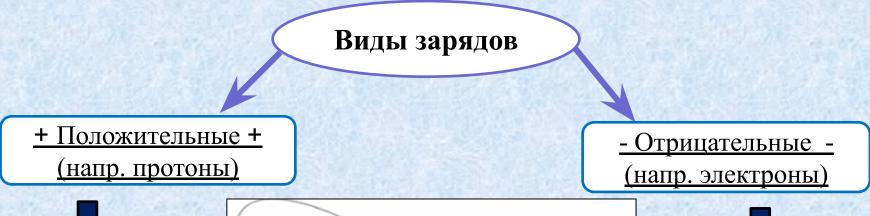
Список литературы

- 1. Ремизов А.Н., Максина А.Г., Потапенко А.Я. Медицинская и биологическая физика.
- 2. Лещенко В.Г., Ильич Г.К. Медицинская и биологическая физика.
- 3. Федорова В.Н., Фаустов Е.В. Медицинская и биологическая физика. Курс лекций с задачами.
- 4. Огурцов А.Н. Лекции по физике.
- 5. Иродов И.Е.: 3. Основные законы электромагнетизма; 4. Волновые процессы. Основные законы оптики.
- 6. Савельев И.В. Общий курс физики.
- 7. Сивухин Д.В. Курс общей физики.
- 8. Матвеев А.Н.: 3. Электричество и магнетизм; 4. Оптика.
- 9. Самойлов В.О. Медицинская биофизика.
- 10. Подколзина В.А. Медицинская физика. Конспект лекций.
- 11. Костылев В.А., Наркевич Б.Я. Медицинская физика.

E-mail: lgaliull@kpfu.ru

Книги здесь: https://cloud.mail.ru/public/GjLT/s38zxkN9t

Электричество и магнетизм


Электрические и магнитные явления связаны с особой формой существования материи — электрическими и магнитными полями и их взаимодействием. Эти поля в общем случае настолько взаимозависимы, что принято говорить о едином электромагнитном поле.

Медико-биологические приложения:

- 1. Понимание электрических процессов, происходящих в организме, а также электрических и магнитных характеристик биологических сред. физические основы электрокардиографии, магнитобиологии и реографии, электропроводимость биологических тканей и жидкостей и др.
- 2. Понимание механизма воздействия электромагнитных полей на организм.
- 3. Приборное, аппаратурное.

Электрический заряд

Электрический заряд — это физическая величина, определяющая свойство частиц или тел вступать в электромагнитные силовые взаимодействия.

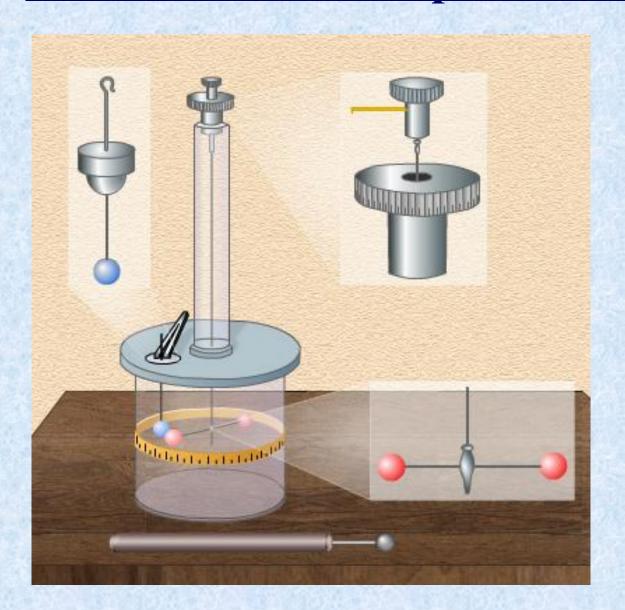
В положительно заряженном теле недостаток электронов

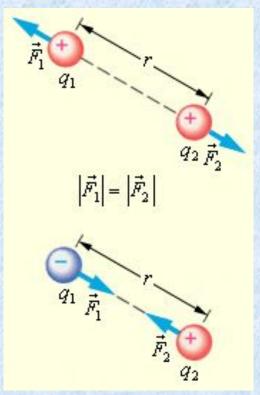
В отрицательно заряженном теле избыток электронов

