ОБЩИЕ ТЕОРЕМЫ ДИНАМИКИ МАТЕРИАЛЬНОЙ ТОЧКИ

ЛЕКЦИИ ПО ТЕОРЕТИЧЕСКОЙ МЕХАНИКЕ. ДИНАМИКА

Цель лекции

Ознакомиться с общими теоремами динамики материальной точки и примерами их практического применения.

План лекции

Введение

- Теорема об изменении импульса точки
- Теорема об изменении момента импульса точки
- Движение в центральном поле
- Теорема об изменении кинетической энергии точки
- Работа силы. Потенциальные силы

Заключение

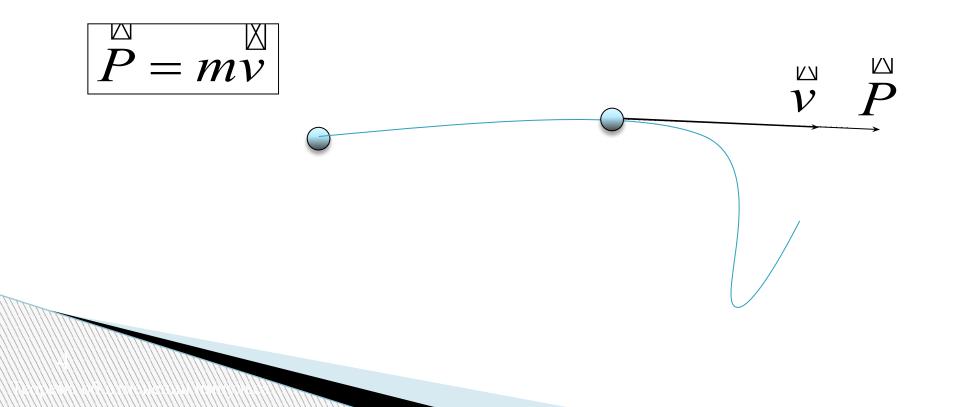
ОБЩИЕ ТЕОРЕМЫ ДИНАМИКИ ТОЧКИ

Зачем нам нужны теоремы для точки?

на основе теорем динамики для точки мы построим динамику механической системы

импульс точки

Импульс (количество движения) точки - вектор, равный произведению массы точки на вектор ее скорости



импульс силы

Элементарным импульсом силы называется вектор, равный произведению силы на элементарный промежуток времени

$$dS = Fdt$$

Импульсом силы за конечный промежуток времени называется вектор

$$S = \int_{0}^{t} Fdt$$

ТЕОРЕМА ОБ ИЗМЕНЕНИИ ИМПУЛЬСА

Производная по времени от импульса материальной точки равна равнодействующей приложенных к точке сил

Изменение импульса материальной точки за некоторый временной интервал равно импульсу равнодействующей приложенных к точке сил на этом интервале

ДОКАЗАТЕЛЬСТВО

- Запишем дифф. уравнение движения точки
 - Учитывая постоянство массы точки и определение ее ускорения

$$\overset{\mathbb{M}}{a} = \frac{d\overline{v}}{dt},$$

получим
$$\frac{d}{dt}(mv) = \sum_{i=1}^N F_i = \stackrel{\boxtimes}{R},$$

$$\frac{dP}{dt} = R$$

• Умножив обе части уравнения на элементарный промежуток времени и проинтегрировав, получим

$$\int\limits_{t_{\mu}}^{t_{\kappa}}dP=\int\limits_{t_{\mu}}^{\mathbb{N}}\overset{\mathbb{N}}{R}dt$$
 или

$$egin{aligned} egin{aligned} igwedge P_{\kappa} - igwedge P_{H} &= \int\limits_{t_{H}}^{t_{\kappa}} igwedge R dt \end{aligned}$$

Теорема доказана

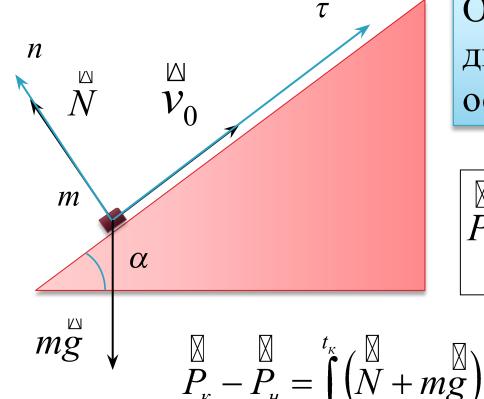
ЗАКОН СОХРАНЕНИЯ ИМПУЛЬСА

• Пусть
$$\sum_{i=1}^N \overset{\square}{F_i} = 0.$$
• В этом случае

$$\frac{dP}{dt} = 0, \quad P = const$$

Если равнодействующая приложенных к материальной точке сил равна нулю, то импульс точки сохраняется во все время движения

