Лекция 8

Микроскопия сверхразрешения:

STED, SIM, RESOLFT

Диск Эри и проблема разрешения

Разрешение традиционного микроскопа ограничивается критерием Рэлея (Спарроу), то есть радиусом диска Эри.

Сигнал от точечного источника превращается в диск Эри.

Дифракционный предел в микроскопии

Увеличение разрешающей способности флуоресцентной микроскопии

Возбуждение субдифракционного объема STED – stimulated emission depletion RESOLFT – resolution (REversible Saturable OpticaL Fluorescence Transitions

Реконструкция положений центроидов молекул PALM – photoactivated localization microscopy. STORM – stochastic optical reconstruction microscopy

Light-sheet microscopy

STED – принцип метода

А. Процесс вынужденной и спонтанной эмиссии. Когда флуорофор поглощает фотон возбуждающего света, он переходит из основного состояния S в эмиссия происходит, возбужденное S₄. Спонтанная флуорофор когда возвращается в основное состояние. Вынужденная эмиссия происходит, если поглощает фотон с энергией, сравнимой с разницей флуорофор между основным и возбужденным состоянием. Б. Схематическое изображение STEDот возбуждающего и STED-лазера одновременно микроскопа: Свет фокусируются на одном участке образца. В. Распределение интенсивностей возбуждающего лазера и STED-лазера, который подавляет спонтанную В результате сужается нулевой точки. функция флуоресценцию вокруг рассеяния точки

Источник света – Ti:Sapphire пикосекундный лазер. Флуоресценция на периферии диска Эри подавляется гасящим импульсом тороидальной формы, который имеет значительно большую мощность. Длительность импульса – 1-100 пс, гасящий импульс длится 200-400 пс. Стимулируемая эмиссия имеет характеристическое время 1 пс, тогда как флуоресценция – 1 нс, то есть в 1000 раз дольше.

STED микроскопия, принцип

STED микроскопия

Возбуждение осуществляется с помощью пикосекундного лазерного импульса, который настроен на максимум поглощения красителя, и возбуждает дифракционно ограниченное пятно. Импульс STED имеет красное смещение по частоте спектра излучения красителя, так что его фотоны действуют только на возбужденные молекулы красителя, индуцируя их в состояние вынужденного излучения.

Эффект импульса STED состоит в том, что возбужденные молекулы не могут светиться, потому что их энергия сбрасывается. Импульс STED кольцевой, так что только молекулы на границе диска Эри эффективно гасятся. В центре бублика, где импульс STED исчезает, флуоресценция остается неизменной.

http://www.mpibpc.gwdg.de/groups/hell/

STED микроскопия

Размер пятна

При максимальной интенсивности гасящего пятна остаточный размер пятна возбуждения определяется соотношением интенсивностей (I/Is).

При типичном соотношении 1:100 размер пятна может быть в 10 раз меньше дифракционного предела.

STED микроскопия – вид перетяжки

Микротрубочки

Конфокальный микроскоп

Разрешающая способность в режиме STED

$$\Delta r \approx \frac{\lambda}{2n\sin\alpha\sqrt{1+I_{\rm max}/I_{\rm s}}}$$

I_{max} – мощность гасящего импульса; I_s – мощность возбуждающего импульса

Меченные GFP вирусные частицы (диаметр – 40 нм)

STED позволяет регулировать разрешение

Dual color STED with 660

NUP153 Alexa 532 Clathrin TMR, HeLa cells

Dual color STED with 660

NUP153 Alexa 532 Clathrin TMR HeLa cells

Triple color 660 nm gated STED

Multicolor

Confocal

Advanced multi coloring:

Gated STED allows to use further red shifted fluorphores

Объектив для STED

HC PL APO 100x/1.40 OIL STED WHITE Based on the Leica CS2 objective generation Optimal chromatic correction enables STED over the full spectrum of visible light

Объектив для STED – характеристики

HC PL APO 100x/1.40 OIL STED WHITE

Регулируемая область возбуждения

Confocal	gated STED with STED 3D slider at		
Ž X			
$ \longrightarrow $	0%	100%	60%

Расчетный вид перетяжки при различных настройках обжимающего пучка. Слева – стандартная перетяжка для конфокального режима, справа – при максимально «сбалансированном» режиме STED.

