
Setup for VM launch

Using ‘vmxwrite’ and ‘vmxread’ for
access to state-information in a

Virtual Machine Control Structure

VMXoffVMXon

VM and VMM

• A virtual machine, and its Virtual Machine
Manager, each need a supporting VMCS

VM

VMM

VM entry

VM exit

Guest VMCS
(4K-aligned)

 Host VMCS
(4K-aligned)

Access to VMCS

• Software must initialize the first longword
with the CPU’s VMX revision-identifier in
advance of any use by VMX instructions

• Get ‘revision-identifier’ from MSR (0x480)
• Any further access to the VMCS is indirect

(because layout varies among processors)
• The ‘vmwrite’ and ‘vmread’ instructions are

used to access the VMCS fields indirectly

Over one hundred fields!
• Each field within the VMCS is specified by

its unique 32-bit field-encoding

reserved (=0) 0 AINDEXTW

31 15 14 13 12 11 10 9 1 0

Legend:
 W (width of field): 00=16-bit, 01=64-bit, 10=32-bit, 11=natural-width
 T (Type of field): 00=control, 01=read-only, 10=guest-state, 11=host-state
 A (Access-type): 0= full, 1=high
 (NOTE: Access-type must be ‘full’ for 16-bit, 32-bit, and ‘natural’ widths)

‘vmwrite’

• Source operand is in register or memory
• Destination operand is the ‘field-encoding’

for a VMCS component and is in a register

Example: the CR3 target-count control has field-encoding 0x0000400A
Here we setup that VMCS-component’s value so it will be equal to 2

.code64
mov$0x0000400A, %rax # field-encoding into RAX
mov$2, %rbx # component-value in RBX
vmwrite %rbx, %rax # write value to VMCS field

‘vmread’

• Source operand is the ‘field encoding’ for a
VMCS component and is in a register; the
destination operand is register or memory

Example: the Exit Reason component has field-encoding 0x00004402
Here we read that VMCS-component’s 32-bit value into a memory-variable

.code64
mov$0x00004402, %rax # field-encoding into RAX
lea Exit_Reason, %rbx # memory-address into RBX
vmread %rax, (%rbx) # read value from VMCS field

#--
Exit_Reason:.space 4 # storage for the Exit Reason

Our ‘machine’ array

• In our ‘vmxstep3.s’ source-file we create a
complete set of memory-variables for all
the VMCS components, together with an
array of (field-encoding, variable-address)
pairs; our array is named ‘machine[]’

• This allows us to create a program-loop
which initializes all the VMCS components
in a uniform way, despite varying widths

Categories of variables

• The components of the VMCS fall into six
categories:
– Guest-state components
– Host-state components
– VM-execution Control fieldss
– VM-entry Control fields
– VM-exit Control fields
– VM-exit Information fields

Main Guest-State fields

• Program memory-segment registers
– ES, CS, SS, DS, FS, GS

• System memory-segment registers
– LDTR, TR, GDTR, IDTR

• Processor Control Registers
– CR0, CR3, CR4, DR7

• Processor General Registers
– RSP, RIP, RFLAGS

For a Virtual-8086 guest-task

• All program memory-segment registers
have 64K segment-limits (0xFFFF) with
their ‘access-rights’ equal to 0x00F3 (i.e.,
present, readable, writable, executable,
and requested privilege-level equal to 3)

• Segment base-addresses must be equal
to segment-selectors times sixteen (for
real-mode style memory-addressing)

Guest System Segments

• The base-address and segment-limit for
LDTR, TR, GDTR, and IDTR registers can
be setup using the symbolic addresses
and equates defined in our ‘vmxdemo1.s’

• Likewise for selector-values for LDTR/TR
• The ‘access-rights’ for LDTR must be 0x82

and for TR must be 0x8B (‘busy’ 386TSS)

Guest Control Registers

• Control Register CR0 is required to have
its PG, PE, and NE bits all set to 1 (based
on the VMX Capability Registers MSRs)

• Control Register CR4 is required to have
its VMXE bit set to 1 (for same reason)

• Control Register CR3 must get loaded with
the physical address of the page-directory
that will be in effect in for the guest task

Guest general registers

• Most of the guest’s general registers will
contain values inherited from the VMM at
the time of its launch, but three registers
need to specified for simultaneous loading
– RIP = offset to program’s entry-point
– RSP = offset to the ring3 top-of-stack
– RFLAGS = must have VM-bit set to 1

Miscellaneous

• Most other guest-state fields can be left
with zero-values for our demo’s purposes

• But the guest’s VMCS link-pointer field is
an exception: it needs to be ‘null’ (i.e., -1)
according to Intel VMX documentation (on
‘Checks on Guest Non-Register State’)

Host-State

• Our ‘Host’ will execute in 64-bit mode, so
its control registers CR0 and CR4 must
have certain bits set to 1 (PE, NE, PG in
CR0; and VMXE, PAE in CR4) and CR3
must get loaded with the physical address
of a level4 page-mapping table

• Host register RIP must get loaded with the
address-offset for the VMM entry-point

Controls

• Most of these can be setup with defaults,
derived from the VMX Capability MSRs
plus explicit advice from Intel’s manuals

• Reserved bits must be set properly (but
can be checked by software at runtime
using values from VMX Capability MSRs)

Example
IA32_VMX_PROCBASED_CTLS_MSR (register-index 0x482)

0x67B9FFFE 0401E172

Your proposed value for the corresponding VMCS component
must satisfy this condition on a bitwise-comparison basis:

0x67B9FFFE >= your_value >= 0x0401E172

mov$0x482, %rcx
rdmsr
and your_value, %edx
or your_value, %eax
cmp%eax, %edx
jne invalid_value

‘vmxdemo.s’

• You can download, assemble, link, and
then execute our ‘vmxdemo.s’ example

• There are four source-files altogether:
– vmxstep1.s (our guest component)
– vmxstep2.s (our host component)
– vmxstep3.s (our control component)
– vmxdemo.s (our runtime initializations)

‘mask’ and ‘shadow’

• Some special VMCS control-components
allow your software to manipulate values
read from control registers CR0 and CR4

 actual:

 mask:

 shadow:

 apparent:

1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1

1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

1 1 0 0 0 1 0 1 1 1 0 0 0 1 0 1

 Where a bit is masked,
 the ‘shadow’ bit appears

Where a bit is not masked,
 the ‘actual’ bit appears

In-class exercise

• Try changing the ‘control_CR0_mask’ and
‘control_CR0_shadow’ variables, to see
what effects are produced when the guest
task executes the ‘smsw’ instruction and
outputs its value via the serial-UART