Если проекция на какую-нибудь ось равнодействующей приложенных к точке сил равна нулю, то проекция импульса точки на эту ось сохраняется



Определить время движения точки до остановки

$$P_{k} - P_{H} = \sum_{i} \int_{t_{H}}^{t_{k}} F_{i} dt$$

$$P_{\kappa} - P_{H} = \int_{t_{H}}^{t_{\kappa}} \left(N + mg \right) dt$$

$$-P_{H_{\tau}} = -\int_{t_{H}}^{t_{\kappa}} mg \sin \alpha \, dt \qquad mv_{0} = mg \sin \alpha \, t_{\kappa}$$

 $t_{\kappa} = v_0 / g \sin \alpha$

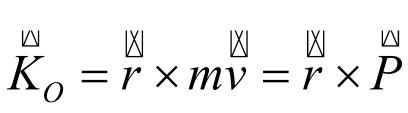
МОМЕНТ ИМПУЛЬСА ТОЧКИ

Момент импульса (момент количества движения) точки - вектор, определяемый $K_O = r \times mv$

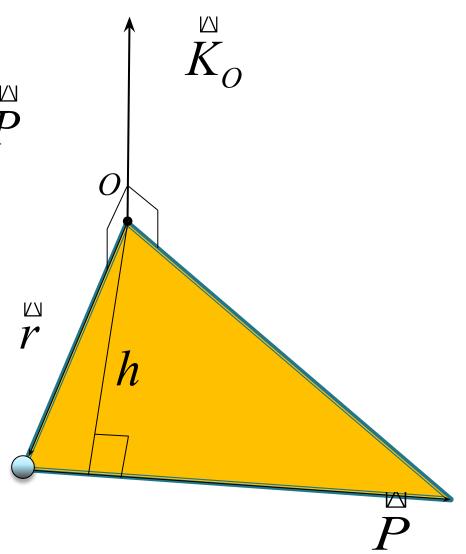
- радиус-вектор точки, проведенный из центра O

$$M_{O}(F) = r \times F$$

МОМЕНТ ИМПУЛЬСА ТОЧКИ



$$K_O = mvh$$



ТЕОРЕМА ОБ ИЗМЕНЕНИИ МОМЕНТА ИМПУЛЬСА

Производная по времени от момента импульса материальной точки относительно некоторого неподвижного центра равна моменту равнодействующей приложенных к точке сил относительно этого же центра

ДОКАЗАТЕЛЬСТВО

Запишем теорему об изменении импульса точки

$$\frac{d}{dt}(mv) = \stackrel{\mathbb{M}}{R},$$

• Умножим обе части уравнения векторно на радиус-вектор точки

$$\overset{\boxtimes}{r} \times \frac{d}{dt}(mv) = \overset{\boxtimes}{r} \times \overset{\boxtimes}{R} = \overset{\boxtimes}{M}_{O}(R)$$

• Рассмотрим выражение
$$\frac{d}{dt}(\overset{\boxtimes}{r}\times \overset{\boxtimes}{mv}) = \\ = \overset{\boxtimes}{r}\times \frac{d}{dt}(\overset{\boxtimes}{mv}) + \overset{\boxtimes}{dr}\times \overset{\boxtimes}{mv}$$
$$= \overset{\boxtimes}{dt}(\overset{\boxtimes}{mv}) + \overset{\boxtimes}{dt}(\overset{\boxtimes}{mv}) + \overset{\boxtimes}{dt}(\overset{\boxtimes}{mv})$$

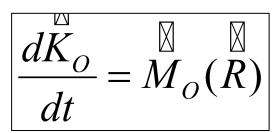
Таким образом,

$$\frac{dK_O}{dt} = M_O(R)$$

• Теорема доказана

ПРОЕКЦИИ МОМЕНТА ИМПУЛЬСА

$$\begin{cases} K_x = m(yv_z - zv_y) \\ K_y = m(zv_x - xv_z) \\ K_z = m(xv_y - yv_x) \end{cases}$$



$$\frac{dK_x}{dt} = M_x(R) \qquad \frac{dK_y}{dt} = M_y(R) \qquad \frac{dK_z}{dt} = M_z(R)$$

