

Образовательный комплекс Компьютерные сети

<u>Лекция 14</u>

Уровень Хост-Хост ТСР/ІР

Содержание

- Уровень Хост-Хост модели ТСР/ІР
 - □ Протокол UDP
 - Протокол ТСР
- Программный интерфейс сокетов



Уровень Хост-Хост

- Межсетевой уровень (IP) позволяет передавать данные между узлами через интерсеть
- Уровень Хост-Хост обеспечивает сервисы, которые могут использоваться приложениями для доставки данных
 - User Datagram Protocol (UDP)
 - Transmission Control Protocol (TCP)
- Протоколы TCP и UDP выполняют подмножество функций более сложного транспортного уровня модели ISO/OSI

Уровень Хост-Хост

- Процесс, который хочет взаимодействовать с другим процессом, должен зарегистрироваться на каком-либо порту
- Порт это 32-битное число, которое используется протоколами уровня Хост-Хост для определения протокола (сервиса или приложения) прикладного уровня, которому предназначается сообщение
- Механизм портов используют протоколы TCP, UDP. Также механизм портов реализован в протоколе ISO-4.
- Пространства портов протоколов ТСР и UDP различны
 - то есть, один процесс может использовать 10-й порт ТСР, а другой в то же самое время 10-й порт UDP

Уровень Хост-Хост Стандартные сервисы

- Порты с номерами 0-1023 предназначены для регистрации серверных компонент стандартных сервисов (протоколов прикладного уровня) ТСР/ІР
- Порты с номерами 1024-65535 используются любыми программами, в том числе клиентскими частями стандартных протоколов
- Ниже перечислены некоторые стандартные сервисы, используемые ими протоколы и номера портов
 - 21/TCP FTP (20/TCP FTP-DATA)
 - 22/TCP SSH (Secure SHell)
 - 23/TCP TELNET
 - 25/TCP SMTP
 - 53/UDP NAMESERVER (DNS)
 - 80/TCP HTTP
 - □ 110/TCP POP3
- B Linux в файле /etc/services для большого числа сервисов указаны используемый протокол и номер порта

Уровень Хост-Хост Протокол UDP

- UDP ненадежный датаграммный протокол
 - Обеспечивает прикладным программам возможность посылать данные другим программам с минимальными накладными расходами
 - Не добавляет надежности нижележащим уровням
 - □ Не выполняет контроль трафика
 - Приложения, требующие надежной доставки потоков данных, должны использовать ТСР

Уровень Хост-Хост Формат UDP-датаграммы

- Source Port (SP) номер порта источника
- Destination Port (DP) номер порта получателя
- Length длина датаграммы в байтах
- Checksum контрольная сумма датаграммы
- Data передаваемые данные

Data

Уровень Хост-Хост Формат UDP-датаграммы

- Для внутреннего использования перед UDPзаголовком размещается псевдозаголовок, который не входит в UDP-датаграмму и содержит информацию из IP-заголовка
 - ІР-адрес отправителя
 - ІР-адрес получателя
 - Протокол
 - Длина UDP-датаграммы
- Длина псевдозаголовка UDP не учитывается в общей длине датаграммы, но его содержимое используется при вычислении контрольной суммы

Уровень Хост-Хост Использование UDP

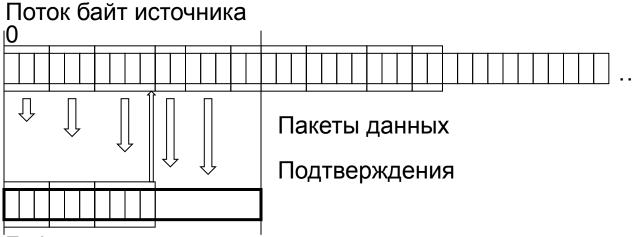
- Некоторые стандартные приложения, использующие UDP
 - Trivial File Transfer Protocol (TFTP) тривиальный протокол передачи файлов (используется при удаленной загрузке)
 - Domain Name Server (DNS) служба доменных имён
 - Remote Procedure Call (RPC) механизм удаленного вызова процедур (используется многими программами, например, сервисом Network File System, NFS)
 - Simple Network Message Protocol (SNMP) простой протокол управления сетью

