Объекты капитального строительства

Здания, сооружения, коммуникации, имеющие подземную часть (фундаменты), относятся к объектам капитального строительства.

Требования к составу, содержанию и оформлению проектов на объекты капитального строительства определены

- Градостроительным кодексом РФ
- Постановлением Правительства Российской Федерации от 16 февраля 2008 г. N 87. «О составе разделов проектной документации и требованиях к их содержанию».

Объекты капитального строительства

Стадии проектирования

•Обоснование инвестиций (Техникоэкономи-ческое обоснование)

•Проект

•Рабочая документация

Обоснование инвестиций

Материалы Обоснования инвестиций должны содержать:

- общую информацию о целях и задачах проекта, обоснование мощности предприятия
- обоснование выбранных технологии и оборудования, строительных и инженерных решений;
- обоснование выбора площадки строительства;
- оценку воздействия на окружающую природную среду;
- оценку коммерческой и экономической эффективности инвестиционного проекта;
- финансовый план; источники и стратегию финансирования.

Проект (проектная документация)

Совокупность текстовых и графических проектных документов, определяющих технологические, конструктивные и инженерно-технические решения, необходимые для оценки их соответствия заданию на проектирование, требованиям законодательства, нормативным документам, достаточных для разработки рабочей документации на строительство объекта.


Рабочая документация

совокупность текстовых и графических документов, обеспечивающих реализацию принятых в проектной документации технических решений, необходимых для производства строительных и монтажных работ, обеспечения строительства оборудованием, изделиями и материалами.

Выполняется в соответствии с ГОСТ 21.101-93 и включает:

- рабочие чертежи, предназначенные для производства строительных и монтажных работ;
- спецификации оборудования;
- ведомости потребности в материалах ;
- сметную документацию.

Организация проектирования

Состав и содержание проекта

применительно к объектам тепловой энергетики

- Раздел 1. Общая пояснительная записка.
- Основание для разработки проекта, исходные данные для проектирования.
- Результаты инженерных изысканий;
- Сведения о назначении объекта строительства, данные о проектной мощности и техническом уровне производства,
- Потребность в топливе, воде, тепловой и электрической энергии, сведения об использовании отходов производства, вторичных энергоресурсов;
- Сведения о земельных участках, изымаемых во временное и постоянное пользование, обоснование размеров изымаемого земельного участка,
- Сведения о социально-экономических и экологических условиях района строительства.
- Технико-экономические показатели, их сопоставление с показателями установленными заданием на проектирование,
- Выводы и предложения по реализации проекта.

Раздел 2. "Схема планировочной организации земельного участка" (Генеральный план).

в текстовой части должен содержать:

- характеристику и технико-экономические показатели земельного участка, предоставленного для размещения объекта;
- обоснование размещения зданий и сооружений (основного, вспомогательного, подсобного, складского и обслуживающего назначения)
- обоснование границ санитарно-защитной зоны
- обоснование решений по инженерной подготовке территории,
- описание организации рельефа вертикальной планировкой;
- описание решений по благоустройству территории;
- обоснование схем транспортных коммуникаций и их характеристики и технические показатели;

- Основные чертежи:
- Ситуационный план размещения объекта в границах земельного участка, предоставленного для размещения этого объекта, с указанием границ населенных пунктов, непосредственно примыкающих к объекту, с отображением проектируемых транспортных и инженерных коммуникаций с обозначением мест их присоединения к существующим сетям.
- Генеральный план, на котором наносятся существующие и проектируемые здания и сооружения, объекты благоустройства и озеленения территории и принципиальные решения по расположению внутриплощадочных инженерных сетей и транспортных коммуникаций, планировочные отметки территории.

- Раздел 3 "Архитектурные решения"
- в текстовой части должен содержать:
- описание и обоснование внешнего и внутреннего вида объекта, его пространственной, планировочной и функциональной организации; описание решений по отделке помещений; описание архитектурных решений, обеспечивающих естественное освещение помещений с постоянным пребыванием людей; описание архитектурностроительных мероприятий, обеспечивающих защиту помещений от шума, вибрации и другого воздействия;
- Основные чертежи:
- отображение фасадов; цветовое решение фасадов, поэтажные планы зданий и сооружений с приведением экспликации помещений.

- Раздел 4 «Конструктивные и объемно-планировочные решения»;
- Раздел 5 «Сведения об инженерном оборудовании, содержание технологических решений»

Подразделы:

- "Система электроснабжения и выдачи электрической мощности";
- «Система теплоснабжения и выдачи тепловой мощности»
- "Система водоснабжения"
- "Система водоотведения"
- "Отопление, вентиляция и кондиционирование воздуха"
- "Сети и системы связи, система видеонаблюдения"
- "Система топливоснабжения"
- "Автоматизированные системы управления"

Подраздел "Технологические решения"

в текстовой части:

- сведения о существующих и перспективных электрических и тепловых нагрузках в районе размещения проектируемого объекта;
- обоснование принятых технических решений по основному технологическому процессу производства электрической и тепловой энергии на основе сравнительного анализа показателей возможных к реализации технологий и оборудования;
- обоснование выбора типов основного оборудования, в т.ч. единичной мощности агрегатов, параметров теплоносителя, конструктивных и габаритных характеристик; экологической безопасности;
- обоснование выбора количества и типов вспомогательного оборудования и набора вспомогательных зданий и сооружений;
- обоснование компоновочных решений по главному корпусу и вспомогательным сооружениям;
- сведения о расчетной численности, профессиональноквалификационном составе работников с распределением по группам производственных процессов, числе рабочих мест и их оснащенности;

Подраздел "Технологические решения"

- в графической части
- принципиальная тепловая схема ТЭС;
- развернутая тепловая схема энергоблока;
- габаритные чертежи главного корпуса и вспомогательных сооружений;
- компоновочные чертежи оборудования в главном корпусе;
- принципиальная технологическая схема водоподготовительной установки;
- технологические схемы вспомогательных процессов (ТВС, ЗШУ и т.п.);
- схемы механизации ремонтных работ;

- Раздел 6 "Проект организации строительства"
- Раздел 7 "Проект организации работ по сносу или демонтажу объектов капитального строительства"
- Раздел 8 "Перечень мероприятий по охране окружающей среды"
- Раздел 9 "Мероприятия по обеспечению пожарной безопасности"
- Раздел 10 "Мероприятия по обеспечению доступа инвалидов"
- Раздел 11 "Смета на строительство объекта"
- Раздел 12 «Эффективность инвестиций».

Задание на проектирование

Применительно к объектам энергетики техническое задание должно содержать следующие основные положения и требования.

- Основание для проектирования.
- Местоположение площадки проектируемого предприятия.
- Вид строительства новое строительство, расширение действующего производства, реконструкция, модернизация.
- Основные технико-экономические показатели объекта, требования к технологии и режиму работы предприятия (установленная электрическая и тепловая мощность, электрические и тепловые нагрузки, технологическая схема производства тепловой и электрической энергии, тип и единичная мощность генерирующего оборудования, число часов использования установленной мощности, источники водоснабжения, вид и марка используемого топлива),

Задание на проектирование (продолжение)

- Требования по вариантной и конкурсной разработке необходимость вариантной проработки применяемых технологий, основного оборудования, схем, компоновок и т.п.
- Требования к архитектурно-строительным, объемно-планировочным и конструктивным решениям.
- Выделение очередей строительства, требования по перспективному расширению предприятия.
- Выделение очередей строительства, требования по перспективному расширению предприятия.
- Требования и условия разработки природоохранных мер и мероприятий.
- Требования по разработке инженерно-технических мероприятий гражданской обороны и мероприятий по предупреждению чрезвычайных ситуаций.
- Иные требования и пожелания заказчика.

Исходные данные дляпроектирования

- обоснование инвестиций строительства данного объекта;
- Материалы инженерных изысканий по площадке строительства;
- акт выбора земельного участка для строительства и прилагаемые к нему материалы;
- технические условия на присоединение проектируемого объекта к источникам снабжения, инженерным сетям и коммуникациям;
- сведения о проведенных с общественностью обсуждениях решений о строительстве объекта;
- исходные данные по оборудованию, в том числе индивидуального изготовления;
- необходимые данные по выполненным научно-исследовательским и опытно-конструкторским работам, связанным с созданием технологических процессов и оборудования;

Исходные данные (продолжение)

- материалы, полученные от местной администрации и органов государственного надзора, в том числе характеристика социально-экономической обстановки, природных условий и состояния природной окружающей среды, данные о существующих источниках загрязнения и другие сведения в соответствии с требованиями природоохранных органов, санитарно-эпидемиологические условия в районе строительства;
- заключения и материалы, выполненные по результатам обследования действующих производств, конструкций зданий и сооружений, подземных и наземных сетей и коммуникаций, обмерочные чертежи существующих на участке строительства зданий и сооружений;
- другие материалы, необходимые для выполнения проекта.

Инженерные изыскания

Инженерные изыскания выполняются в целях получения:

- материалов о природных условиях территории и факторах техногенного воздействия на окружающую среду, о прогнозе их изменения,
- материалов, необходимых для разработки генерального плана, обоснования компоновки зданий, строений, сооружений, принятия конструктивных и объемно-планировочных решений, проектирования инженерной защиты, разработки мероприятий по охране окружающей среды
- материалов, необходимых для проведения расчетов оснований, фундаментов и конструкций зданий, и сооружений, их инженерной защиты, выполнения земляных работ.

Виды инженерных изысканий

- •инженерно-геодезические изыскания;
- •инженерно-геологические изыскания;
- •инженерно-геофизические изыскания;
- •инженерно-гидрометеорологические изыскания;
- •инженерно-экологические изыскания.

Инженерно-геодезические изыскания

Инженерно-геодезические изыскания обеспечивают получение инженерно-топографических планов в цифровом и графическом виде и сведений, необходимых для подготовки и обоснования документов планировки территории.