ЗАКОН СОХРАНЕНИЯ МОМЕНТА ИМПУЛЬСА

•Пусть
$$\sum_{i=1}^N \stackrel{\mathbb{N}}{M}_O(\stackrel{\mathbb{N}}{F}_i) = 0.$$

• В этом случае

$$\frac{dK_O}{dt} = 0, \quad K_O = const$$

Если момент равнодействующей приложенных к материальной точке сил относительно какого-либо центра равен нулю, то момент импульса точки сохраняется

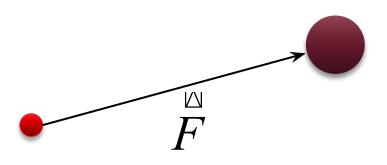
$$\sum_{i=1}^{N} M_{x}(F_{i}) = 0 \quad \Rightarrow$$

$$\sum_{i=1}^{N} M_{x}(F_{i}) = 0 \quad \Longrightarrow \quad \left| \frac{dK_{x}}{dt} = 0, \quad K_{x} = const \right|$$

ДВИЖЕНИЕ ПОД ДЕЙСТВИЕМ ЦЕНТРАЛЬНОЙ СИЛЫ

Действующую на материальную точку точку силу называют центральной, если она всегда направлена к некоторому неподвижному центру.

Пример



Как изменяется модуль скорости планеты при движении по эллиптической траектории

?

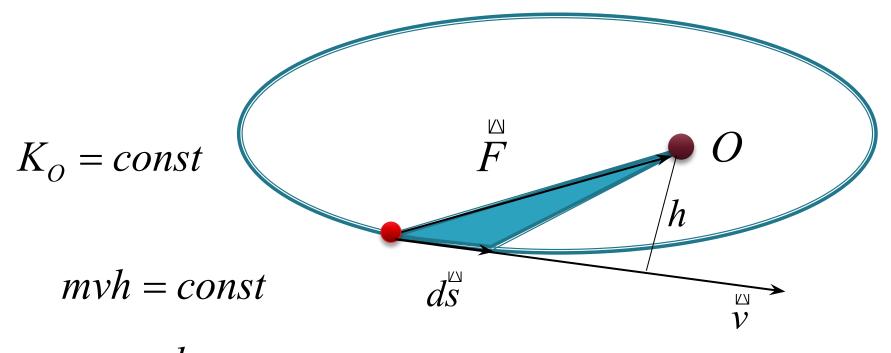
Определим закон изменения площади сектора $d\sigma$.

$$\frac{dK_{O}}{dt} = M_{O}(F) = 0.$$

$$\overset{\bowtie}{K_O} = const$$

 dS^{\bowtie}

направление



$$m\frac{ds}{dt}h = const$$

$$\frac{d\sigma}{dt} = const$$

$$\frac{d\sigma}{dt} = const$$

Каждая планета движется в плоскости, проходящей через центр Солнца, причём за равные промежутки времени радиус-вектор, соединяющий Солнце и планету, описывает равные площади

$$\frac{d\sigma}{dt} = const$$

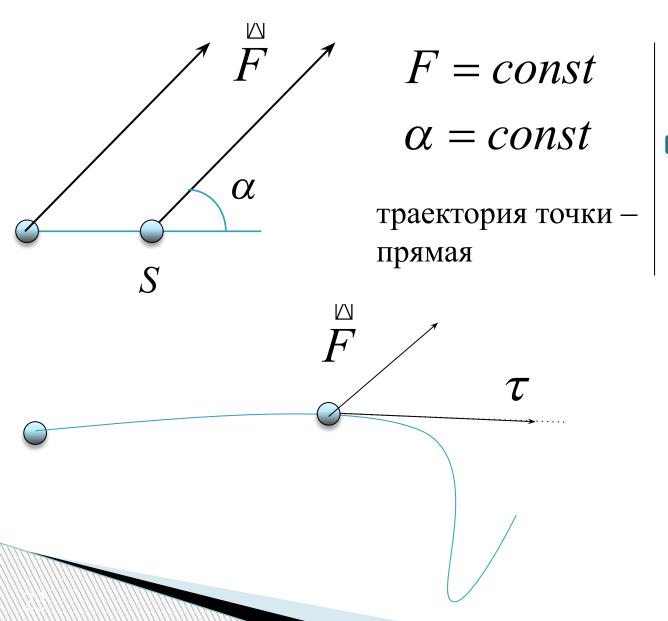
Иоганн Кеплер (1571 - 1630)