Уровень Хост-Хост Протокол ТСР

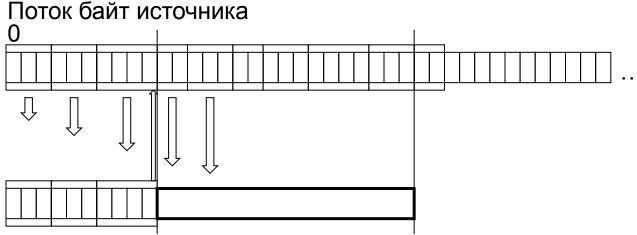

 ТСР – протокол, обеспечивающий сервис, ориентированный на соединение, для пары взаимодействующих процессов, и включающий надежность, контроль трафика и исправление ошибок

Уровень Хост-Хост Протокол ТСР

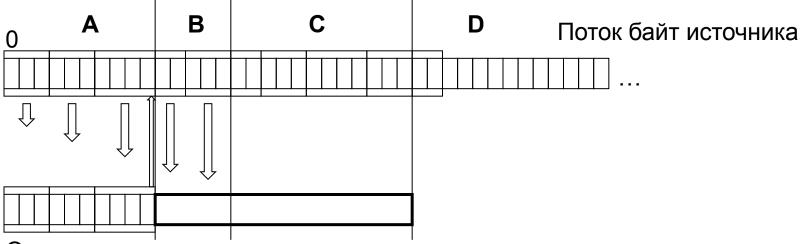
- ТСР устанавливает логическое соединение между парой процессов. Логическое соединение идентифицируется парой адресов сокетов.
 - □ Сокет объект межпроцессного взаимодействия, который может быть использован для передачи данных между процессами через сеть
 - Адрес сокета комбинация IP-адреса и номера порта, используемых для коммуникации
- ТСР хранит всю информацию о логическом соединении в специальной структуре, называемой блоком управления передачей


Уровень Хост-Хост Протокол ТСР

- Поля блока управления передачей
 - Локальный IP-адрес
 - □ Локальный номер порта
 - Протокол
 - Удаленный IP-адрес
 - □ Удаленный номер порта
 - □ Размер буфера передачи
 - □ Размер буфера приема
 - □ Текущее состояние ТСР
 - □ Текущее значение интервала тайм-аута
 - □ Количество осуществленных повторных передач
 - □ Текущий размер окна передачи
 - □ Максимальный размер передаваемого сегмента
 - □ Номер последнего из подтвержденных байтов
 - □ Максимальный размер принимаемого сегмента
 - □ Номер байта, который должен быть послан


Окно реконструкции входящего потока приемника

- Протокол ТСР обеспечивает передачу потоков данных, при этом он использует механизм окон
 - Все байты исходящего потока последовательно нумеруются
 - Размер окна задается получателем в момент установления соединения, но может изменяться им в процессе передачи
 - □ На стороне приемника окно это фактически буфер приема, на стороне источника – абстракция, определяющая порядок передачи
 - В исходный момент окно расположено в начале потока


Буфер реконструкции входящего потока приемника

- Источник разбивает исходящий поток на пакеты (сегменты)
- Источник может послать все пакеты в окне без подтверждения, но должен запускать таймер для каждого из них
- Получатель подтверждает номер последнего принятого байта

Окно реконструкции входящего потока приемника

- Получатель в ходе реконструкции потока данных передвигает начало окна на первый еще не полученный байт
- Источник продвигает окно после получения очередного подтверждения

Окно реконструкции входящего потока приемника

- С точки зрения источника, выходной поток байт делится на 4 части
 - А посланные и подтвержденные байты
 - □ В посланные, но еще не подтвержденные байты
 - □ С байты, которые могут быть посланы без подтверждения
 - □ D байты, которые еще не могу быть посланы