В состав инженерно-геодезических изысканий входят следующие основные виды работ:

- создание опорных геодезических сетей;
- создание инженерно-топографических планов в масштабах 1:5000 1:200, в том числе в цифровой форме,
- съемку подземных коммуникаций и сооружений;
- геодезические наблюдения за деформациями и осадками зданий и сооружений, движениями земной поверхности и опасными природными процессами;

Инженерно-геодезические изыскания

Топографическая съемка выполняются с использованием следующих методов:

- тахеометрическим методом;
- GPS (ГЛОНАСС) позиционированием;
- наземным и воздушным лазерным сканированием;
- цифровой аэрофотосъемкой;
- спутниковыми технологиями;

Инженерно-геологические изыскания

- Инженерно-геологические изыскания обеспечивают получение данных о геологическом строении, геоморфологических и гидрогеологических условиях территории, данных о составе и физико-химических свойствах грунтов с целью принятия конструктивных и объемно-планировочных решений, выбора типов фундаментов, а также оценки опасных инженерно-геологических процессов и включают следующие исследования:
- бурение скважин с отбором образцов и описанием проходимых грунтов;
- лабораторные исследования физико-механических свойств грунтов и подземных вод;
- зондирование грунтов статическое и динамическое;
- прессиометрические испытания грунтов;
- испытания грунтов штампами (статическими нагрузками);

Инженерно-геофизические изыскания

Инженерно-геофизические исследования являются вспомогательными работами в комплексе инженерно-геологических изысканий и проводятся методами георадарного зондирования, сейсморазведки, электроразведки и т.д.

Инженерно-геофизические исследования с помощью этих методов позволяют решать следующие задачи:

- определение геологического строения горных пород;
- определения глубины залегания уровня подземных вод;
- мониторинг опасных физико-геологических процессов;
- исследования физических свойств грунтов на коррозийную агрессивность;
- выявление тектонических нарушений, зон повышенной сейсмической опасности;
- поиск подземных коммуникаций и сооружений

Инженерно-гидрометеорологические изыскания;

Проводятся с целью определения климатических характеристик района и гидрологических характеристик водных объектов

В составе раздела должны быть отражены:

- характеристики метеорологических воздействий, в т.ч. экстремальные и средние значения температуры и влажности воздуха, количество атмосферных осадков, скорость ветра;
- наибольшая высота снежного покрова, вероятность возникновения опасных атмосферных явлений;
- режим уровней рек (наивысшие уровни воды), режим стока, границы затопления; ледовый режим,
- для горных районов границы распространения селевых потоков, частота схода селей, продолжительность селеопасного периода;
- частота схода лавин, границы распространения лавин и действия воздушной волны, продолжительность лавиноопасного периода;

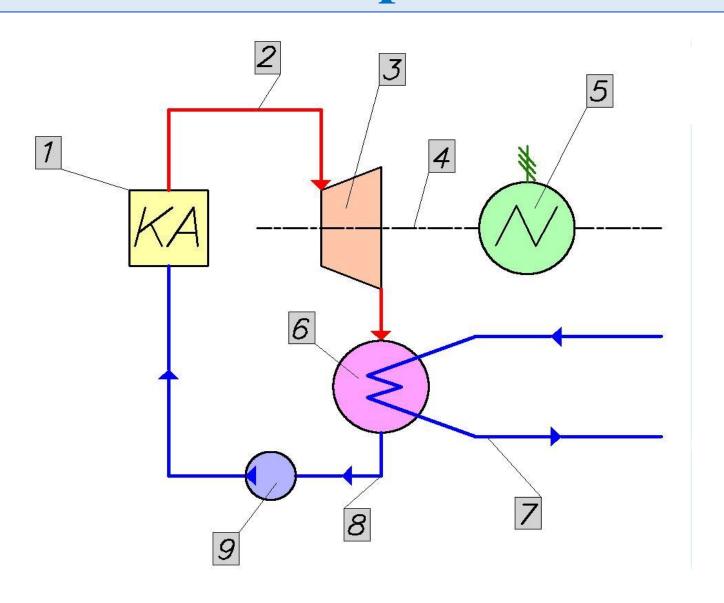
Инженерно-экологические изыскания;

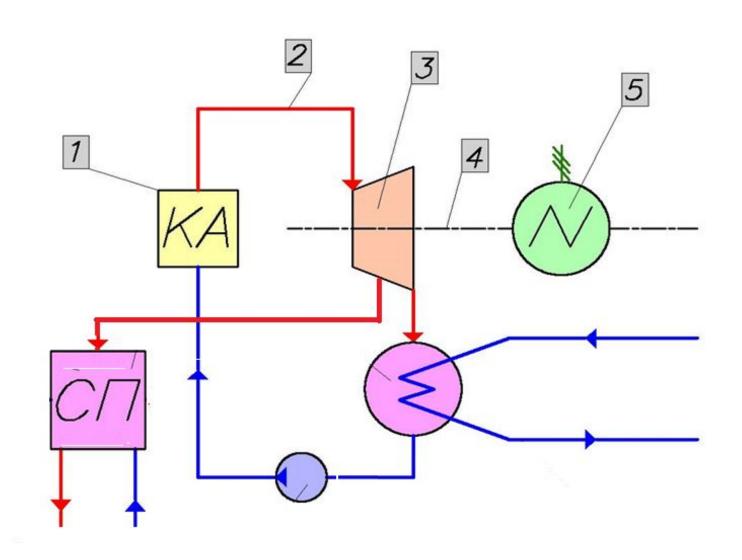
Выполняются для оценки современного состояния и прогноза возможных изменений окружающей среды под влиянием техногенной нагрузки

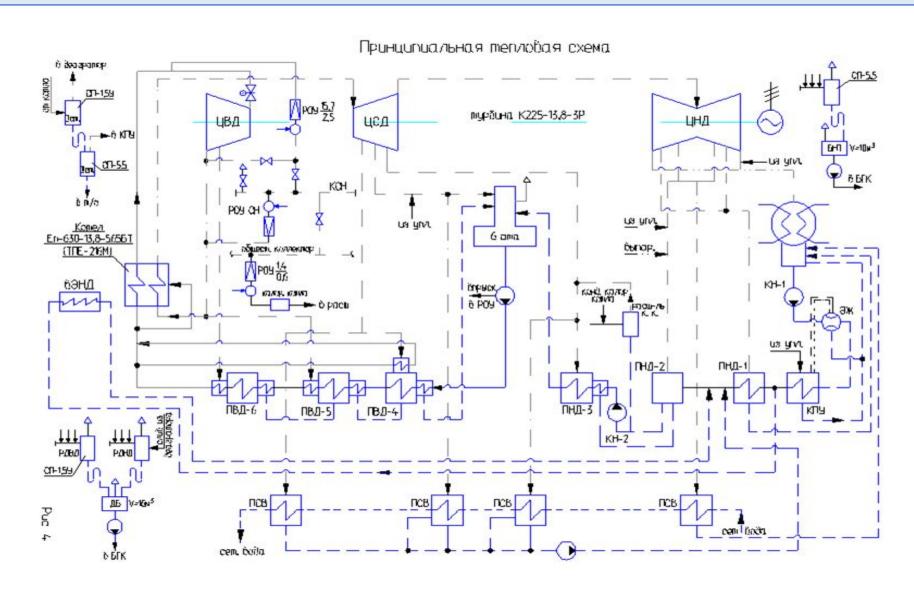
Исследуются следующие аспекты:

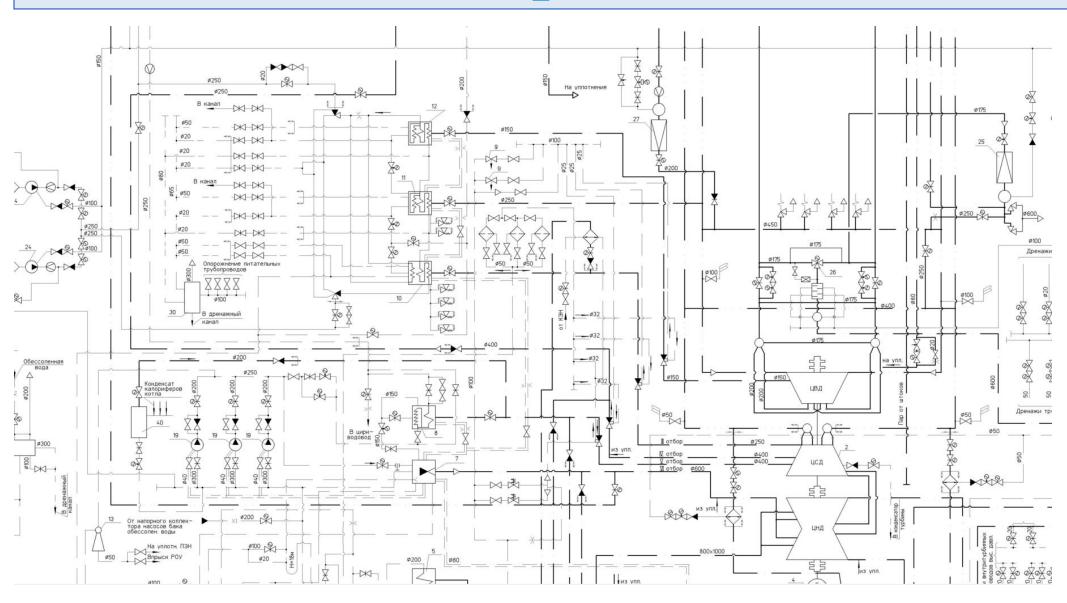
- ландшафтные условия, освоенность (нарушенность) местности, заболачивание, опустынивание, эрозия;
- типы почв, их площадное распространение, агрохимические свойства;
- преобладающие типы зональной растительности, основные растительные сообщества, агроценозы, а также перечень, состояние и характеристика местообитаний редких, уязвимых и охраняемых видов растений;
- основные данные о видовом составе животного мира, обилии видов, распределении по местообитаниям, путях миграции, тенденциях изменения численности, особо охраняемых, особо ценных видов и системе их охраны.