Электрический заряд

Элементарный заряд (заряд электрона): $e = 1,67 \cdot 10^{-19} \text{ Кл}$

Заряд тела \mathbf{q} образуется совокупностью элементарных зарядов, он является целым кратным заряду электрона \mathbf{e} :


$$q = \pm Ne$$
 (N-целое число)


Закон сохранения заряда:

Суммарный заряд электрически изолированной системы остается постоянной

$$q_1 + q_2 + q_3 + \dots + q_n = const$$

Взаимодействие зарядов. Опыт Кулона

$$F = k \frac{q_1 q_2}{\varepsilon r^2}$$

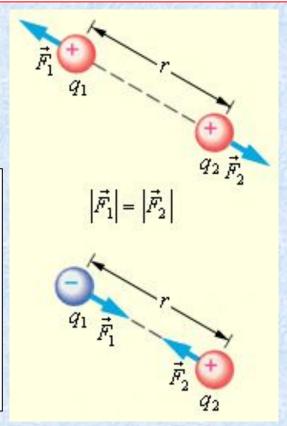
Закон Кулона

Сила взаимодействия двух точечных зарядов пропорциональна величине каждого из зарядов и обратно пропорциональна квадрату расстояния между ними.

Направление силы совпадает с проходящей через заряды прямой.

$$F = k \frac{q_1 q_2}{\varepsilon r^2}$$

F – сила взаимодействия зарядов;


k — коэффициент пропорциональности;

 $\mathbf{q_1}$ и $\mathbf{q_2}$ — величины

взаимодействующих зарядов;

r — расстояние между ними.

є – диэлектрическая проницаемость среды

$$F = k \frac{q_1 q_2}{\varepsilon r^2}$$

$F = k \frac{q_1 q_2}{\varepsilon r^2}$ Закон Кулона. Коэффициент к

Коэффициент k зависит от выбора системы единиц измерения.

$$k = \frac{1}{4\pi\varepsilon_0}$$

электрическая постоянная (диэлектрическая проницаемость вакуума). В системе единиц СИ:

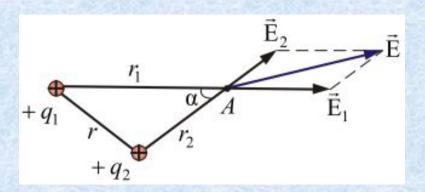
$$\left| \varepsilon_0 = 8.85 \cdot 10^{-12} \frac{\Phi}{M} \right| \frac{1}{4\pi\varepsilon_0} = 9 \cdot 10^9 \frac{M}{\Phi}$$

$$\frac{1}{4\pi\varepsilon_0} = 9 \cdot 10^9 \, \frac{M}{\Phi}$$

Электрическое поле

Взаимодействие между зарядами осуществляется через электрическое поле.

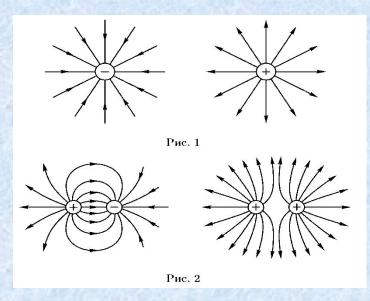
Силовая характеристика электрического поля — **Напряженность** \overrightarrow{E} .

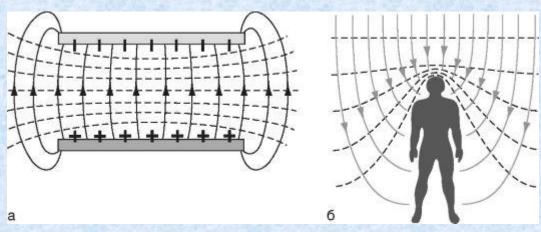

Напряженность электрического поля (\vec{E}) в некоторой точке пространства равна силе, действующей на единичный точечный заряд, помещенный в эту точку:

$$\vec{E} = \frac{\vec{F}}{q}$$
, [B/M] $\vec{F} = \vec{E} \cdot q$

Принцип суперпозиции электрических полей

Напряженность поля системы зарядов равна векторной сумме напряженностей полей, которые создавал бы каждый из зарядов системы в отдельности.


$$\overrightarrow{E} = \overrightarrow{E_1} + \overrightarrow{E_2} + \dots + \overrightarrow{E_n} = \sum \overrightarrow{E_i}$$


Силовые линии

Силовая линия есть математическая линия, направление касательной к которой в каждой точке, через которую она проходит, совпадает с направлением вектора E в той же точке.

