

СЕРДЕЧНО-ЛЕГОЧНАЯ РЕАНИМАЦИЯ

Костюченко С. С., мр, desa Заведующий отделением анестезиологии и реанимации

Минская Областная Клиническая Больница

2014

АКТУАЛЬНОСТЬ ПРОБЛЕМЫ

- 25% от всех внезапных остановок сердца составляют желудочковые аритмии без пульсовой активности фибрилляция желудочков (ФЖ) или желудочковая тахикардия (ЖТ) без пульсовой активности.
- Пациенты с ФЖ или ЖТ имеют гораздо больший шанс выжить, чем пациенты с асистолией или безпульсовой электрической активностью (электромеханическая диссоциация ЭМД).

ПОЧЕМУ ЛУЧШЕ ЖТ ИЛИ ФЖ

- Желудочковые аритмии эффективно лечатся дефибрилляцией в отличие от асистолии
- Желудочковые аритмии обычно являются признаками болезни сердца (инфаркт миокарда), в то время как остальные связаны с не-кардиогенными причинами и возможно лечатся не столь эффективно

ЭФФЕКТИВНОСТЬ СЛР

Частота результативной СЛР

	% выписанных из больницы	
Тип помощи	Все ритмы	ЖФ
Базовая СЛР	5	12
Базовая СЛР + дефибрилляция	10	16
Профессиональное жизнеобеспечение	10	17
Базовая СЛР + профессиональное жизнеобеспечение	17	26
Базовая СЛР + дефибрилляция + профессиональное жизнеобеспечение	17	29

Adapted from Cummins RO, Ornato JP, Thies WH, et al: Improving survival from sudden cardiac arrest: The "chain of survival" concept. Circulation 1991;83:1832-1847.

5 ПРАВИЛ ДЛЯ ВЫЖИВАНИЯ

- 1. Быстрая диагностика остановки сердца
- 2. Применение эффективной СЛР
- Ранняя дефибрилляция (при показаниях)
- 4. Профессиональное жизнеобеспечение (расширенная реанимация)
- Начало постреанимационной ИТ

ПОКАЗАНИЯ К СЛР

- Отсутствие ответа и признаков жизни (unresponsive)
- Агональное дыхание или отсутствие дыхания

ДВА ГЛАВНЫХ ПРИНЦИПА СЛР

• Раннее начало

Не рекомендовано тратить время на поиск пульса

• Непрерывность

Цель – минимизация перерывов между компрессиями грудной клетки (hands-off)

Перерыв – не более нескольких секунд!!

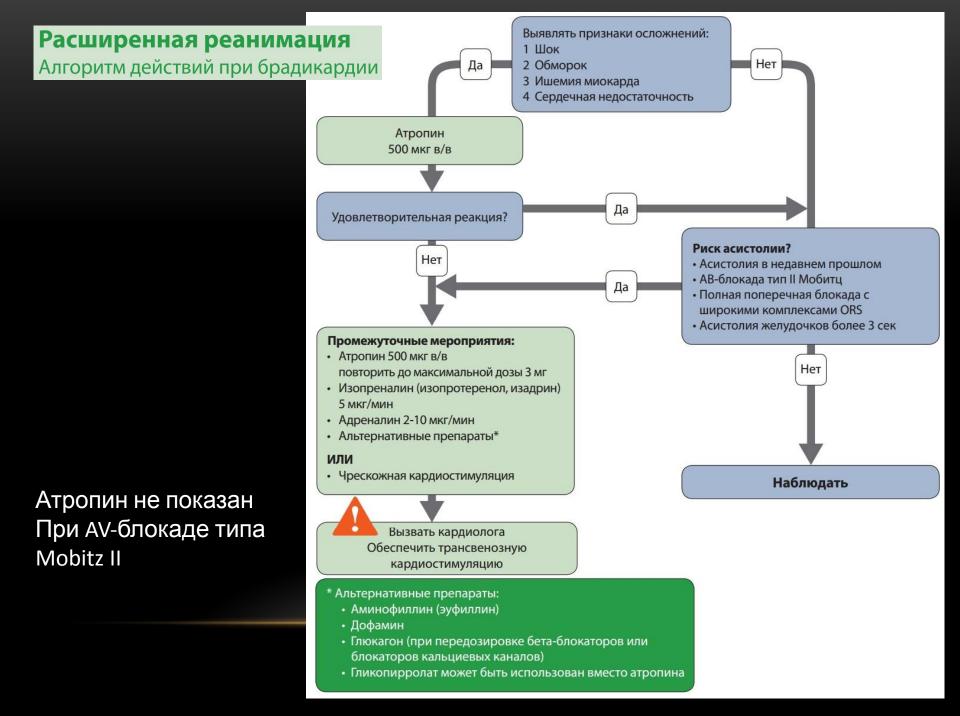
Не рекомендовано проведение рутинного стартового периода СЛР (2 или 3 минуты) перед анализом ритма и дефибрилляцией. Анализ ритма и дефибрилляция должны быть сделаны как можно быстрее!

