_2H_5 Диэтиловый эфир

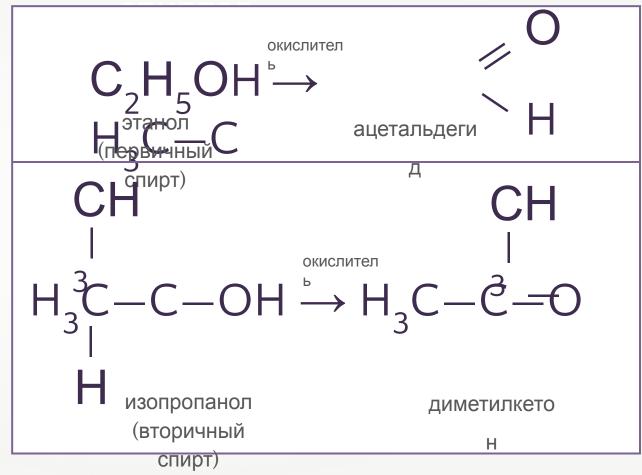
Ш.Реакции окисления


1.Горение
$$C_2H_5OH + 3O_2 \rightarrow 2CO_2 + 3H_2O + 1374$$
 кДЖ

III.Реакции окисления


2.Окисление спиртов сильными окислителями (например KMnO₄+H₂SO₄) – см. стр.145-146

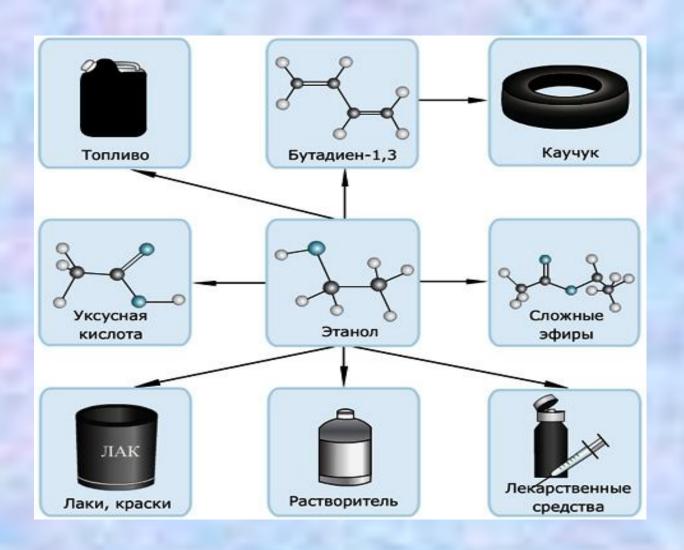
Окисление



Дихромат калия

$$(K_2Cr_2O_7)$$

Перманганат калия (КМnO₄)


3. Окисление оксидом меди(II) – качественная реакция на метиловый и этиловый спирты.

$$\begin{array}{c} t \\ CH_{3} - OH + CuO \to H - COH \\ H_{2}O \\ \end{array} \qquad \begin{array}{c} \text{чёрный цвет} \\ \text{муравьиный альдегид} \\ \text{запах формалин} \end{array} \qquad \begin{array}{c} \text{красный цвет} \\ \text{t} \\ CH_{3} - CH_{2} - OH + CuO \to CH_{3} - COH \\ \text{Чёрный цвет} \end{array} \qquad \begin{array}{c} \text{красный цвет} \\ \text{уксусный альдегид} \\ \text{запах зелёного яблока} \end{array} \qquad \begin{array}{c} \text{красный цвет} \\ \text{красный цвет} \\ \end{array}$$

$$CH_{3}-CH_{2}-OH+CuO \xrightarrow{t^{0}} CH_{3}-C \xrightarrow{\hspace{0.5cm}} + Cu + H_{2}O$$

$$H$$

Применение спиртов на примере этанола

Получение

- І. Общие способы
- 1.Гидролиз моногалогенпроизводных водными растворами щелочей

$$CH_3$$
 -Cl + NaOH \rightarrow CH₃ - OH + NaCl

2. Гидратация алкенов – промышленный способ получения этанола

Получение

3. Восстановление альдегидов и кетонов

$$H_3C$$
 H_2 ;[Ni] H_3C >CHOH H_3C H_3C H_3C изопропиловый (ацетон) спирт

4.Сбраживание растительного сырья, содержащего крахмал

 $C_6H_{12}O_6 \rightarrow 2C_2H_5OH+2CO_2$

Получение

- II. Специфические способы
 - 1. Синтез метанола из синтез газа.

см. уравнение стр.149.

2. Сбраживание растительного сырья, содержащего крахмал и целлюлозу.

Крахмал + H2O \rightarrow глюкоза \rightarrow этиловый спирт (пищевой)

Целлюлоза + H2O \rightarrow глюкоза \rightarrow этиловый спирт (гидролизный)

Брожение глюкозы

см. уравнение стр.149.

Д.з.: п.17, № 10,11, задача:

Вычислите объём водорода, выделившегося при взаимодействии 4,6 г натрия этиловым спиртом массой 30 г.