Примеры:

Электрические поля точечных зарядов

Электрическое поле двух пластин (а); электрическое поле Земли вблизи стоящего человека (б).

Потенциал

Энергетическая характеристика электрического поля — **Потенциал ф**.

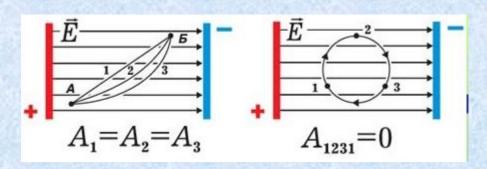
Потенциал \phi — физическая величина, равная отношению потенциальной энергии $\mathbf{W}_{\mathbf{p}}$ электрического заряда в электрическом поле к заряду \mathbf{q} :

$$\varphi = \frac{W_p}{q}$$

Потенциал ф численно равен работе А, которую совершают силы поля над единичным положительным зарядом при удалении его из данной точки на бесконечность.

Разность потенциалов

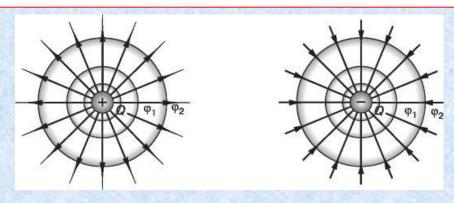
Разность потенциалов $\Delta \varphi$ численно равна **работе А**, которую совершают силы поля над единичным положительным зарядом при перемещении его **из одной точки в другую:**


$$\Delta \varphi = \varphi_1 - \varphi_2 = \frac{A}{q} \mathbf{B}$$

где ϕ_1 и ϕ_2 - потенциалы начальной (1) и конечной (2) точек соответственно; $\Delta \phi$ — разность потенциалов.

В однородном поле:

$$\Delta \varphi = E \cdot d$$


d — расстояние между точками c потенциалами ϕ_1 и ϕ_2 .

12

Эквипотенциальная поверхность

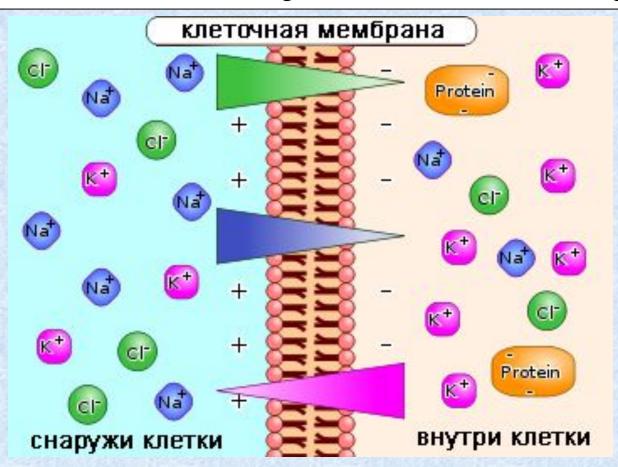
Эквипотенциальная поверхность - поверхность, все точки которой имеют одинаковый потенциал. Силовые линии перпендикулярны эквипотенциальным поверхностям.

Эквипотенциальные поверхности и силовые линии точечных зарядов

Мембранные потенциалы клетки

На мембране, разделяющей цитоплазму и межклеточную жидкость, существует разность электрических потенциалов, которую называют мембранным потенциалом.

Мембранный потенциал покоящейся живой клетки называется **потенциалом покоя клетки**.


Потенциал внутри клетки относительно межклеточной жидкости составляет в покое от -60 мВ до -100 мВ, в зависимости от вида клетки.