- структура земельного фонда, традиционное природопользование, инфраструктура, данные о производственной и непроизводственной сферах, основных источниках загрязнения.
- социально-экономические условия численность, занятость и уровень жизни населения, демографическая ситуация, медико-биологические условия и заболеваемость.
- наличие в районе строительства объектов культурного наследия, сведения об установленных ограничениях на ведение хозяйственной деятельности;
- современное экологическое состояние района изысканий оценка состояния компонентов природной среды, наземных и водных экосистем и их устойчивости к техногенным воздействиям и возможности восстановления;
- данные по радиационному, химическому и другим видам загрязнений атмосферного воздуха, почв, донных отложений, поверхностных и поземных вод;
- данные о санитарно-эпидемиологическом состоянии компонентов природной среды; сведения об источниках водоснабжения, наличии зон санитарной охраны источников водопользования;
- наличие месторождений полезных ископаемых, скотомогильников и биотермических ям, свалок и полигонов ТБО.

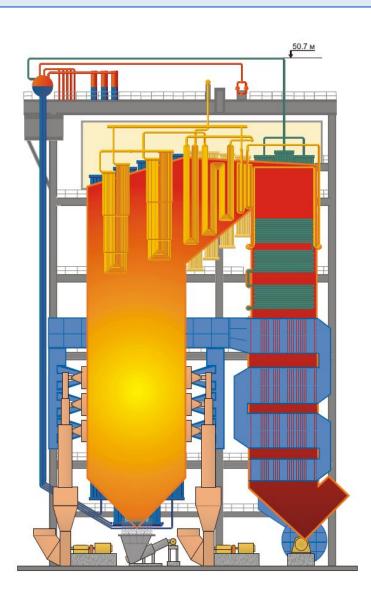

Выбор площадки для строительства ТЭС


- Основные факторы, влияющие на выбор площадки:
- наличие площадей, достаточных для рационального размещения всех сооружений электростанции, с учетом ее развития на полную мощность;
- использование земель, преимущественно, несельскохозяйственного назначения с минимальными затратами на их отчуждение;
- грунты, слагающие площадку, должны допускать строительство зданий и сооружений, а также установку тяжелого оборудования без устройства дорогостоящих оснований;
- уровень грунтовых вод должен быть ниже глубины заложения подвалов зданий и подземных инженерных коммуникаций;
- поверхность площадки должна быть относительно ровной с уклоном, обеспечивающим поверхностный водоотвод;


- Основные факторы, влияющие на выбор площадки (продолжение):
- площадка не должна располагаться в местах залегания полезных ископаемых или в зоне обрушения выработок, на закарстованных или оползневых участках;
- наличие источников технического и питьевого водоснабжения в необходимых объемах на полное развитие ТЭС;
- наличие железнодорожной связи с путями общего пользования (РЖД), железнодорожной связи с местами добычи топлива (для ТЭС, работающих на угле и мазуте); наличие автодорожной связи с дорогами общего пользования;
- минимальная удаленность от магистральных газопроводов для ТЭС, работающих на природном газе;
- для теплофикационных электростанций площадка должна быть максимально приближена к потребителям тепла;
- возможность создания санитарно-защитной зоны расчетного радиуса вокруг ТЭС (АЭС), где не допускается проживание населения; площадка электростанции должна располагаться с подветренной стороны по отношению к населённым пунктам.


Выбор площадки для строительства ТЭС

- Экономическая целесообразность приближения ТЭС к потребителям электроэнергии возникает лишь при использовании высококалорийных топлив. При работе на низкосортном топливе и добыче его открытым способом, выгоднее располагать ТЭС ближе к месту добычи.
- Во всех случаях площадку для строительства КЭС выбирают как можно ближе к источнику технического водоснабжения.
- Площадка для строительства электростанции должна быть расположена недалеко от магистральной железной дороги, необходимой для доставки строительных конструкций и оборудования, топлива и другого сырья.



Паровой котел

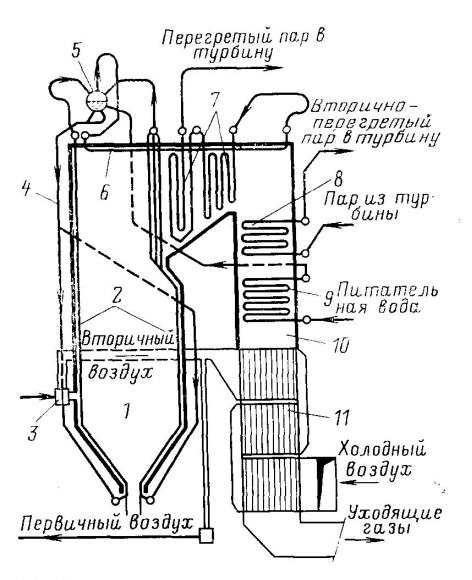
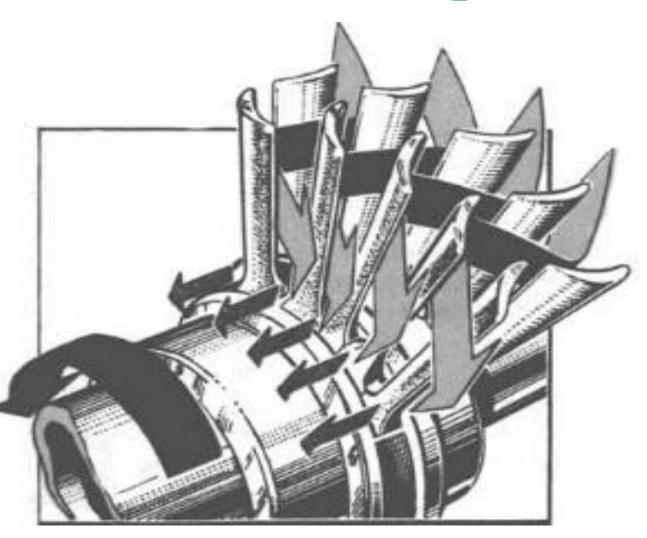
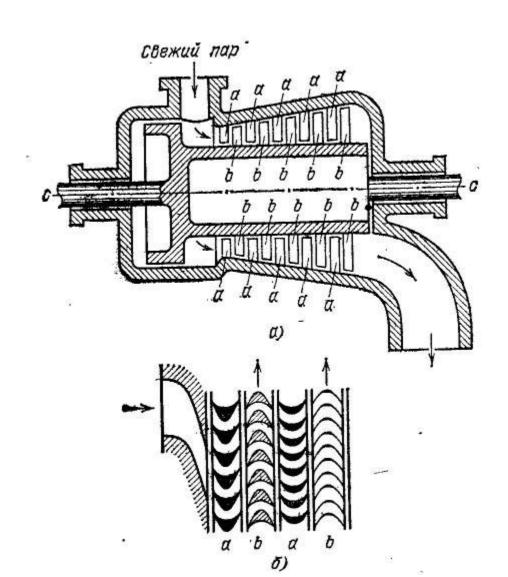




Рис. 1.8. Схема барабанного котла с естественной цир-куляцией.

1— топочная камера; 2— топочные экраны; 3— горелки; 4— опускные трубы; 5— оарабан; 6— раднационный пароперегреватель; 7— конвективный пароперегреватель; 8— промперегреватель; 9— экономайзер; 10— конвективный газоход; 11— воздухоподогреватель.