- Если при передаче потерян какой-либо пакет, источник не получит подтверждения и спустя время тайм-аута начнет повторную передачу всех неполученных байт
 - даже если следующие пакеты были получены приемником, он посылает номер последнего байта полностью реконструированного потока
- Каждое подтверждение полностью описывает текущую ситуацию для источника
 - если получатель отправил подтверждение, но оно не дошло до источника, следующее доставленное подтверждение отменит необходимость повторной передачи данных источником
- Таким образом, механизм окон обеспечивает
 - Надежную передачу
 - □ Контроль трафика
 - Эффективное использование пропускной способности сети (источник может посылать данные, не дожидаясь подтверждения всех уже отправленных данных)

Уровень Хост-Хост Формат ТСР-сегмента...

- Source Port (SP) номер порта источника
- Destination Port (DP) номер порта получателя
- Sequence Number порядковый номер первого байта в сегменте
- Acknowledgment Number если установлен флаг АСК, номер следующего байта в потоке, который узел рассчитывает принять как получатель
- Data Offset размер заголовка TCP в 32-битных словах

Source Port									
		(16	<u>б</u>	ИТ	<u> </u>				
D	es	tina	atio	on	Р	or	t		
(16 бит)									
Se	qu	end	ce	Ν	un	ηb	er		
. (16 бит) Acknowledgment									
Number									
Data (16 GMT)									
Offse		C	F	U	Α	P	R	S	F
t	0	W	C	R	C	S	S	Y	
(4		R	E		K	Н	Т	Ν	Ν
Window									
(16 бит)									
Checksum									
(16 бит)									
Urgent Pointer									
(16 бит)									
Options + Padding									
(N* 32 бит)									
Data									

Уровень Хост-Хост Формат ТСР-сегмента...

Флаги

- CWR (Congestion Window Reduced) подтверждение принятия сегмента с установленным флагом ЕСЕ
- ECE (ECN-Echo) данный узел способен на явное уведомление о перегрузке
- URG если равен 1, то поле Urgent Pointer сегмента значимо
- ACK если равен 1, то поле Acknowledgment Number сегмента значимо
- □ PSH указание получателю "протолкнуть" данные в приложение
- RST сброс соединения
- SYN синхронизация номеров байт в потоке
- FIN конец данных источника

Source Port									
(16 бит)									
D		<u>`</u> tina				or	t		
(16 бит)									
Sequence Number									
(16 бит) Acknowledgment									
Number									
Data		/16	بح	147	-7				
Offse		C		- 1 1	Α	P	R	S	F
t	0	W	C	R	C	S	S	Y	I
t 0 W C R C S S Y (4 R E G K H T N					Ν				
Window									
(16 бит)									
Checksum									
(16 бит)									
Urgent Pointer									
(16 бит)									
Options + Padding									
(N* 32 бит)									
Data									

Уровень Хост-Хост Формат ТСР-сегмента...

- Window количество байт, начиная с номера из поля Acknowledgment Number, которое узел может принять как получатель
- Checksum контрольная сумма ТСРсегмента
- Urgent Pointer номер первого байта срочных данных (в поле данных сегмента)
- Options опции доставки TCPсегмента, может содержать несколько опций и имеет переменную длину
- Padding дополнения поля Options до размера, кратного 32 битам
- Data данные

Source Port								
(16 бит)								
D	estin	ati	on	P	or	t		
	(16	<u> 6</u>	ТИ	.)				
Sequence Number								
(16 бит) Acknowledgment								
Α.			_		CI	IL		
Dete	Nι	ım	be	r				
Data	/1/	7 6	44	٠,				
Offse	l C	ΙF	Ή	Δ	P	R	S	F
t	0 W	C	R	C	S	S	Y	I
t 0 W C R C S S Y (4 R E G K H T N					Ν			
Window								
(16 бит)								
Checksum								
(16 бит)								
(16 бит) Urgent Pointer								
(16 бит)								
Options + Padding								
(N* 32 бит)								
Data								