В процессе деятельности клетки мембранный потенциал может изменяться, эти изменения в нервных и рецепторных клетках связаны с переработкой и передачей информации, а в мышечных волокнах — с их сокращением.

Мембранные потенциалы клетки

Наиболее важными ионами, определяющими мембранные потенциалы клеток, являются \mathbf{K}^+ , \mathbf{Na}^+ , \mathbf{Cl}^- .

Концентрации этих ионов в цитоплазме (внутри клетки) и межклеточной жидкости различаются в десятки раз.

Равновесные потенциалы Нернста

Найдем равновесный мембранный потенциал, возникающий вследствие диффузии ионов одного типа через мембрану, учитывая, что равновесное состояние достигается при равенстве электрохимических потенциалов по обе стороны мембраны $\mu_i = \mu_e$:

Электрохимический потенциал внутри клетки:

$$\mu_i = \mu_{0i} + RT \ln C_i + ZF \varphi_i,$$

Электрохимический потенциал вне клетки:

$$\mu_e = \mu_{0e} + RT \ln C_e + ZF \varphi_e$$

где μ_{0i} , μ_{0e} — стандартный химический потенциал, зависящий от растворителя внутри и вне клетки;

R – универсальная газовая постоянная; Т – температура;

 C_{i} , C_{c} – концентрация ионов внутри и вне клетки;

 ${\bf Z}$ – валентность иона; ${\bf F}$ – постоянная Фарадея;

 ϕ_{i}, ϕ_{e} – электрический потенциал внутри и вне клетки.

Равновесные потенциалы Нернста

Так как с обеих сторон мембраны ионы находятся в одном растворителе — воде, то $\mu_{0i} = \mu_{0e}$ и условие термодинамического равновесия принимает вид:

$$RT \ln C_i + ZF \varphi_i = RT \ln C_e + ZF \varphi_e$$

ИЛИ

$$ZF(\varphi_i - \varphi_e) = RT(\ln C_i - \ln C_e)$$

Отсюда получаем уравнение Нернста для равновесного мембранного потенциала:

$$\varphi_i - \varphi_e = \frac{RT}{ZF} \ln \frac{C_i}{C_e}$$

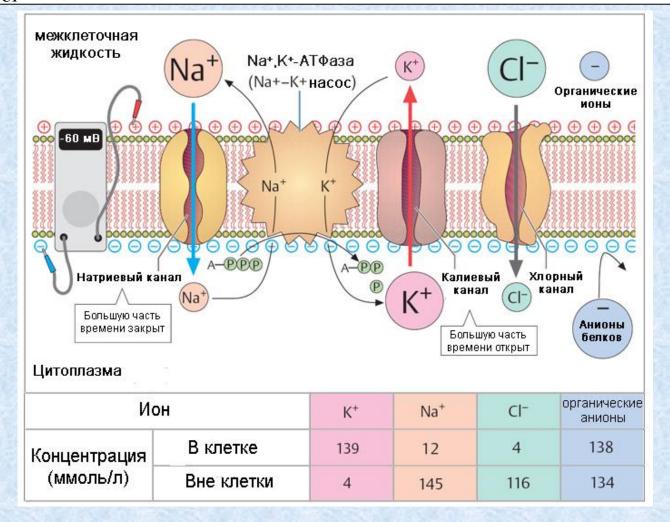
R – универсальная газовая постоянная; Т – температура;

 C_{i} , C_{e} – концентрация ионов внутри и вне клетки;

 ${\bf Z}$ – валентность иона; ${\bf F}$ – постоянная Фарадея;

Равновесные потенциалы Нернста и потенциалы покоя в различных тканях

Клетка	Ионы	Межклеточ- ная жид- кость, мМ/л	Цитоплаз- ма, мМ/л	Потенциал Нернста, mV	Потенциал покоя, ϕ_0 , mV
Мышцы млекопи- тающих	Na ⁺ K ⁺ Cl ⁻	142 4 120	12 140 4	+ 64 -92 -89	-90
Мышцы лягушки	Na ⁺ K ⁺ Cl ⁻	120 2,5 120	9,2 140 3,5	+ 67 -105 -92	-90
Аксон кальмара	Na ⁺ K ⁺ Cl ⁻	460 10 540	50 400 40	+ 58 -96 -68	-70


