
ECE 250 Algorithms and Data Structures

Douglas Wilhelm Harder, M.Math. LEL
Department of Electrical and Computer Engineering
University of Waterloo
Waterloo, Ontario, Canada

ece.uwaterloo.ca
dwharder@alumni.uwaterloo.ca

© 2006-2013 by Douglas Wilhelm Harder. Some rights reserved.

Lists

2
Lists

Outline

We will now look at our first abstract data structure
– Relation: explicit linear ordering
– Operations
– Implementations of an abstract list with:

• Linked lists
• Arrays

– Memory requirements
– Strings as a special case
– The STL vector class

3
Lists

Definition

An Abstract List (or List ADT) is linearly ordered data where the
programmer explicitly defines the ordering

We will look at the most common operations that are usually
– The most obvious implementation is to use either an array or linked list
– These are, however, not always the most optimal

3.1

4
Lists

Operations

Operations at the kth entry of the list include:

 Access to the object Erasing an object

Insertion of a new object Replacement of the object

3.1.1

5
Lists

Operations

Given access to the kth object, gain access to either the previous or
next object

Given two abstract lists, we may want to
– Concatenate the two lists
– Determine if one is a sub-list of the other

3.1.1

6
Lists

Locations and run times

The most obvious data structures for implementing an abstract list
are arrays and linked lists
– We will review the run time operations on these structures

We will consider the amount of time required to perform actions
such as finding, inserting new entries before or after, or erasing
entries at
– the first location (the front)
– an arbitrary (kth) location
– the last location (the back or nth)

The run times will be Θ(1), O(n) or Θ(n)

3.1.2

7
Lists

Linked lists

We will consider these for
– Singly linked lists
– Doubly linked lists

3.1.3

8
Lists

Singly linked list3.1.3.1

Front/1st node kth node Back/nth node
Find Θ(1) Ο(n)* Θ(1)
Insert Before Θ(1) Ο(n)* Θ(n)
Insert After Θ(1) Θ(1)* Θ(1)
Replace Θ(1) Θ(1)* Θ(1)
Erase Θ(1) Ο(n)* Θ(n)
Next Θ(1) Θ(1)* n/a
Previous n/a Ο(n)* Θ(n)

* These assume we have already accessed the kth entry—an O(n) operation

9
Lists

Singly linked list

Front/1st node kth node Back/nth node
Find Θ(1) Ο(n)* Θ(1)
Insert Before Θ(1) Θ(1)* Θ(1)
Insert After Θ(1) Θ(1)* Θ(1)
Replace Θ(1) Θ(1)* Θ(1)
Erase Θ(1) Θ(1)* Θ(n)
Next Θ(1) Θ(1)* n/a
Previous n/a Ο(n)* Θ(n)

3.1.3.1

By replacing the value in the node in question, we can speed things up
 – useful for interviews

10
Lists

Doubly linked lists3.1.3.2

Front/1st node kth node Back/nth node
Find Θ(1) Ο(n)* Θ(1)
Insert Before Θ(1) Θ(1)* Θ(1)
Insert After Θ(1) Θ(1)* Θ(1)
Replace Θ(1) Θ(1)* Θ(1)
Erase Θ(1) Θ(1)* Θ(1)
Next Θ(1) Θ(1)* n/a
Previous n/a Θ(1)* Θ(1)

* These assume we have already accessed the kth entry—an O(n) operation

11
Lists

Doubly linked lists3.1.3.2

kth node
Insert Before Θ(1)
Insert After Θ(1)
Replace Θ(1)
Erase Θ(1)
Next Θ(1)
Previous Θ(1)

Accessing the kth entry is O(n)

12
Lists

Other operations on linked lists3.1.3.3

Other operations on linked lists include:
– Allocation and deallocating the memory requires Θ(n) time
– Concatenating two linked lists can be done in Θ(1)

• This requires a tail pointer

13
Lists

Arrays3.1.4

We will consider these operations for arrays, including:
– Standard or one-ended arrays
– Two-ended arrays

14
Lists

Standard arrays3.1.4

We will consider these operations for arrays, including:
– Standard or one-ended arrays
– Two-ended arrays

15
Lists

Run times

Accessing
the kth entry

Insert or erase at the

Front kth entry Back

Singly linked lists
O(n) Θ(1) Θ(1)* Θ(1) or Θ(n)

Doubly linked lists Θ(1)
Arrays

Θ(1)
Θ(n)

O(n) Θ(1)
Two-ended arrays Θ(1)

* Assume we have a pointer to this node

16
Lists

Data Structures

In general, we will only use these basic data structures if we can
restrict ourselves to operations that execute in Θ(1) time, as the only
alternative is O(n) or Θ(n)

Interview question: in a singly linked list, can you speed up the two
O(n) operations of
– Inserting before an arbitrary node?
– Erasing any node that is not the last node?