НАЧАЛО СЛР

Airways – дыхательные пути Breathing – дыхание Circulation - кровообращение

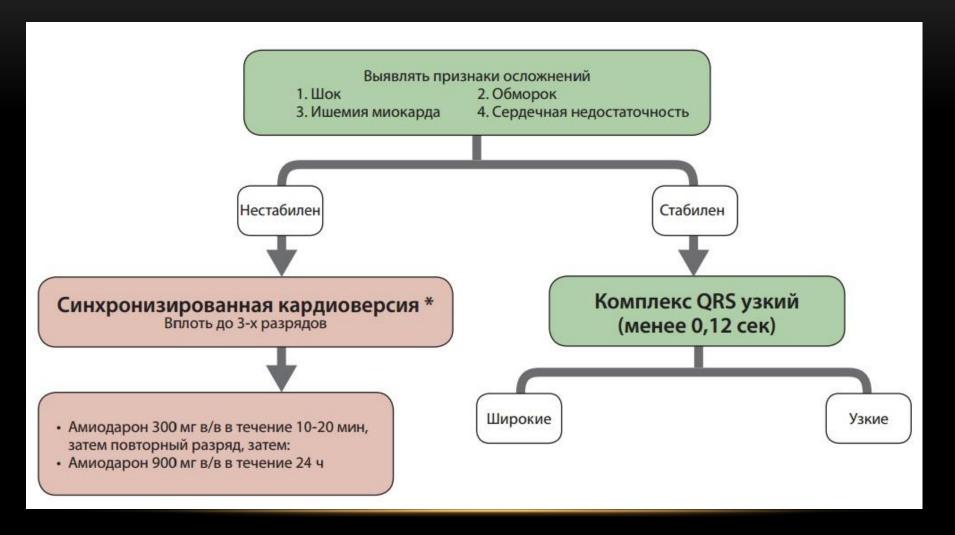
Circulation - кровообращение Airways — дыхательные пути Breathing — дыхание

ПРАВИЛО ДЕСЯТОК:

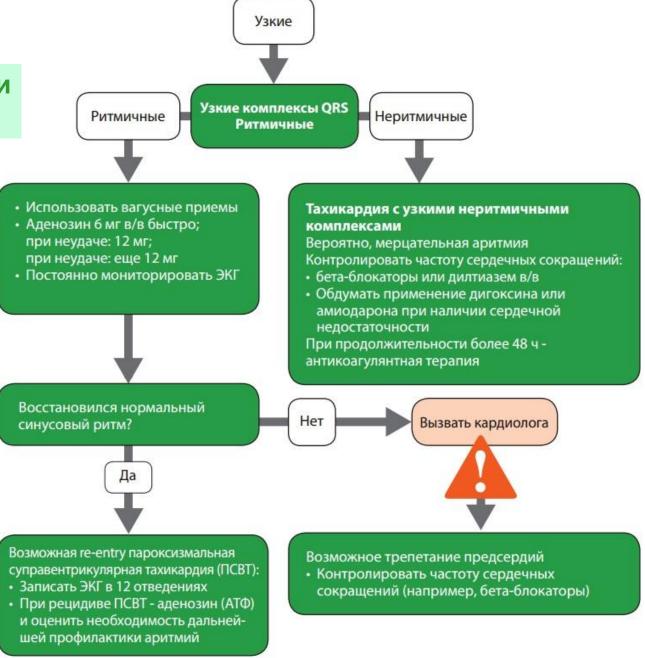

- <10 секунд для поиска пульса
- <10 секунд для обеспечения проходимости дыхательных путей
- >10 mm Hg ETCO₂
- >20 mmHg АД диастолическое
- >30% ScVO₂

НЕМНОГО ЦИФР

- Вероятность восстановления самостоятельного кровообращения быстро снижается если СЛР длится > 10 мин и маловероятно если СЛР превышает 30 минут (у 50% пациентов кровообращение восстанавливается первые 10 минут после начала СЛР, у 25% в течение последующих 10 минут и только у единиц через 30 минут).
- Остановка сердечной деятельности считается рефрактерной, если превышает 15 минут
- Через 15 минут возможность удовлетворительного функционального восстановления у пациентов составляет менее 2%.


ПРИ НАЛИЧИИ РАССТРОЙСТВ РИТМА

- Оценить состояние пациента
- Обеспечить кислородотерапию и внутривенный доступ
- Мониторинг ЭКГ, АД, SpO₂, запись ЭКГ в 12 отведениях
- Выявление и корригирование обратимых причин (напр. электролитных нарушений)



Расширенная реанимация

Алгоритм действий при тахикардии

Тахикардия с узкими комплексами QRS

Тахикардия с широкими комплексами QRS

Возможные варианты:

 Фибрилляция предсердий с блокадой проведения по пучку Гиса

лечить как аритмию с узкими комплексами QRS

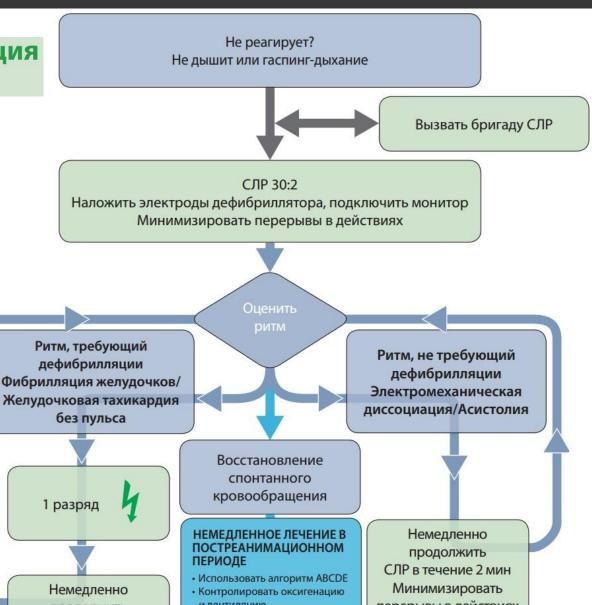
 Фибрилляция предсердий с синдромом предвозбуждения (ФП + WPW)

амиодарон

Полиморфная желудочковая тахикардия
 (например, torsades de pointes - магния сульфат 2 г в течение 10 мин)

Желудочковая тахикардия (или ритм неясного генеза):