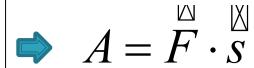
КИНЕТИЧЕСКАЯ ЭНЕРГИЯ ТОЧКИ-

скалярная величина, равная половине произведения массы точки на квадрат ее скорости

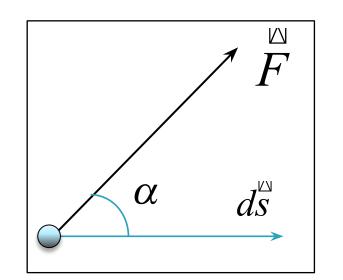
$$T = mv^2/2$$

РАБОТА СИЛЫ

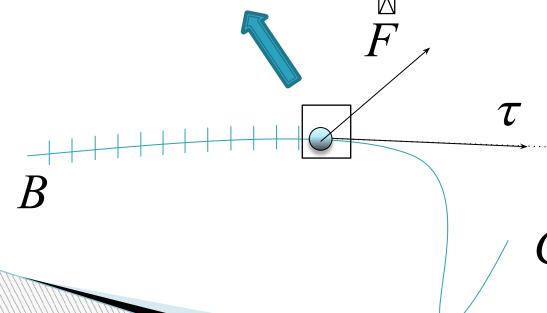




РАБОТА СИЛЫ



$$\delta A = F(s) \cdot ds = F(s) ds \cos \alpha$$



$$A_{BC} = \int_{BC}^{\mathbb{M}} F(s) \cdot ds$$

РАБОТА СИЛЫ

Элементарная работа силы — величина, равная скалярному произведению вектора силы на вектор элементарного перемещения $\delta A = F(s) \cdot ds^{\bowtie}$

Работа силы на конечном перемещении — интеграл от элементарной работы, взятый вдоль этого перемещения $A_{BC} = \int_{BC}^{\square} F(s) \cdot ds$

ТЕОРЕМА ОБ ИЗМЕНЕНИИ ЭНЕРГИИ

Изменение кинетической энергии точки на некотором перемещении равно сумме работ всех действующих на нее сил на этом же перемещении

ДОКАЗАТЕЛЬСТВО

Запишем дифф. уравнение движения точки

$$ma = \sum_{i} \overset{\mathbb{M}}{F_i}.$$

Спроектируем его на тангенциальную ось

$$ma_{\tau} = \sum_{i} F_{i\tau}.$$

Представим тангенциальное ускорение в виде

$$a_{\tau} = \frac{dv}{dt} = \frac{dv}{ds}\frac{ds}{dt} = v\frac{dv}{ds},$$

и учтем, что проекция силы

$$F_{i\tau} = F_i \cos \alpha$$
.

$$mv\frac{dv}{ds} = \sum_{i} F_{i} \cos \alpha.$$

ДОКАЗАТЕЛЬСТВО

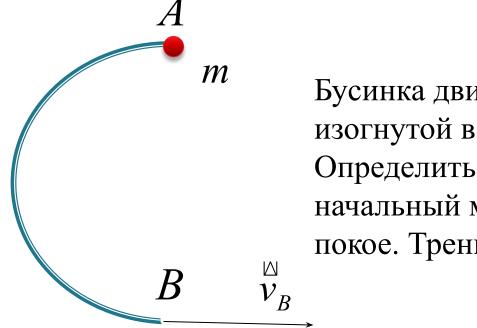
Умножим обе части уравнения на элементарное перемещение и проинтегрировав, получим

$$mvdv = \sum_{i} F_{i} \cos \alpha \ ds,$$

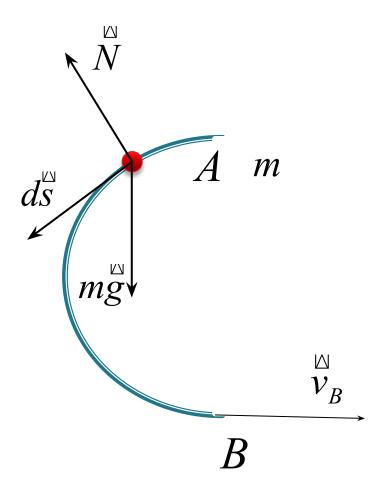
$$\int_{BC} mvdv = \sum_{i} \int_{BC} F_{i} \cos \alpha \ ds,$$

$$\left|\frac{mv_C^2}{2} - \frac{mv_B^2}{2}\right| = \sum_i \int_{BC} F_i \cos\alpha \, ds,$$