If you can replace the contents of a node, the answer is “yes”
– Replace the contents of the current node with the new entry and insert

after the current node
– Copy the contents of the next node into the current node and erase the

next node

17
Lists

Memory usage versus run times

All of these data structures require Θ(n) memory
– Using a two-ended array requires one more member variable, Θ(1), in

order to significantly speed up certain operations
– Using a doubly linked list, however, required Θ(n) additional memory to

speed up other operations

18
Lists

Memory usage versus run times

As well as determining run times, we are also interested in memory
usage
In general, there is an interesting relationship between memory and
time efficiency

For a data structure/algorithm:
– Improving the run time usually

requires more memory
– Reducing the required memory

usually requires more run time

19
Lists

Memory usage versus run times

Warning: programmers often mistake this to suggest that given any
solution to a problem, any solution which may be faster must require
more memory

This guideline not true in general: there may be different data
structures and/or algorithms which are both faster and require less
memory
– This requires thought and research

20
Lists

The sizeof Operator

In order to determine memory usage, we must know the memory
usage of the various built-in data types and classes
– The sizeof operator in C++ returns the number of bytes occupied by a

data type
– This value is determined at compile time

• It is not a function

21
Lists

The sizeof Operator

#include <iostream>

using namespace std;

int main() {

 cout << "bool " << sizeof(bool) << endl;

 cout << "char " << sizeof(char) << endl;

 cout << "short " << sizeof(short) << endl;

 cout << "int " << sizeof(int) << endl;

 cout << "char * " << sizeof(char *) << endl;
 cout << "int * " << sizeof(int *) << endl;

 cout << "double " << sizeof(double) << endl;

 cout << "int[10] " << sizeof(int[10]) << endl;

 return 0;

}

{eceunix:1} ./a.out # output
bool 1
char 1
short 2
int 4
char * 4
int * 4
double 8
int[10] 40
{eceunix:2}

22
Lists

Abstract Strings

A specialization of an Abstract List is an Abstract String:
– The entries are restricted to characters from a finite alphabet
– This includes regular strings “Hello world!”

The restriction using an alphabet emphasizes specific operations
that would seldom be used otherwise
– Substrings, matching substrings, string concatenations

It also allows more efficient implementations
– String searching/matching algorithms
– Regular expressions

23
Lists

Abstract Strings

Strings also include DNA
– The alphabet has 4 characters: A, C, G, and T
– These are the nucleobases:

adenine, cytosine, guanine, and thymine

Bioinformatics today uses many of the
algorithms traditionally restricted to
computer science:
– Dan Gusfield, Algorithms on Strings, Trees and Sequences: Computer

Science and Computational Biology, Cambridge, 1997
http://books.google.ca/books?id=STGlsyqtjYMC

– References:
http://en.wikipedia.org/wiki/DNA

http://en.wikipedia.org/wiki/Bioinformatics

24
Lists

Standard Template Library

In this course, you must understand each data structure and their
associated algorithms
– In industry, you will use other implementations of these structures

The C++ Standard Template Library (STL) has an implementation of
the vector data structure
– Excellent reference:

http://www.cplusplus.com/reference/stl/vector/

25
Lists

Standard Template Library

#include <iostream>

#include <vector>

using namespace std;

int main() {

 vector<int> v(10, 0);

 cout << "Is the vector empty? " << v.empty() << endl;

 cout << "Size of vector: " << v.size() << endl;

 v[0] = 42;

 v[9] = 91;

 for (int k = 0; k < 10; ++k) {

 cout << "v[" << k << "] = " << v[k] << endl;

 }

 return 0;

}

$ g++ vec.cpp
$./a.out
Is the vector empty? 0
Size of vector: 10
v[0] = 42
v[1] = 0
v[2] = 0
v[3] = 0
v[4] = 0
v[5] = 0
v[6] = 0
v[7] = 0
v[8] = 0
v[9] = 91
$

26
Lists

Summary

In this topic, we have introduced Abstract Lists
– Explicit linear orderings
– Implementable with arrays or linked lists

• Each has their limitations
• Introduced modifications to reduce run times down to Θ(1)

– Discussed memory usage and the sizeof operator
– Looked at the String ADT
– Looked at the vector class in the STL

27
Lists

References

[1] Donald E. Knuth, The Art of Computer Programming, Volume 1:
Fundamental Algorithms, 3rd Ed., Addison Wesley, 1997, §2.2.1, p.238.

[2] Weiss, Data Structures and Algorithm Analysis in C++, 3rd Ed., Addison
Wesley, §3.3.1, p.75.

28
Lists

Usage Notes

• These slides are made publicly available on the web for anyone to
use

• If you choose to use them, or a part thereof, for a course at another
institution, I ask only three things:
– that you inform me that you are using the slides,
– that you acknowledge my work, and
– that you alert me of any mistakes which I made or changes which you

make, and allow me the option of incorporating such changes (with an
acknowledgment) in my set of slides

Sincerely,
Douglas Wilhelm Harder, MMath
dwharder@alumni.uwaterloo.ca