Паровая турбина

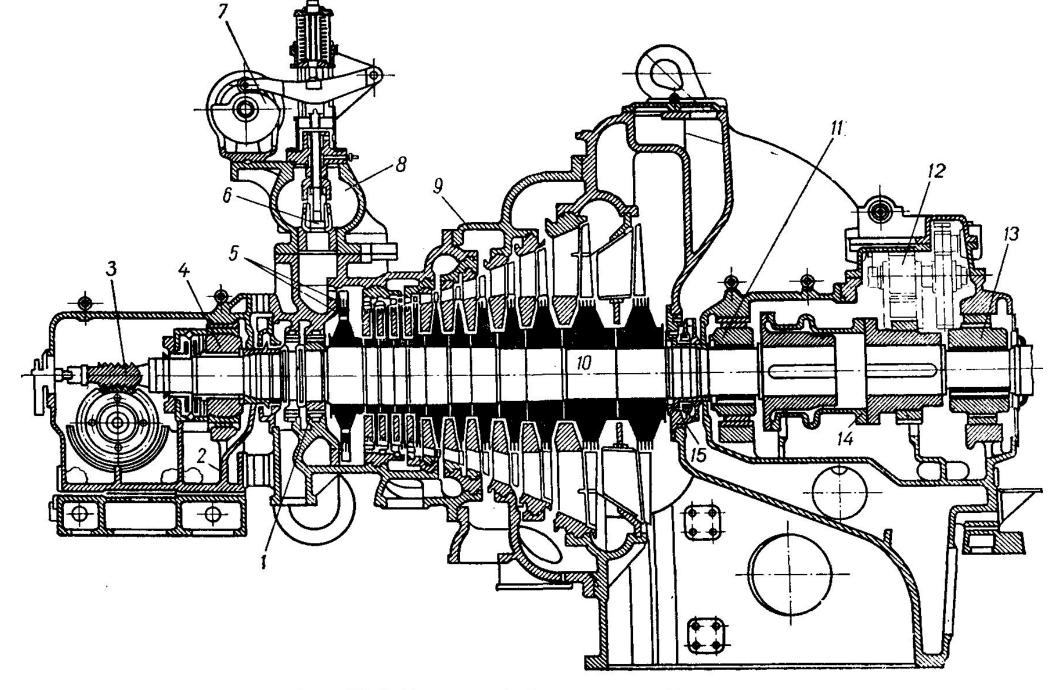
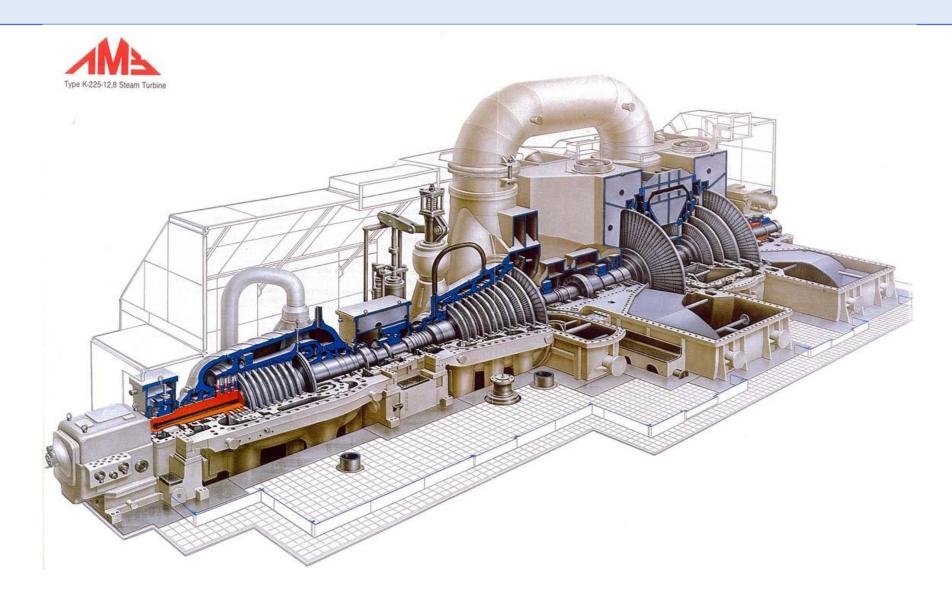
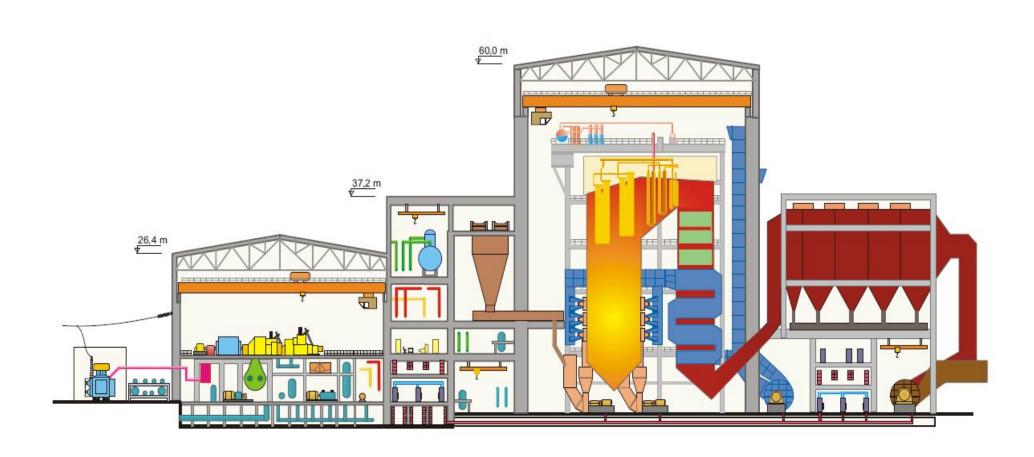
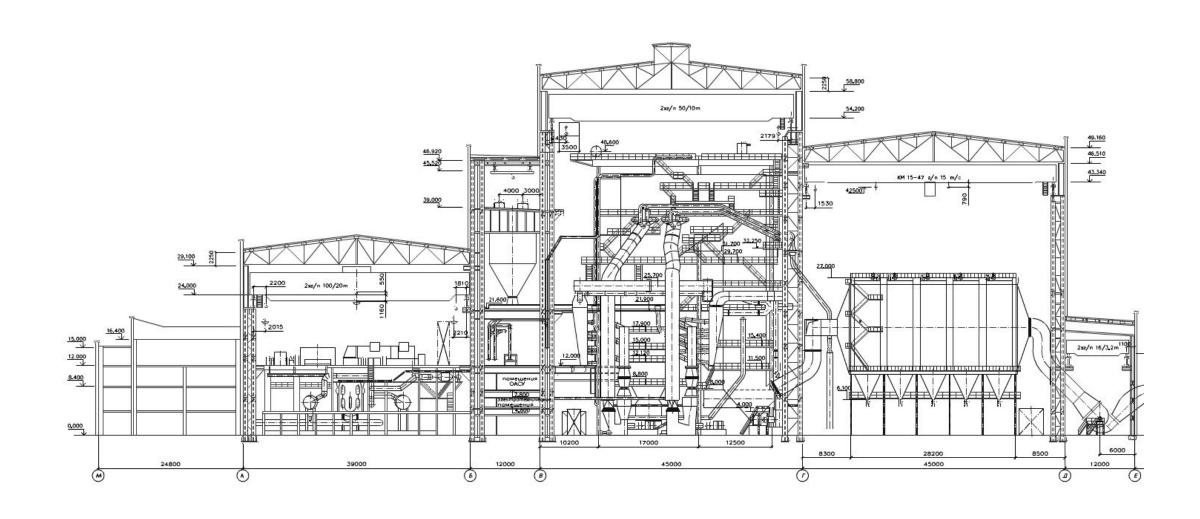




Рис. IV-6. Турбина ЛМЗ мощностью 50 тыс. квт.


Паровая турбина мощностью 225000 КВт

Тепловые электрические станции

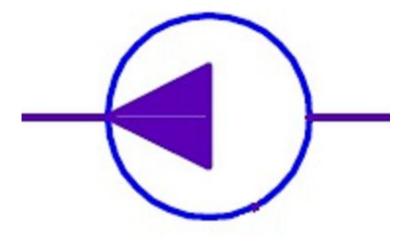
Тепловые электрические станции

Вспомогательное оборудование ТЭС

- •Насосы;
- •Теплообменники;
- •Деаэраторы;
- •Эжекторы;
- •Расширители;
- •Баки и резервуары;

Насосы

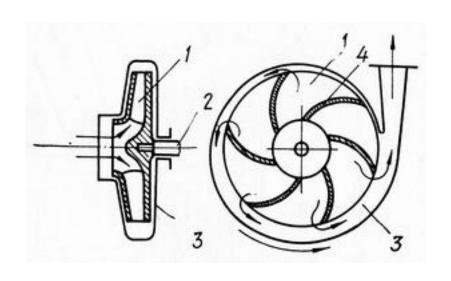
Насос — гидравлическая машина, преобразующая механическую энергию приводного двигателя в энергию потока жидкости, служащая для перемещения и создания напора жидкостей всех видов, суспензий и сжиженных газов.

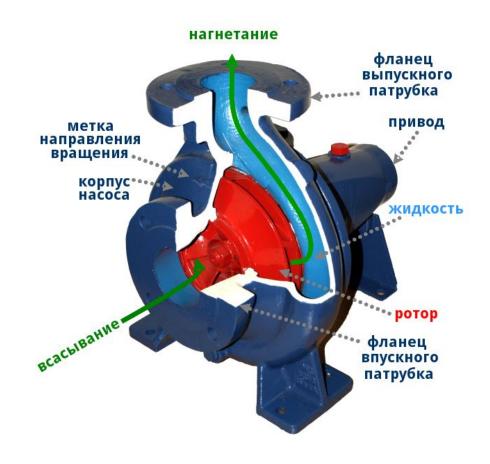

Насосы различаются по:

- принципу действия,
- виду перекачиваемой среды,
- конструктивному исполнению

Насосы

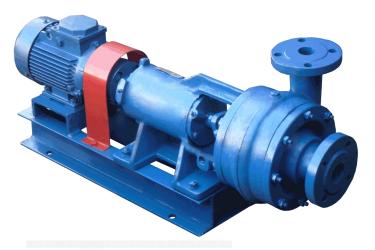
Классификация по принципу действия:


- центробежные,
- осевые,
- поршневые,
- вихревые,
- струйные,
- плунжерные,
- винтовые,
- шестеренные



Насосы

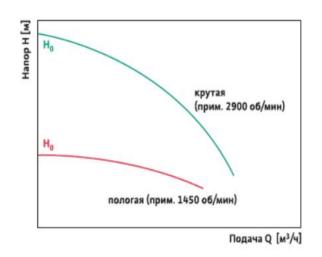
Классификация по виду перекачиваемой среды:


- для чистой холодной воды,
- для горячей воды,
- для перекачивания конденсата,
- химические насосы для перемещения агрессивных жидкостей,
- нефтяные насосы,
- грунтовые насосы для перекачивания суспензий
- фекальные насосы и т.д.

Центробежные насосы классифицируют по:

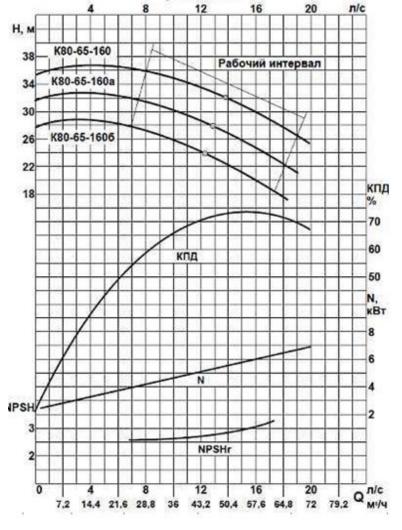
- Количеству ступеней (колёс); одно или многоступенчатые; одноступенчатые насосы могут быть с консольным расположением вала консольные;
- По расположению оси колёс в пространстве (горизонтальный, вертикальный)
- Способу подвода жидкости к рабочему колесу (с односторонним или двухсторонним входом двойного всасывания);
- Коэффициенту быстроходности (тихоходные, нормальные, быстроходные);
- Способу соединения с двигателем: приводные (с редуктором или со шкивом) или соединения с электродвигателем с помощью муфт.
- Способу расположения насоса относительно поверхности жидкости: поверхностные, глубинные, погружные

Основные характеристики насосов:


Производительность Q, м3/ч, л/с;

Напор, м.в.ст, кгс/см2 Н;

Кавитационный запас NPSH, м.в.ст;


КПД, %;

Потребляемая мощность N, КВт.