Теорема доказана

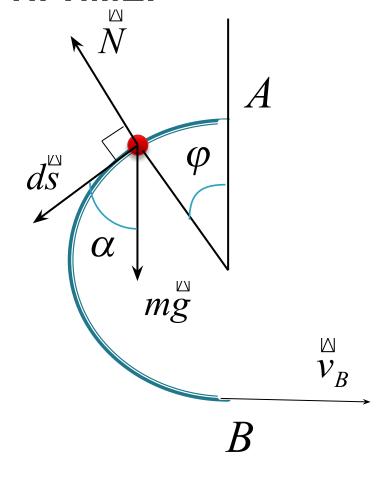


Бусинка двигается по проволоке, изогнутой в форме полуокружности. Определить ее скорость в точке В, если в начальный момент она находилась в покое. Трением пренебречь.



$$v_B - ?$$
 $f = 0$
 $v_A = 0$

- Будем считать бусинку материальной точкой
- Изобразим силы, действующие на нее в некоторый момент времени ...
- ... и элементарное перемещение



• Запишем теорему об изменении кинетической энергии

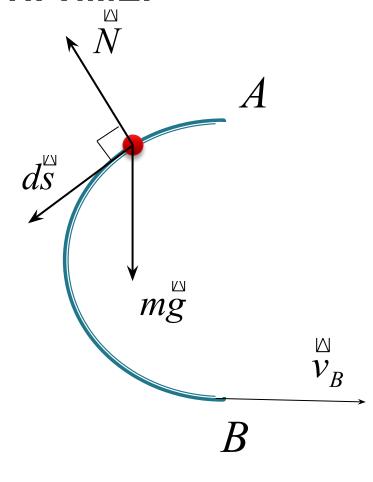
$$\frac{mv_B^2}{2} - \frac{mv_A^2}{2} = A(N) + A(mg)$$

$$A(N) = \int_{AB} N \cos(\pi/2) \, ds = 0$$

$$A(mg) = \int_{AB} mg\cos(\alpha) \, ds$$

$$ds = R d\varphi$$

$$A(mg) = 2 \int_{0}^{\pi/2} mg \sin(\varphi) R d\varphi = 2mgR \cos(\theta) = 2mgR$$



Согласно теореме

$$\frac{mv_B^2}{2} = 2mgR$$

$$v_B = \sqrt{4gR}$$

Замечание

$$A(mg^{\bowtie}) = 2mgR$$

Можно ли получить этот результат более простым способом?

ПОТЕНЦИАЛЬНЫЕ СИЛЫ

Градиентом называется вектор с компонентами

$$\nabla = \begin{bmatrix} \partial / \partial x \\ \partial / \partial y \\ \partial / \partial z \end{bmatrix}$$

Сила называется потенциальной (консервативной), если ее можно представить в виде градиента некоторой скалярной функции, называемой потенциалом

$$F = \nabla \varphi$$

ПОТЕНЦИАЛЬНЫЕ СИЛЫ

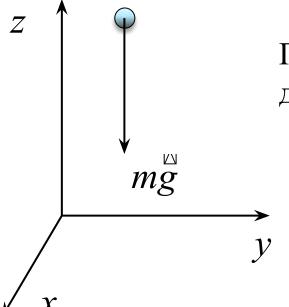
Работа потенциальной силы не зависит от формы траектории точки и закона ее движения и определяется только начальным и конечным положением точки

$$F = \nabla \varphi = \frac{\partial \varphi}{\partial x} \stackrel{\boxtimes}{i} + \frac{\partial \varphi}{\partial y} \stackrel{\boxtimes}{j} + \frac{\partial \varphi}{\partial z} \stackrel{\boxtimes}{k}$$

$$A(F) = \int_{A}^{B} F \cdot dS = \int_{A}^{B} \left(\frac{\partial \varphi}{\partial x} \stackrel{\boxtimes}{i} + \frac{\partial \varphi}{\partial y} \stackrel{\boxtimes}{j} + \frac{\partial \varphi}{\partial z} \stackrel{\boxtimes}{k} \right) \cdot \left(dx \stackrel{\boxtimes}{i} + dy \stackrel{\boxtimes}{j} + dz \stackrel{\boxtimes}{k} \right)$$

$$A(F) = \int_{A}^{B} \left(\frac{\partial \varphi}{\partial x} dx + \frac{\partial \varphi}{\partial y} dy + \frac{\partial \varphi}{\partial z} dz \right) = \int_{A}^{B} d\varphi = \varphi_{B} - \varphi_{A}$$