STED – ограничения

Малый шаг (около 20 нм) – следовательно большое время сканирования поля зрения.

Для получения малого пятна необходима большая энергия истощающего пучка – существует проблема быстрого фотообесцвечивания. Практический предел – около 100 последовательных кадров (неопубликованные данные).

Разрешение больше, чем величина шага сканирования, и составляет в лучшем случае 40-50 нм. Reversible saturable optical fluorescence transitions (RESOLFT) superresolution microscopy

Микроскопия суперразрешения - RESOLFT

Решетка для «тормозящего» освещения имеет максимумы и минимумы. Эффективная флуоресценция достигается в областях минимумов интенсивного синего света, вспышка которого (одновременно с возбуждением фиолетовым светом) который гасит большую часть флуоресценции в поле зренияю. Собственно сигнал собирается за счет низкоинтенсивного синего света (широкопольное освещение).

Chmyrov et al., 2014. Nature Methods, 10(8) 737-740

RESOLFT – кератиновые филаменты

Figure 2 | Live-cell imaging with parallelized RESOLFT nanoscopy. (a,b) The 120 μ m × 100 μ m field of view (wide field (a) and RESOLFT (b)) shows PtK2 cells expressing keratin 19–rsEGFP(N205S). The RESOLFT image was reconstructed from 144 frames, each acquired in 22 ms; total image acquisition time was ~3 s. Scale bars, 10 μ m. Intensity is from black, low, to white, high. (c,d) Magnified region (wide field (c) and RESOLFT (d)) of a PtK2 cell expressing keratin 19–rsEGFP(N205S) (**Supplementary Fig. 3**). Scale bars, 1 μ m. (e) Normalized intensity profiles of the regions between the arrowheads in c (black squares) and d (red dots). The profile of the RESOLFT data (red line) is fitted to a sum of three Gaussians (purple, green and orange lines) with individual full-width half-maxima (FWHM) of 77 nm, 133 nm and 110 nm.

Микроскопия суперразрешения - RESOLFT

Оценка возможностей метода:

Шаг сканирования – от 25 до 40 нм. Время экспозиции одного кадра – около 20 мсек. Время экспозиции определяется скоростью переключения флуоресцентного белка.

Общее число кадров – 60-120. Оно определяется фотостабильностью белка (максимальным числом циклов on-off).

Суммарное время получения изображения – 1-4 сек.

Размер поля зрения – 50-120 мкм.

Разрешение, определяемое по FWHM, составляет 70-120 нм.

Основная проблема – подбор «хорошего» флуоресцентного белка (мутанты EGFP, Dronpa).

Chmyrov et al., 2014. Nature Methods, 10(8) 737-740

Переключение белков

Основная проблема – подбор «хорошего» флуоресцентного белка с малым временем переключения (мутанты красных белков).

Lavoie-Cardinal et al., 2014. ChemPhysChem 2014, 15, 655 – 663

Двухцветная микроскопия RESOLFT

Wide-field and RESOLFT recording of HeLa cells expressing keratin19-rsCherryRev1.4 (red) and vimentin-Dronpa-M159T (green). The RESOLFT images were taken with 100 scanning steps. Each frame was acquired with a total imaging time of ~4 s for the green channel and ~19 s for the red channel. Right -- magnification of the regions marked in left and middle, respectively. j) Line profiles across the region between the arrows marked above. The solid lines represent Gaussian fits. Scale bars: 5 µm and 500 nm . Приближение к дифракционному пределу в цифровой микроскопии

- 1. Сканирование с малым шагом в конфокальной микроскопии (менее 1/5 диска Эри).
- 2. Структурированное освещение (SIM) и съемка последовательных изображений.
- В обоих случаях конечное изображение восстанавливается компьютерными методами.