Характеристика насоса К80-65-160 при частоте вращения 48с-1 (2900 об/мин) на воде плотность 1000 кг/м³.

Характеристики N, КПД и NPSH приведены для номинального диаметр рабочего колеса

Теплообменные аппараты

Теплообменник — устройство, в котором осуществляется теплообмен между двумя теплоносителями, имеющими различные параметры (температуры).

Классифицируются:

по конструкции — аппараты, изготовленные из труб (кожухотрубчатые, «труба в трубе», погружные змеевиковые); аппараты, поверхностность теплообмена которых изготовлена из листового материала (пластинчатые, спиральные, сотовые); по назначению — подогреватели, испарители, холодильники, конденсаторы; по направлению движения теплоносителей — прямоточные

по направлению движения теплоносителей — прямоточные, противоточные, перекрестного тока и др.

по типу используемых для теплообмена сред – (в энергетике): пароводяные, водо-водяные, водо-газовые, газо-газовые и т.п.

Теплообменные аппараты

Основные расчетные характеристики теплообменников:

1. Тепловая мощность

$$Q = G_1 c_{P1} (t_1 - t_1) \cdot \eta_{\Pi} = G_2 c_{P2} (t_2 - t_2)$$

гð:

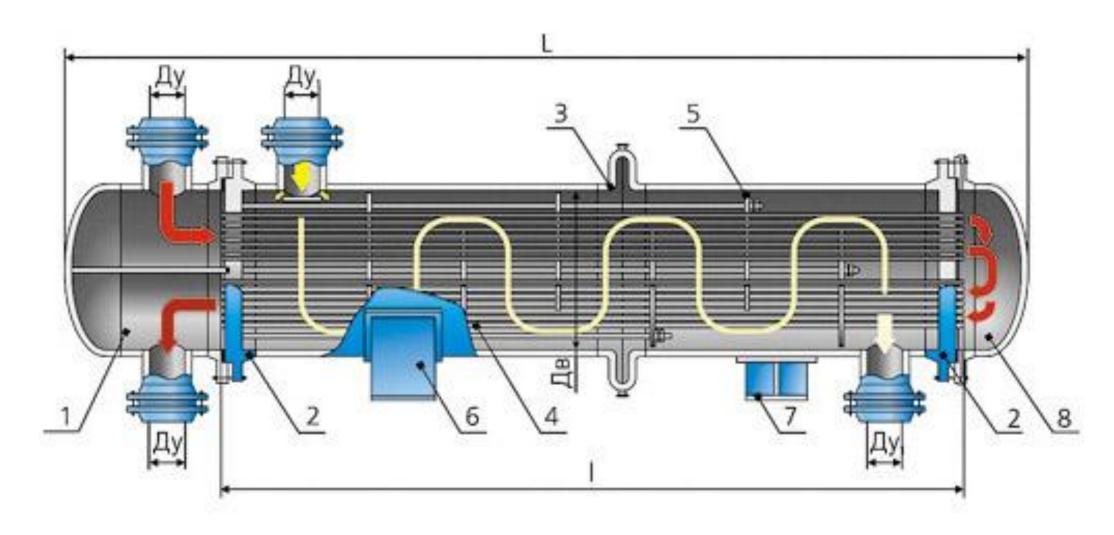
$$G_{\!\scriptscriptstyle 1}, G_{\!\scriptscriptstyle 2}$$
 — массовые расходы теплоносителей, кг/с

$$\eta_{\pi}$$
 — коэффициент тепловых потерь в окружающую среду,

- температуры греющего (1) и нагреваемого (2) теплоносителя соответственно на входе (') и на выходе (") теплообменного аппарата.

 ${\it C}_{\it P}$ - удельная изобарная теплоемкость греющей и нагреваемой среды, КДж/Кг $^{\circ}$ С

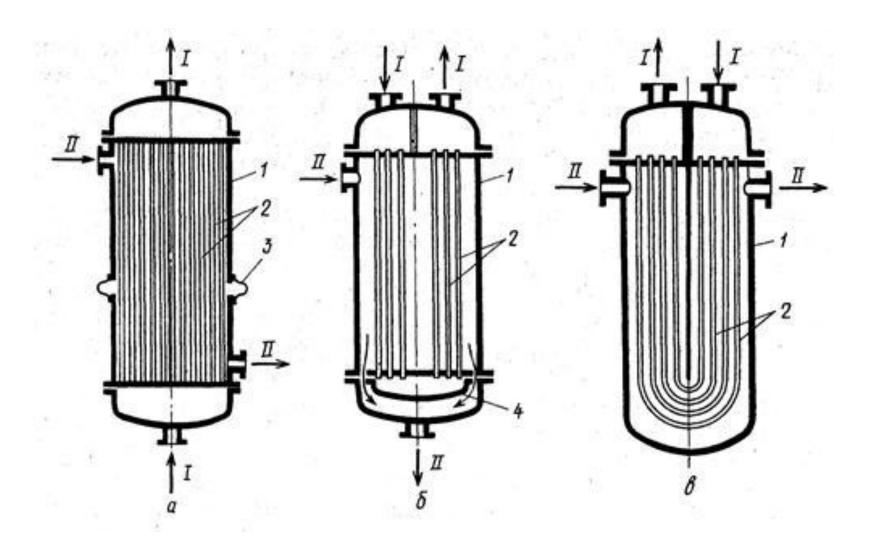
Теплообменные аппараты


Основные расчетные характеристики теплообменников:

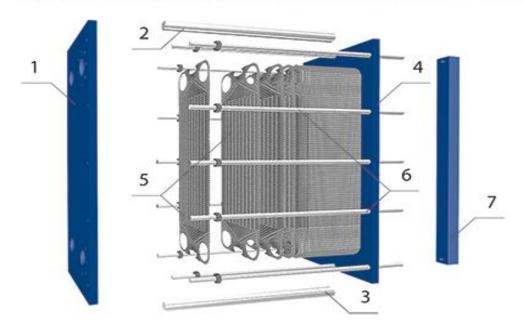
• Тепловая мощность (тепловой поток), передаваемый от греющей к нагреваемой среде, Вт

$$Q = F \times k \times \Delta t_{cp}$$
, BT

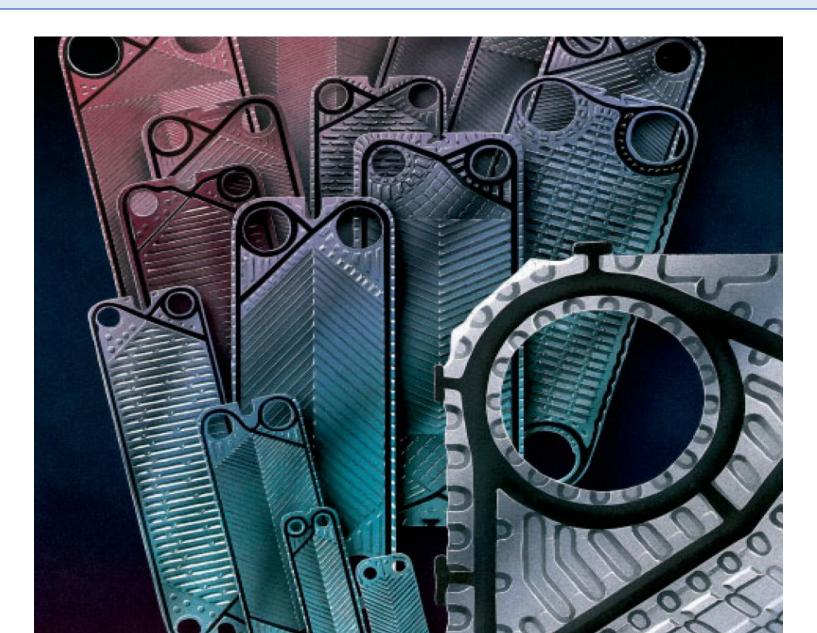
- где: F Площадь поверхности нагрева, м2
- Q k коэффициент теплопередачи теплообменника, Bт/м2*°C
- $\Delta t_{
 m cp}$ среднелогарифмическая разность температур греющей и нагреваемой среды, °C