Уровень Хост-Хост Формат ТСР-сегмента

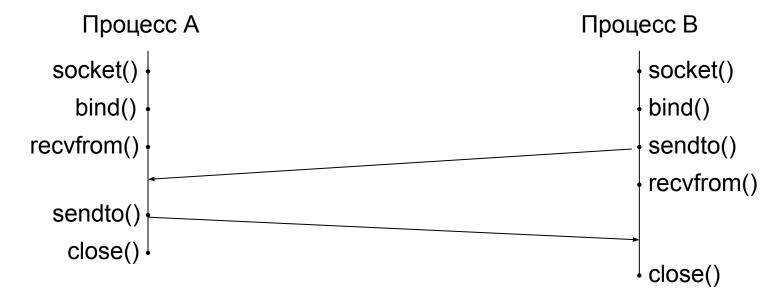
- Для внутреннего использования перед ТСРзаголовком размещается псевдозаголовок, который не входит в ТСР-сегмент и содержит информацию из IP-заголовка
 - ІР-адрес отправителя
 - ІР-адрес получателя
 - Протокол
 - Длина ТСР-сегмента
- Длина псевдозаголовка ТСР не учитывается в общей длине сегмента, но его содержимое используется при вычислении контрольной суммы

- Сокет объект межпроцессного взаимодействия, обеспечивающий прием и передачу данных для процесса
- Существуют следующие типы сокетов
 - Stream обеспечивает надежную доставку потоков данных (SOCK_STREAM)
 - Datagram обеспечивает ненадежную доставку сообщений (SOCK_DGRAM)
 - Sequential packet обеспечивает надежную доставку пакетов длины не больше заданной (SOCK_SEQPACKET)
 - на настоящий момент отсутствует реализация данного типа сокетов
 - Raw доступ к нижележащему протоколу (SOCK_RAW)

- Сокет достаточно общий интерфейс и может обеспечивать взаимодействие посредством использования различных механизмов (локальных и сетевых)
- Различные механизмы требуют использования специальных типы адресов, принадлежащие различным коммуникационным доменам
 - AF_INET взаимодействие удаленных систем с использованием TCP/IP (адрес – пара IP-адрес + номер порта)
 - □ AF_INET6 взаимодействие удаленных систем с использованием TCP/IP (IP версии 6)
 - AF_UNIX локальное межпроцессное взаимодействие (адресом является имя на файловой системе)
 - AF NS
 - IUCV
 - **...**

Процесс A Процесс B socket() socket()

- При датаграммной передаче взаимодействующие процессы выполняют один и тот же набор вызовов (далее приводится множество вызовов для сокетов в реализации Berkley)
- Создание сокета
 - int socket(int domain, int type, int protocol);
 - domain коммуникационный домен
 - type тип сокета
 - protocol протокол транспортного уровня, если значение параметра равно 0, используется протокол по умолчанию для данного типа сокета и коммуникационного домена
 - □ Возвращаемое значение дескриптор сокета


Процесс А	Процесс В				
socket()	socket()				
bind()	bind()				

- Назначение адреса сокету
 - int bind(int s, const struct sockaddr *name, int namelen);
 - s дескриптор сокета
 - name адрес буфера, содержащего адрес сокета. Адрес представляет собой структуру struct sockaddr_in; ее поля
 - sa_family_t sin_family; коммуникационный домен
 - in_port_t sin_port; номер порта (используется сетевой порядок следования байт в целочисленных значениях)
 - struct in_addr sin_addr; структура, содержащая сетевой адрес
 - in_addr_t s_addr; IP-адрес (используется сетевой порядок следования байт в целочисленных значениях)
 - unsigned char sin_zero[8]; нули
 - namelen длина структуры, содержащей адрес

- Передача/прием
 - ssize_t recvfrom(int s, void *buffer, size_t length, int flags, struct sockaddr *address, socklen_t *address_len);
 - ssize_t sendto(int s, const void *message, size_t length, int flags, const struct sockaddr *address, socklen_t address_len);
 - s дескриптор сокета
 - buffer адрес буфера приема/передачи
 - length размер буфера в байтах
 - □ flags флаги операции
 - address адрес буфера адреса источника/получателя
 - □ address_len размер адреса получателя в sendto(), адрес объекта целого типа, содержащего размер буфера address в recvfrom()