Структурированное освещение – SIM

Structured illumination microscopy – разрешение увеличивается за счет компьютерного анализа муарового рисунка, возникающего при многократном (9-15 кадров) косом освещении препарата через специальную смещающуюся решетку.

Преобразование исходного изображения проводится в пространстве Фурье, а конечное изображение восстанавливается с помощью обратного преобразования Фурье. Параметры преобразования задаются вручную.

Микроскопия структурированного освещения. На трех исходных изображениях (А—С) видно, что при перемещении решетки (обозначено черной линией) интенсивность флуоресценции объектов, расположенных в фокусе, заметно меняется. Флуоресценция, исходящая от других оптических слоев, практически не меняется (обозначено белой стрелкой), что позволяет избавиться от нее за счет компьютерной обработки (D).

2D-SIM light-path

Structured illumination apparatus

N-SIM микроскопия

Gustafsson, J Microscopy 2000

SIM – structured illumination microscopy. Объект освещается через специальную решетку, последовательные кадры, полученные с ее помощью, обрабатываются компьютером. Предел разрешения – около 120 нм.

SIM - примеры

CLSM

3D-SIM

Оболочка ядра, хроматин и ядерные поры.

3D-SIM

Профазное ядро в различных проекциях. Хроматин (красный) и ядерные поры.

Преодоление дифракционного предела в микроскопии

- Восстановление центров дисков Эри (центроидов) на множестве кадров (~30000) при случайном возбуждении отдельных молекул (STORM, PALM).
- 2. Сканирование с малым шагом при подавлении флуоресценции на периферии диска Эри дополнительным излучением (STED).

Локализация отдельных молекул – PALM, STORM

Стандартное флуоресцентное изображение

В каждом кадре возбуждается не более 0,1% молекул флуорохрома. Таким образом, расстояние между ними оказывается достаточно велико для идентификации положения каждой из них.

Преодоление дифракицонного предела в микроскопии

- Детекция сигнала от отдельных флуоресцирующих молекул – равномерная флуоресценция, которая внезапно полностью гаснет.
- 2. Установка камеры на оптимальный эквивалентный размер пиксела он составляет около 100 нм.
- 3. Восстановление центров дисков Эри (центроидов) на множестве кадров (~30000).
- Суперразрешение (погрешность в определении центроида) определяется в первую очередь количеством фотонов от каждой молекулы флуорохрома.

Локализация точечного источника света в микроскопии

Вычисление положения центроида позволяет «преодолеть» дифракционный предел. Точность расчетов определяется числом фотонов, попавших на матрицу.

Локализация точечного источника света в микроскопии

Точность восстановления центроида определяется количеством детектированных фотонов. Погрешность в локализации молекулы уменьшается в ростом времени накопления сигнала.

Восстановление центроидов

Пример восстановления центроидов одиночных молекул Су-3. Время накопления – 0,5 с; среднее число фотонов – около 30000.

Разрешение в STORM

Точность определения позиции центроида (аппроксимрованного двумерным Гауссовым распределением) – стандартное отклонение для гауссианы:

$$\langle (\Delta x)^2 \rangle = \frac{s^2 + a^2/12}{N} + \frac{8\pi s^4 b^2}{a^2 N^2}$$

Thompson RE et al., 2002 Соответственно, разрешение примерно в 2,5 раза хуже.

Xiaowei Zhuang

Howard Hughes Medical Institute Investigator Professor of Chemistry and Chemical Biology, Professor of Physics Harvard University

STORM микроскопия, 2006

STORM микроскопия

Два лазера (зеленый/красный) и сближенные красители (Cy-3/Cy-5) – длительность флуоресценции регулируется переключением молекулы Cy-5.

Запись широкопольного изображения идет со скоростью около 20 кадров в секунду на ЕМССD камеру (время накопления сигнала – около 40 мс, число квантов – от 600 до 3000). С КМОП камерой – до 200 кадров в секунду.