Кожухотрубчатые теплообменники

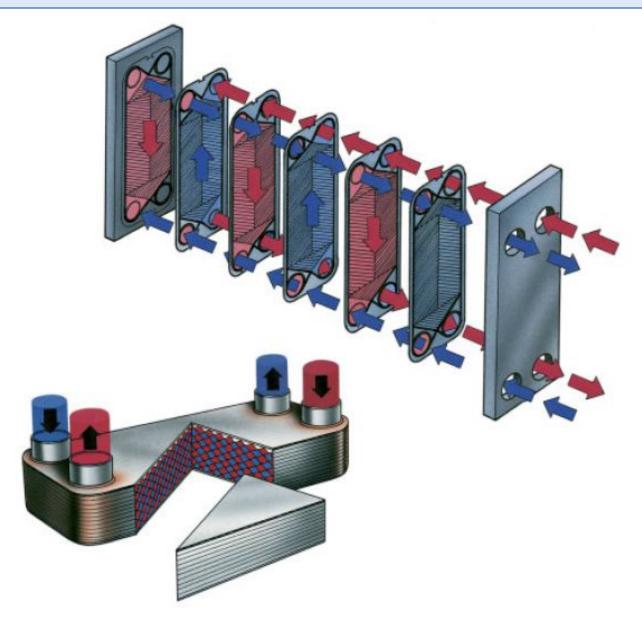
Кожухотрубчатые теплообменники



Кожухотрубчатые теплообменники

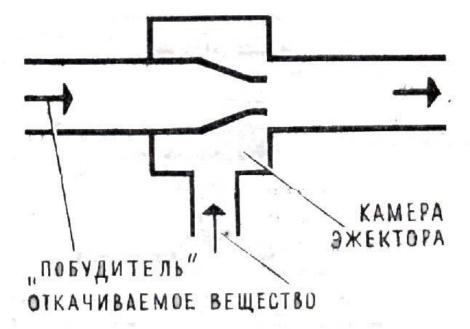

Пластинчатые теплообменники

Устройство разборного пластинчатого теплообменника

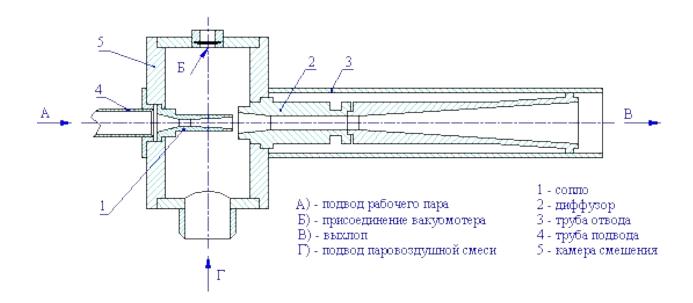


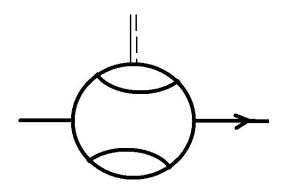
- 1. Неподвижная плита с присоединительными патрубками.
- 2. Верхняя направляющая.
- 3. Нижняя направляющая.
- 4. Задняя прижимная плита.
- 5. Теплообменные пластины с уплотнительными прокладками.
- 6. Комплект резьбовых шпилек.
- 7. Задняя стойка.

Пластинчатые теплообменники



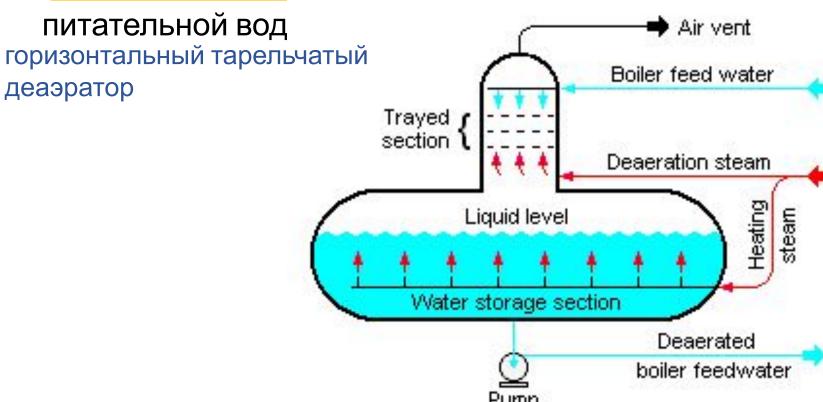
Пластинчатые теплообменники



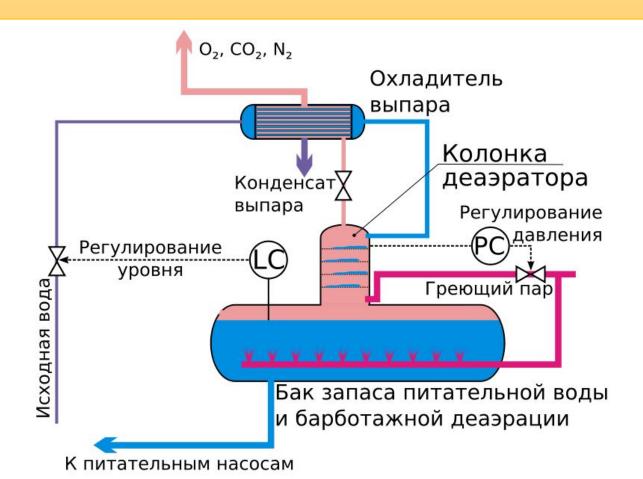

Эжекторы (пароструйные и водоструйные насосы)

Пароструйный эжектор — аппарат, использующий энергию струи пара для отсасывания жидкости, пара или газа из замкнутого пространства. Пар, выходящий из сопла с большой скоростью, увлекает через кольцевое сечение вокруг сопла перемещаемое вещество.

Эжекторы (пароструйные и водоструйные насосы)



Деаэраторы


Деаэратор — устройство, реализующее процесс **деаэрации** воды - очистки от присутствующих в ней нежелательных газовых примесей. На ТЭС и АЭС также выполняет роль ступени регенерации и бака запаса

Деаэраторы

Классификация по принципу действия:

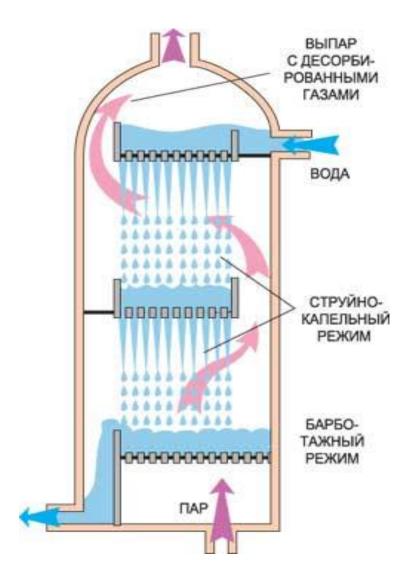
- Термические
- Вихревые

Термические деаэраторы

Термическая деаэрация основана на принципе диффузионной десорбции: жидкость нагревается до кипения; при этом растворимость газов стремится к нулю, образующийся пар (выпар) уносит газы

Классификация термических деаэраторов

- По давлению:
- Вакуумные
- Атмосферные
- Повышенного давления

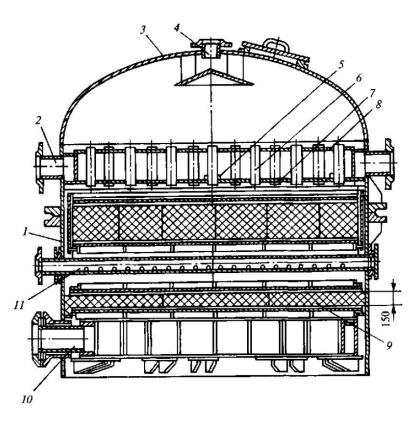
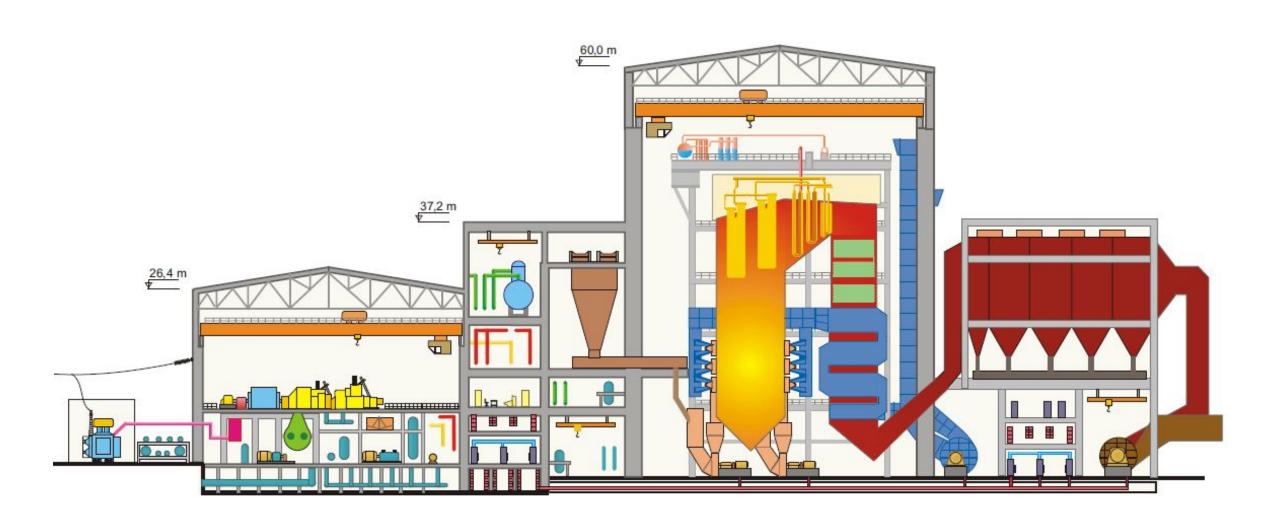

По способу создания поверхности контакта фаз:

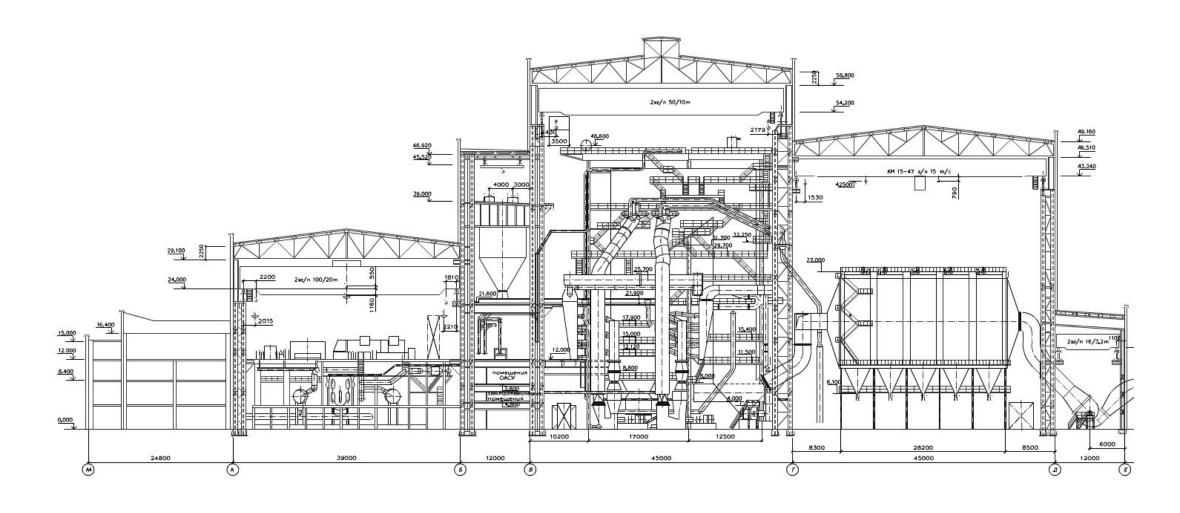
- Струйные
- Пленочные
- Барботажные
- Комбинированные струйно-барботажные