Напряженность электрического поля в клеточной мембране:

$$E = \frac{\phi_0}{d} \approx \frac{80 \text{ MB}}{8 \text{ HM}} = \frac{8 \cdot 10^{-2} \text{ B}}{8 \cdot 10^{-9} \text{ M}} = 10^7 \frac{\text{B}}{\text{M}} = 10^5 \frac{\text{B}}{\text{cm}}$$

Потенциал покоя

$$\phi_{M} = -\frac{RT}{F} \ln \frac{P_{K}C_{i}(K^{+}) + P_{Na}C_{i}(Na^{+}) + P_{Cl}C_{e}(Cl^{-})}{P_{K}C_{e}(K^{+}) + P_{Na}C_{e}(Na^{+}) + P_{Cl}C_{i}(Cl^{-})}$$

где P_{κ} , P_{Na} , P_{Cl} — проницаемость мембраны для соответствующих ионов (1; 0,04; 0,45).

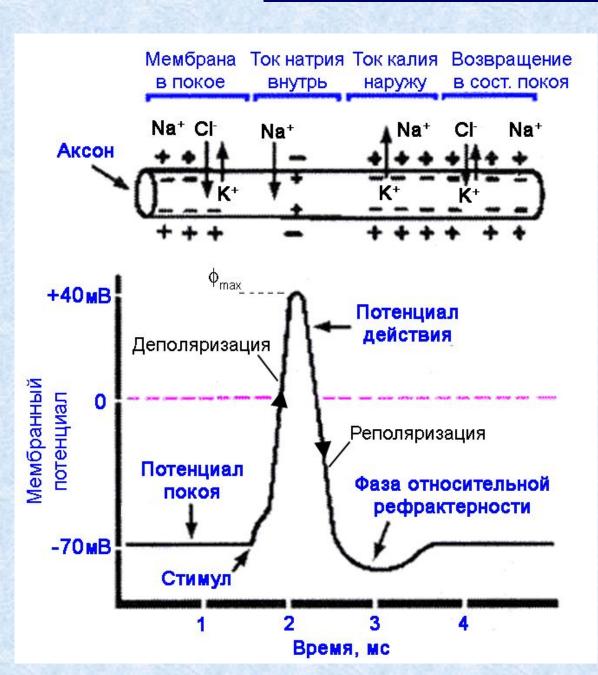
Потенциал действия

Все клетки возбудимых тканей (нервная и мышечная) при действии раздражителей достаточной силы способны переходить в состояние возбуждения.

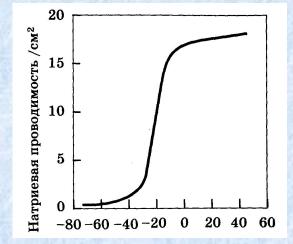
Действие раздражителя в конечном итоге приводит к изменению мембранного потенциала клетки на некоторую величину U, зависящую от силы раздражителя, в результате чего потенциал на мембране изменяется и становится равным:

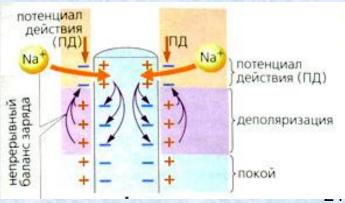
$$\varphi_{M} = \varphi_{0} + U$$

где ϕ_0 – потенциал покоя клетки.


Если U > 0 – Деполяризация; Если U < 0 - Гиперполяризация

Изменение во времени мембранного потенциала клетки, происходящее при ее возбуждении, называется


потенциалом действия.


Возбуждение клетки происходит только <u>при деполяризации</u> при $\phi_{M} > E_{\kappa p}$ (критический потенциал)

Потенциал действия

-) При $\phi_{\rm M}$ > $E_{\rm \kappa p}$ открываются натриевые каналы (ток Na⁺ внутрь клетки), $\phi_{\rm M}$ растет *деполяризация*;
- 2) При $\phi_{_{\mathbf{M}}} = \phi_{_{\mathbf{max}}}$ натриевые каналы закрываются, а проводимость калиевых каналов увеличивается (ток K^+ наружу) $\phi_{_{\mathbf{M}}}$ уменьшается *реполяризация*;

Электрография

Живые ткани являются источником электрических потенциалов (биопотенциалов).