Программа производит автоматическое восстановление центроидов при случайном возбуждении отдельных молекул флуорохрома. Достигнутая точность – около 25 нм.

Синтез полного изображения проводится по рассчитанным центроидам (порядка 10000-30000 кадров).

Общее время получения одного кадра (оптического среза) – около 2-20 минут.

STORM микроскопия – реконструкция во времени

Многократное сканирование образца позволяет постепенно восстановить изображение микротрубочек в фиксированной клетке. Краситель – Alexa-647. Формат кадра – 64x64 пиксела. Эквивалентный размер пиксела – 140 нм. Частота сканирования – 1 кГц; восстановлено точек излучения (молекул) – около 730 тыс.

Определение положения

Две почти параллельные микротрубочки - с помощью STORM (слева) и при обычной микроскопии (справа)

Synchronized Normal Pig Kidney Epithelial Cells (LLC-PK1) with Alexa Fluor 647 (EdU)

Kangaroo Rat Epithelial Cells (PtK2) with Alexa Fluor 647 (Keratin) **5** μ**m 2** μm 500 nm Widefield (a) (b) (c) 37 nm 125 nm 500 nm 5 µm **2 μm** (d) (e) (f) STORM

STORM микроскопия, 2 цвета

Клатриновые пузырьки и микротрубочки

3D-STORM микроскопия

Для увеличения разрешения по оси z требуются дополнительные системы, позволяющие зарегистрировать даже небольшую расфокусировку диска Эри.

3D Imaging of the Microtubule Network

Scale bar: 200 nm

z (nm)

600

300

· () -

5 µm

Huang, Wang, Bates and Zhuang, Science, 2008

STORM микроскопия, 3D

Сравнение обычного и STORM изображений микротрубочек на краю клетки. Справа – увеличенное изображение, на котором видны отдельные молекулы в составе микротрубочек (3 проекции).

3D-STORM микроскопия

Использование двух объективов позволяет повысить разрешение в плоскости х-у до 10 нм, а по оси z – до 20 нм. Высокое разрешение по оси z достигается за счет использования цилиндрических линз.

Организация актиновых филаментов в ламелле

3D STORM, 2 объектива. Nature methods, 2012

PALM микроскопия

PALM – photoactivated localization microscopy.

Изображение складывается из нескольких тысяч последовательных кадров, в каждом из которых возбуждается (активируется) не более 0,1-1% флуоресцирующих молекул. Для каждой из молекул компьютером восстанавливается положение ее центроида.

Наиболее эффективное применение метода – использование фотоактивируемых или мерцающих с высокой частотой флуоресцентных белков.

Ограничение метода – скорость переключения и фотостабильность молекул.

PALM микроскопия

PALM – photoactivated localization microscopy.

Наиболее эффективное применение метода – с использованием фотоактивируемых флуоресцентных белков. Один лазер используется для фотоактивации, второй – для возбуждения флуоресценции и обесцвечивания.

PALM и обычная микроскопия

Image of focal adhesions in cultured cells Red: tdEos-Paxillin fusion protein scale bar: 1 µm, construct courtesy of Dr. Shroff

Фокальные контакты в фибробластах

Красители для STORM и PALM

PALM versus STORM

Два метода фундаментально схожи, так как основаны на общем принципе – восстановлении положения отдельных молекул за счет их кратковременной флуоресценции.

Различия:

В PALM внешняя фотоактивация и фотообесцвечивание ограничивают свечение флуорофора. От белка требуется лишь высокая фотостабильность.

В STORM случайные спонтанные переходы флуорофора из светящегося в «темное» состояние используются для того, чтобы различить соседние молекулы. Поэтому от красителя требуется высокая собственная частота мерцаний.

Некоторые web-ресурсы

www.olympusmicro.com

www.microscopyu.com

http://micro.magnet.fsu.edu/primer/techniques/ fluorescence/fluorescenceintro.html

http://zeiss-campus.magnet.fsu.edu/