Термические деаэраторы

Обозна- чение	Тип	Давление, МПа	Температура, °С	Применение
ДВ	Вакуумные	0,0075— 0,05	40—80	Подпиточная вода тепловых сетей, вода в тракте химической водоподготовки
ДА	Атмосферные	0,12	102—107	Добавочная вода ТЭС, питательная вода испарителей, подпиточная вода тепловых сетей
ДП	Повышенного давления	0,6—0,7, реже 0,8—1,2	158—167 170—188	Питательная вода энергетических котлов с начальным давлением пара от 9,8 МПа и выше

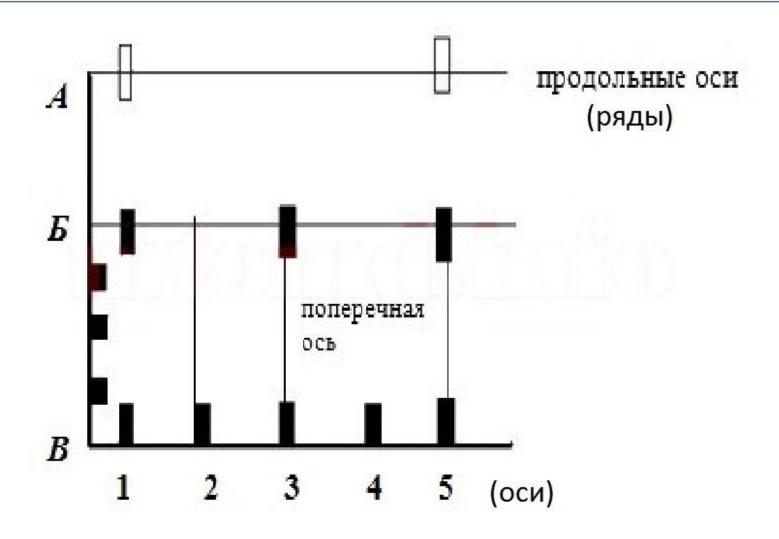
Термические деаэраторы

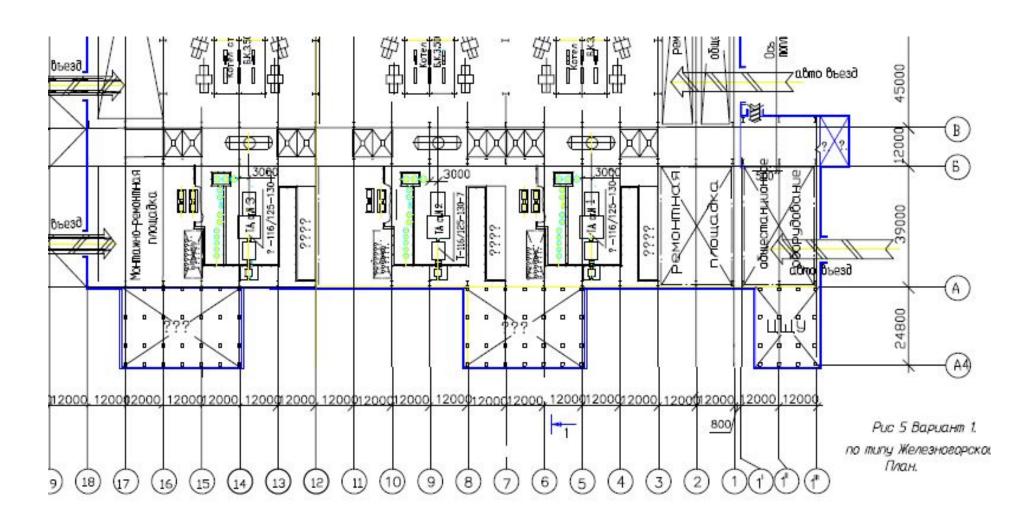




Рис. 6.12. Конструкция деаэрационной колонки пленочного типа с неупорядоченной насадкой: 1 — корпус; 2 — подвод воды; 3 — крышка; 4 — отвод выпара; 5 — отверстия для слива воды; 6 — патрубки для выпара; 7, 8 — нижний и верхний листы водораспределительной камеры; 9 — орошаемая насадка; 10 — подвод пара; 11 — подвод дренажа

Компоновка – это взаимное расположение в строительных конструкциях здания отдельных агрегатов, связанных между собой единым технологическим процессом.

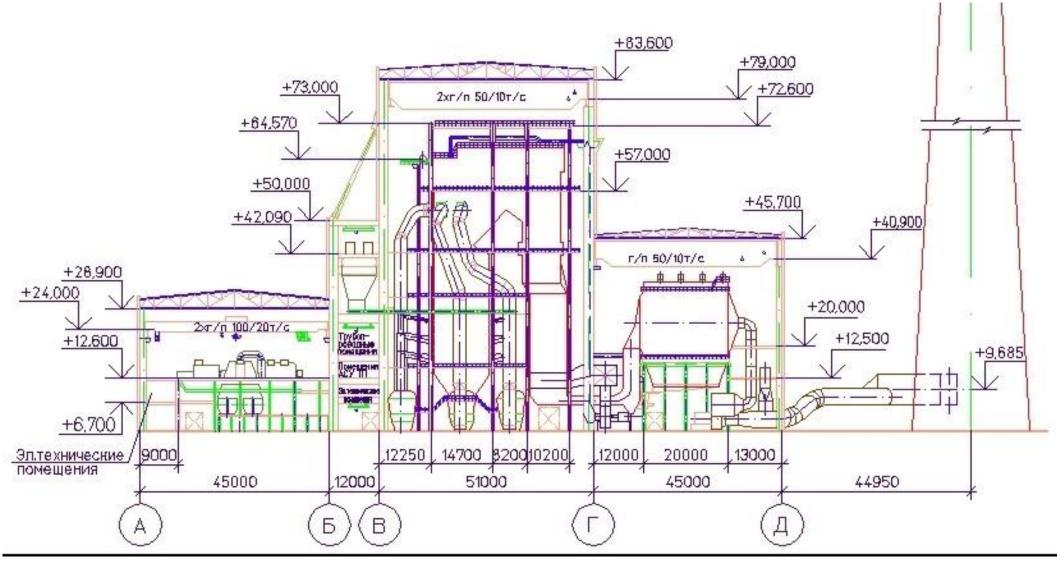
Главный корпус - здание, в котором располагаются технологические системы, обеспечивающие выработку электрической и тепловой энергии: основное технологическое оборудование — паровые котлы, турбины, конденсаторы, электрогенераторы и вспомогательное оборудование, непосредственно связанное с ними.


Компоновка оборудования оказывает большое влияние на надежность и экономичность работы электростанции, на удобство эксплуатации, условия труда персонала, возможность механизации и автоматизации производственных процессов.