Регистрация биопотенциалов тканей и органов с диагностической (исследовательской) целью получила название электрографии.

Виды электрографии:

- ЭКГ электрокардиография регистрация биопотенциалов, возникающих в сердечной мышце при ее возбуждении;
- ЭРГ электроретинография регистрация биопотенциалов сетчатки глаза, возникающих в результате воздействия на глаз;
- ЭЭГ электроэнцефалография регистрация биоэлектрической активности головного мозга;
- ЭМГ электромиография регистрация биоэлектрической активности мышц.

Характеристика биопотенциалов

Гиототочни		Амплитуда, мкВ		
Биопотенциалы	Интервал частот, Гц	максимальная	минимальная	
ЭКГ	0,2-120	1500-2000	100-300	
ЭМГ	3-600	1000-1500	30-40	
ээг	1-300	200-300	5-10	

Электрокардиография

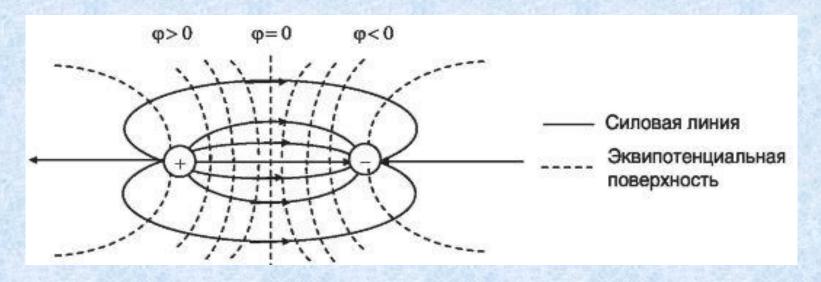
При синхронном возбуждении множества волокон сердечной мышцы в среде, окружающей сердце, течет ток, который даже на поверхности тела создает разности потенциалов порядка нескольких мВ. Эта разность потенциалов регистрируется при записи электрокардиограммы.

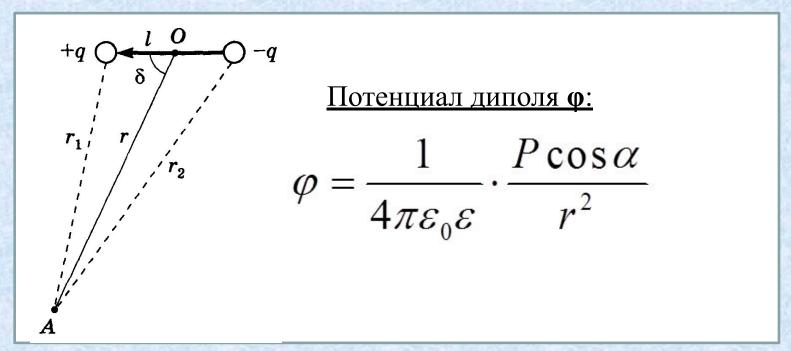
Теория Эйнтховена:

Сердце есть диполь с дипольным моментом p_C который поворачивается, изменяет свое положение и точку приложения (изменением точки приложения этого вектора часто пренебрегают) за время сердечного цикла

В 1924 г. удостоен Нобелевской премии по физиологии и медицине за изобретение электрокардиографа и расшифровку электрокардиограмм.

Электрический диполь

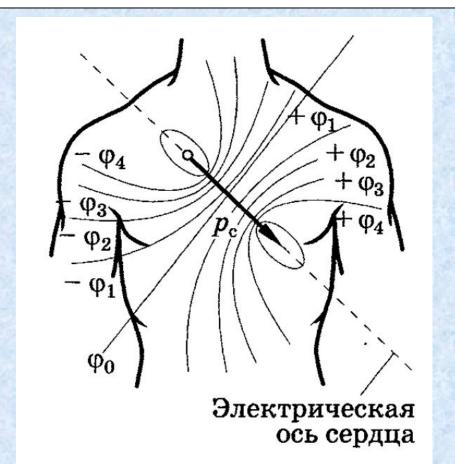

Электрическим диполем (диполем) называют систему, состоящую из двух равных, но противоположных по знаку точечных электрических зарядов (+q и -q), расположенных на некотором расстоянии l друг от друга (плечо диполя).