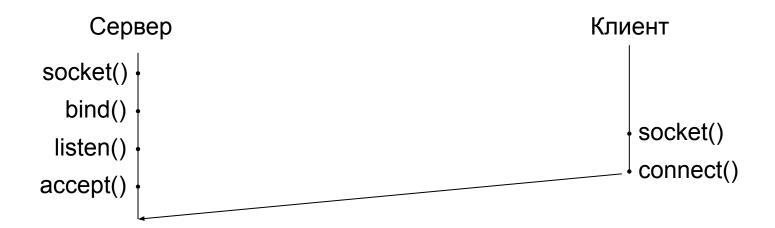
- Закрытие сокета
 - int close(int s);
 - □ s дескриптор сокета

Взаимодействие с установлением соединения

Сервер Клиент socket() bind()

- При использовании взаимодействия, ориентированного на соединение, клиент и сервер выполняют разные последовательности вызовов
- Сервер
 - Создание сокета
 - int socket(int domain, int type, int protocol);
 - □ Назначение адреса сокету
 - int bind(int s, const struct sockaddr *name, int namelen);

Взаимодействие с установлением соединения

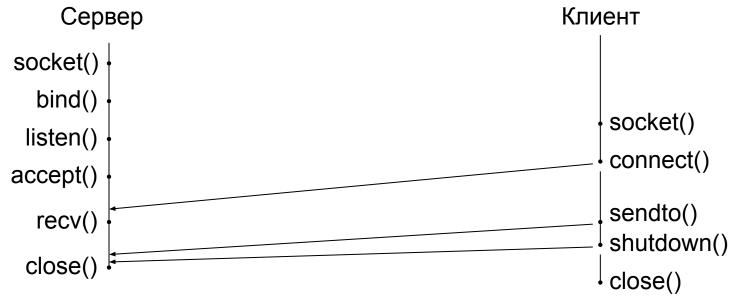

Сервер Клиент socket() bind() listen() accept()

Сервер

- Регистрация входящих запросов на соединение int listen(int s, int backlog);
 - s дескриптор сокета
 - backlog максимальное число ожидающих запросов
- □ Прием запроса на соединение
 - int accept(int s, struct sockaddr *addr, socklen_t *len);
 - s дескриптор сокета
 - addr адрес буфера для размещения адреса клиента
 - len размер буфера, предназначенного для адреса клиента

Взаимодействие с установлением соединения

- Клиент
 - Создание сокета
 - int socket(int domain, int type, int protocol);
 - Запрос на установление соединения с сервером
 - int connect(int s, struct sockaddr *addr, socklen_t *len);
 - s дескриптор сокета
 - addr адрес буфера, в котором размещен адрес сервера
 - len размер буфера addr


Взаимодействие с установлением соединения

- Передача/прием
 - size_t recv(int s, void *buffer, size_t length, int flags);
 - size_t send(int s, const void *message, size_t length, int flags);
 - □ s дескриптор сокета
 - buffer адрес буфера приема/передачи
 - length размер буфера в байтах
 - □ flags флаги операции

Взаимодействие с установлением соединения

- Клиент и сервер
 - Отключение сокета
 - int shutdown(int socket, int how);
 - s дескриптор сокета
 - how тип отключения (SHUT_RD, SHUT_WR, SHUT_RDWR)
 - □ Закрытие сокета
 - int close(int s);

Заключение

- Протоколы уровня Хост-Хост обеспечивают передачу данных между процессами
 - UDP ненадежную доставку сообщений
 - ТСР надежную доставку потоков данных
- При создании приложений используется программный интерфейс сокетов

Тема следующей лекции

Domain Name System (DNS) –
 система доменных имен

Вопросы для обсуждения

Литература

- Сети TCP/IP. Ресурсы Microsoft Windows 2000 Server. М.: Русская редакция, 2001.
- В.Г. Олифер, Н.А. Олифер.
 Компьютерные сети. Принципы, технологии, протоколы.
 СПб: Питер, 2001.