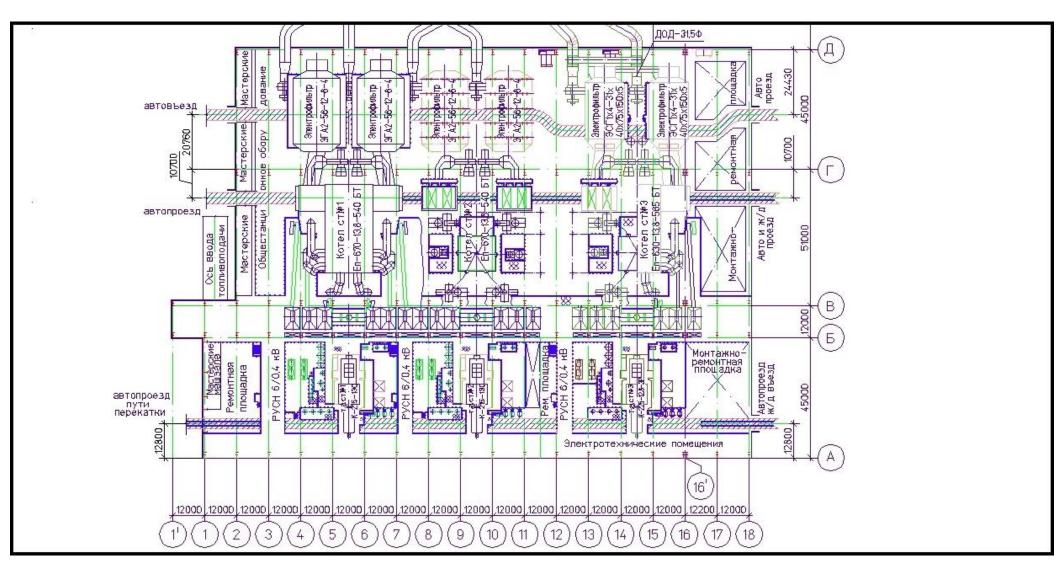


Разбивочная сетка здания

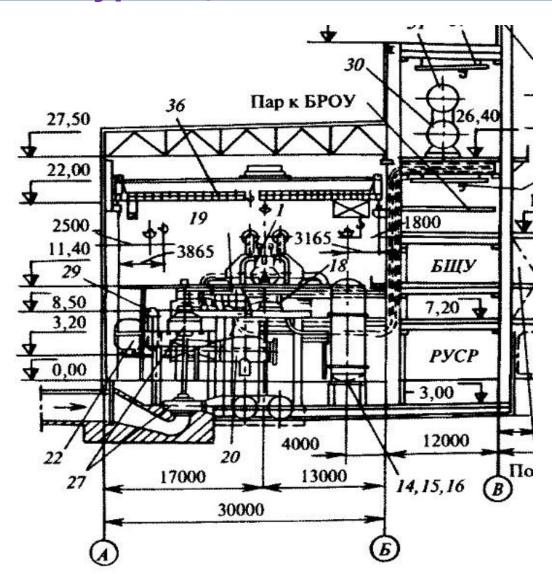
- Разбивка на поперечные и продольные оси (ряды) производится для удобства последующей работы при проектировании, строительстве и монтаже оборудования и коммуникаций в здании. К осям производится привязка конструкций здания, фундаментов и оборудования.
- Продольные разбивочные оси совпадают с направлением пролетов здания (рядами) и обычно обозначаются прописными буквами, а перпендикулярные к ним поперечные оси цифрами.
- Расстояния между поперечными разбивочными осями унифицированы и в соответствии с единой модульной системой (EMC) приняты для одноэтажных промышленных зданий равными 6 м. Для главных корпусов всех современных ТЭС расстояние между строительными осями принимается равным 12 м.

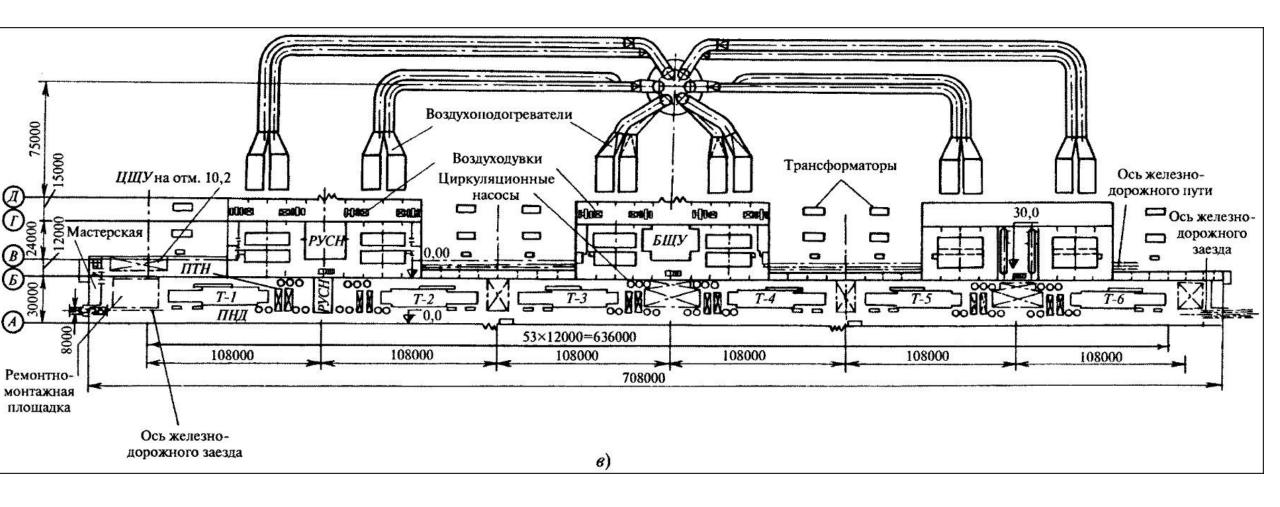

- Пролет часть здания, ограниченная двумя смежными рядами колонн.
- Шаг колонн расстояние между осями двух смежных колонн одного ряда. Рекомендуемый шаг колонн для главных корпусов ТЭС равен 12 м. При необходимости большего шага его назначают кратным 6 м.
- Сетка колонн это произведение ширины пролета на шаг колонн средних рядов в метрах. Например, 24×12 м; 18×12 м; 18×6 м.
- Ширина пролета L расстояние между двумя смежными продольными разбивочными осями, проходящими через колонны, образующие пролет. Возможная ширина пролета для зданий, оборудованных мостовыми кранами 12, 18, 24, 30, 36, 42, 45, 48, 51

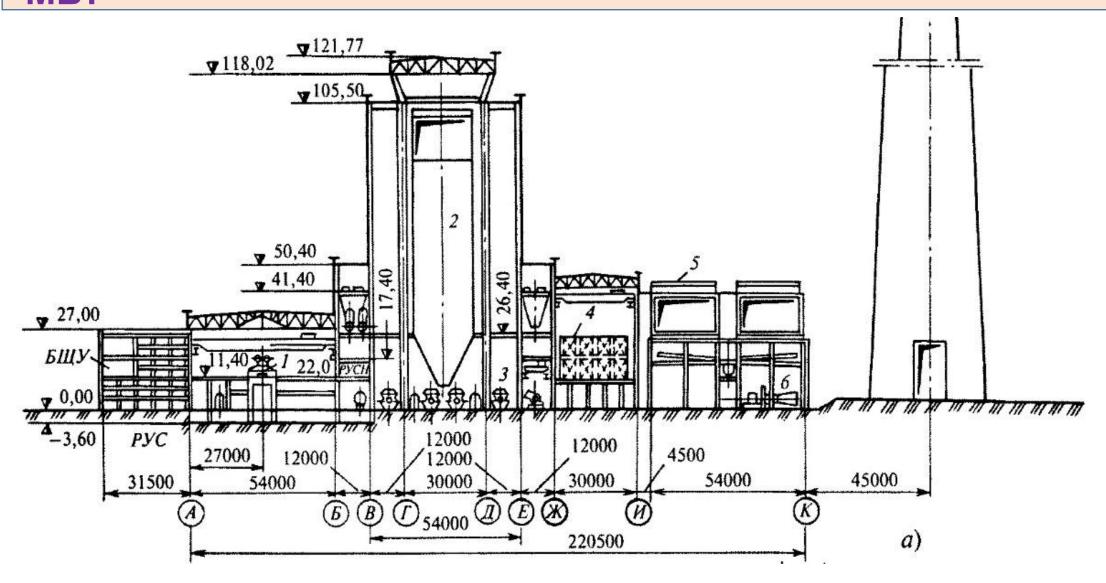
Компоновка оборудования должна предусматривать и обеспечивать:

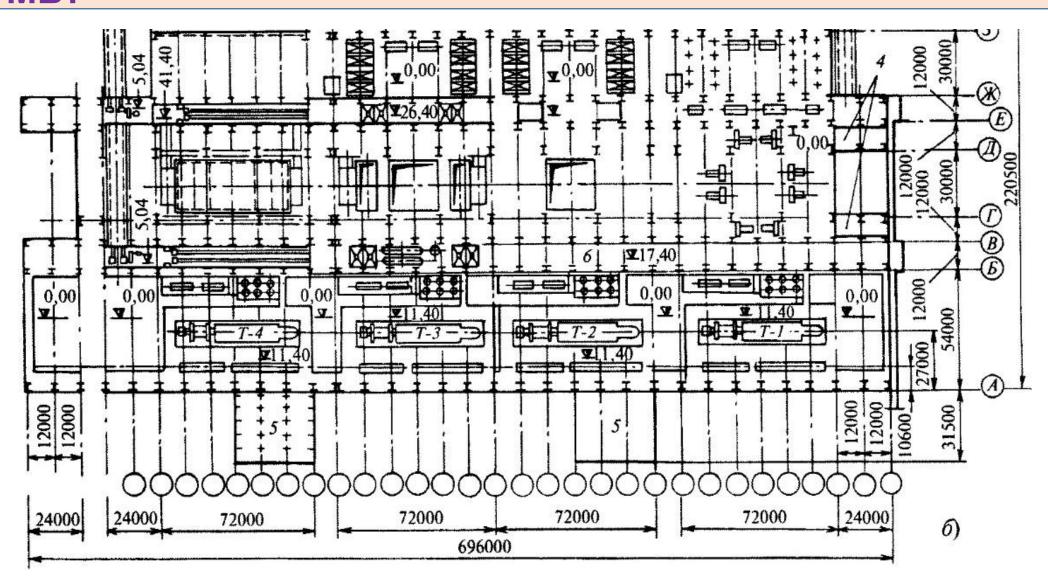

- надежную, безаварийную и безопасную эксплуатацию оборудования ТЭС;
- удобство эксплуатации с наименьшим числом эксплуатационного персонала;
- удобство монтажа оборудования и механизацию всех основных работ;
- наиболее целесообразную связь между расположенными в нем цехами (отделениями) и главного корпуса с другими объектами станции, а также с подъездными путями.
- Минимальный (оптимальный) удельный строительный объем главного корпуса.

• Удельный строительный объем (м³/кВт) — один из показателей совершенства компоновки. Зависит от единичной мощности устанавливаемых агрегатов, тепловой схемы электростанции, вида сжигаемого топлива, компактности размещения оборудования и степени его открытости (доли оборудования, располагаемого на открытом воздухе). Для современных КЭС этот показатель составляет около 0,6-0,7 м^{3/}кВт, а для ТЭЦ приблизительно 1,5 м³/кВт.


Компоновка главного корпуса ТЭС (бесподвальная компоновка)


Компоновка главного корпуса ТЭС (бесподвальная компоновка)


Компоновка главного корпуса ТЭС (продольное расположение турбин)


Компоновка главного корпуса ТЭС (продольное расположение турбин, «зубчатая» компоновка)

Компоновка главного корпуса ТЭС с энергоблоками 800 МВт

Компоновка главного корпуса ТЭС с энергоблоками 800 МВт