ПОТЕНЦИАЛЬНЫЕ СИЛЫ. ПРИМЕР



Попробуем построить потенциал для силы тяжести

$$F = \nabla \varphi = \frac{\partial \varphi}{\partial x} \stackrel{\boxtimes}{i} + \frac{\partial \varphi}{\partial y} \stackrel{\boxtimes}{j} + \frac{\partial \varphi}{\partial z} \stackrel{\boxtimes}{k}$$

$$F = -mgk$$

$$\frac{\partial \varphi}{\partial x} = 0, \quad \frac{\partial \varphi}{\partial y} = 0, \quad \frac{\partial \varphi}{\partial z} = -mg.$$

ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ

Замечание

Потенциал определяется с точностью до некоторой не зависящей от координат постоянной $\nabla \varphi = \nabla (\varphi + C)$

Потенциальной энергией точки, находящейся под действием консервативной силы, называется величина $\Pi = -\varphi$

Пусть
$$\overset{\bowtie}{F} = \overset{\bowtie}{\nabla} \varphi$$

$$A(\overset{\boxtimes}{F}) = \int_{A}^{B} \overset{\boxtimes}{F} \cdot ds = \varphi_{B} - \varphi_{A} = \Pi_{A} - \Pi_{B} = -\Delta \Pi$$

$$A(\overset{\boxtimes}{F}) = -\Delta \Pi$$

ПОЛНАЯ МЕХАНИЧЕСКАЯ ЭНЕРГИЯ

Запишем теорему об изменении кинетической энергии для точки, находящейся под действием потенциальной силы

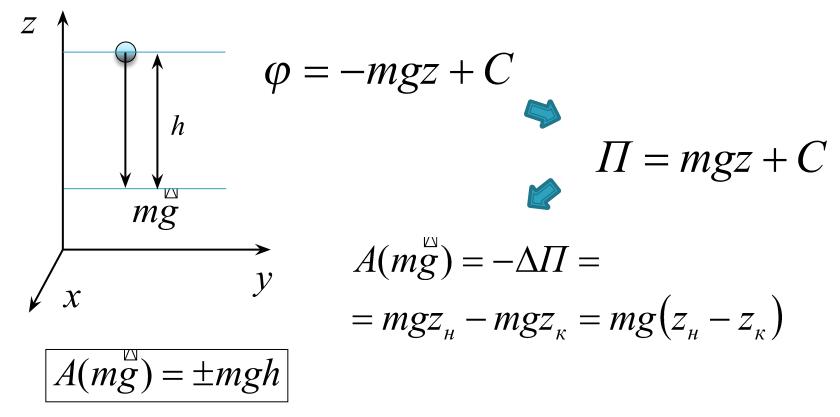
$$T_{\kappa} - T_{H} = A(F) = -(\Pi_{\kappa} - \Pi_{H}) \qquad T_{\kappa} + \Pi_{\kappa} = \Pi_{H} + T_{H}$$

Для точки, находящейся под действием потенциальной силы, можно ввести полную механическую энергию как сумму ее потенциальной и кинетической энергий. При движении точки она сохраняется.

Если на точку действует несколько потенциальных сил

$$\Pi = -\sum \varphi_i$$

РАБОТА ПОТЕНЦИАЛЬНЫХ СИЛ



$$A(F_{ynp}) = \frac{k}{2} \left(\Delta l_{H}^{2} - \Delta l_{\kappa}^{2} \right)$$

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ

- 1. Какие из уравнений динамики точки записываются в виде векторных уравнений, а какие скалярных?
- 2. Что такое импульс материальной точки?
- 3. Как определяется импульс силы за конечный промежуток времени?
- 4. При каких условиях количество движения системы не изменяется?
- 5. Как определяется и момент количества движения точки?
- 6. Чему равна проекция момента количества движения точки относительно центра на ось?

вопросы для самоконтроля

- 7. Как происходит движение материальной точки под действием центральной силы? Как формулируется закон Кеплера?
- 8. Как определяется работа постоянной силы на прямолинейном перемещении точки, к которой она приложена? А если сила переменная и точка перемещается по кривой?
- 9. Что понимают под элементарной работой силы и как она связана с работой силы на конечном перемещении точки, к которой она приложена? Когда элементарная работа равна нулю?

ТЕМА СЛЕДУЮЩЕЙ ЛЕКЦИИ

Динамика механической системы