Электрический дипольный момент:

$$\vec{p} = q \cdot \vec{l}$$

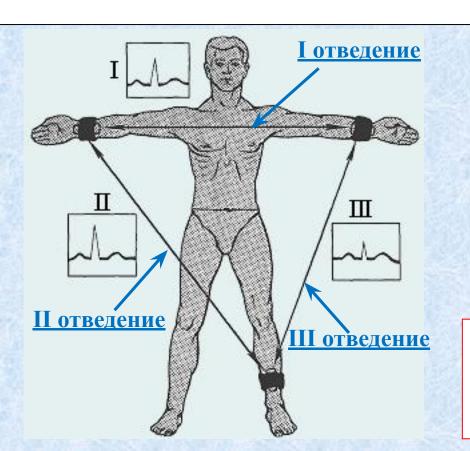
Единицей электрического момента диполя является кулон-метр [Кл•м].

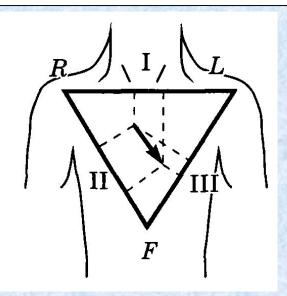
Электрическое поле диполя



Теория Эйнтховена

Сердце есть диполь с дипольным моментом $\mathbf{p}_{\mathbf{C}}$, который за время сердечного цикла


- 1. поворачивается,
- 2. изменяет свое положение,
- 3. изменяет точку приложения (этим часто пренебрегают).



Теория отведений Эйнтховена

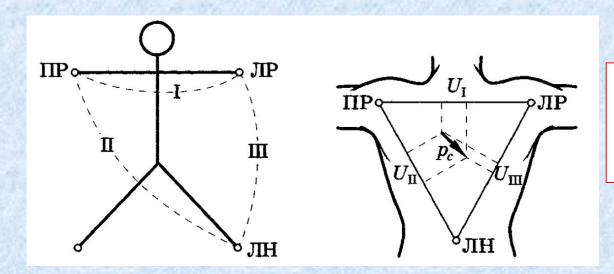
Разность биопотенциалов U, регистрируемая между двумя точками тела, называют *отведением*.

В. Эйнтховен предложил снимать разности биопотенциалов U сердца между вершинами равностороннего треугольника, которые приближенно расположены в правой руке (ПР), левой руке (ЛР) и левой ноге (ЛН).

Закон Эйнтховена:

$$U_{II} = U_{III} + U_{II}$$

Теория отведений Эйнтховена

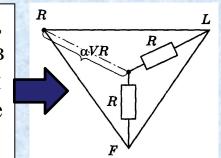

Отведение

Разность потенциалов

I отведение (правая рука — левая рука)	$\mathbf{U}_{_{\mathbf{I}}}$
II отведение (правая рука — левая нога)	$\mathbf{U}_{\mathbf{II}}$
III отведение (левая рука — левая нога)	U

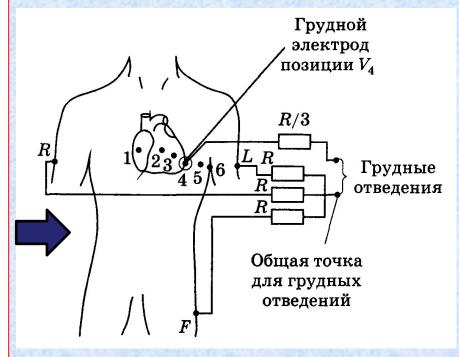
Отведения позволяют определить соотношение между проекциями электрического момента сердца на стороны треугольника по формуле:

 $U_{\scriptscriptstyle I}$: $U_{\scriptscriptstyle I\!I\!I}$: $U_{\scriptscriptstyle I\!I\!I}$ = $p_{\scriptscriptstyle C\!I}$: $p_{\scriptscriptstyle C\!I\!I}$: $p_{\scriptscriptstyle C\!I\!I\!I}$


Закон Эйнтховена:

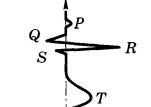
$$U_{II} = U_{III} + U_{I}$$

Регистрация ЭКГ на практике

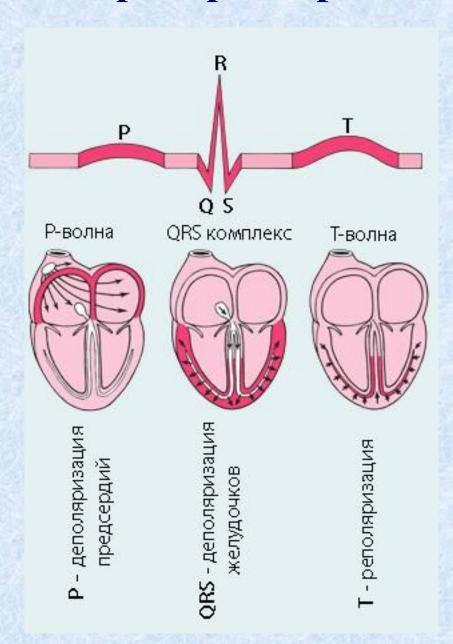

На практике, кроме трех стандартных отведений, регистрируют еще девять отведений: три усиленных униполярных и шесть грудных.

B униполярных усиленных отведениях, обозначаемых как αVR , αVL и αVF , регистрируют разность потенциалов между одной из вершин треугольника Эйнтховена (R, L или F) и усредненным потенциалом двух других его вершин, для чего последние соединяют между собой равными сопротивлениями R.

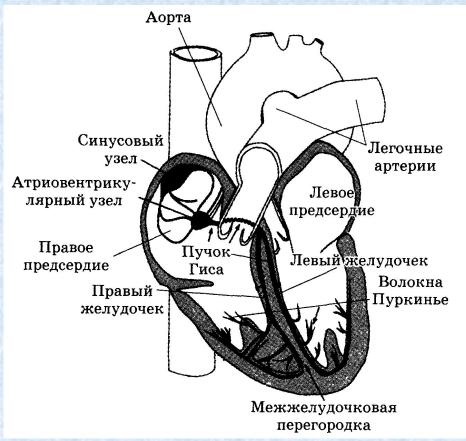
Три стандартных и три усиленных отведения определяют поведение электрического вектора сердца лишь в плоскости треугольника Эйнтховена и не дают информации о проекциях этого вектора на направление, перпендикулярное плоскости


Чтобы получить полное представление об электрическом поле сердца, регистрируют еще *шесть грудных отведений* $(V_I - V_6)$. Они представляют собой разность потенциалов между общей точкой треугольника и одной из шести точек на грудной клетке пациента.

Электрокардиограмма


Электрокардиограмма представляет собой график изменения во времени разности потенциалов, снимаемой двумя электродами соответствующего отведения за цикл работы сердца.

Интервал ЭКГ	PQ	QRS	QT	RR
Длительность, с	< 0,2	< 0,12	0,3-0,4	0,85


Электрокардиограмма

Параметры ЭКГ в норме.

- Длительность зубцов и интервалов в секундах:
- P = 0.06 0.11
- PQ 0,12 0,20
- QRS 0,06 0,1
- T 0,05 0,25

- Амплитуда зубцов в милливольтах;
- · P-0,1-0,2
- · Q-0,3
- · R-1,0-2,0
- · S-0-0,06
- T-0,2-0,6

<u>Физические факторы,</u> <u>определяющие особенности ЭКГ</u>

Факторы, определяющие особенности ЭКГ у отдельного человека:

- 1) положение сердца в грудной клетке,
- 2) положение тела,
- 3) дыхание,
- 4) действие физических раздражителей, в первую очередь физических нагрузок.