 Амиодарон 300 мг в/в в течение 20-60 мин, затем 900 мг в течение 24 ч

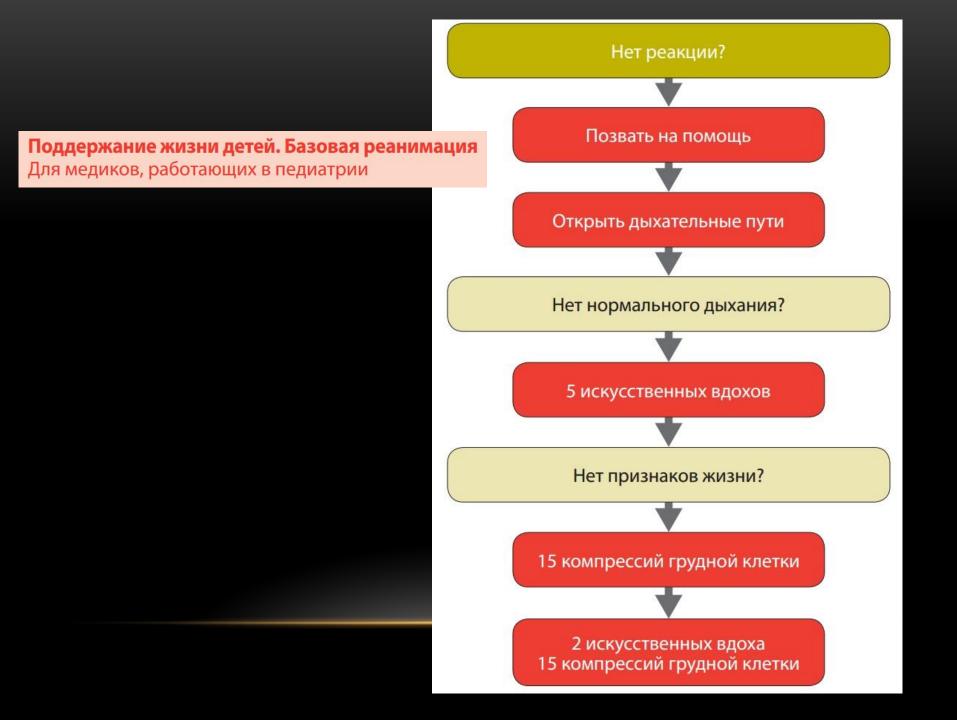

Если ранее регистрировалась

суправентрикулярная тахикардия с блокадой проведения по пучку Гиса

 Аденозин (АТФ) так же, как и при тахикардии с узкими комплексами QRS

Расширенная реанимация

Универсальный алгоритм



продолжить СЛР в течение 2 мин Минимизировать

перерывы в действиях

- и вентиляцию
- ЭКГ в 12 отведениях
- Воздействовать на причинный
- Контролировать температуру/ терапевтическая гипотермия

перерывы в действиях

СЛР У ДЕТЕЙ

- СЛР у детей начинается с 5 вдохов!
- При проведении СЛР одним человеком допускается использование техники 30:2.
- При проведении СЛР двумя людьми необходимо использовать технику 15:2.
- Компрессия грудной клетки должна составлять 1/3 переднезаднего диаметра грудной клетки (т.е. приблизительно 4 см у новорожденных и 5 см у детей).

СЛР У ДЕТЕЙ

- Как для новорожденных, так и для детей, частота компрессий должна составлять не менее 100, но не более 120 в мин.
- При проведении дефибрилляции доза 4 Дж/кг.
- У детей грудного возраста и старше могут быть использованы трубки с манжетой
- Рекомендованная соотношение компрессий и вентиляции при СЛР у новорожденных 3:1

Удовлетворительно Предуктальная SpO₂

2 мин: 60%

3 мин: 70%

4 мин: 80%

5 мин: 85%

10 мин: 90%

Если частота сердечных сокращений не расте Наблюдать за движениями грудной клетки

Поддержание жизни

новорожденных

Если грудная клетка не двигается

Снова проверить положение головы Контролировать проходимость дыхательных путей двумя спасателями

> или использовать другие маневры Повторить искусственные вдохи

Мониторинг SpO_2 Есть реакция?

Если частота сердечных сокращений не растет Наблюдать за движениями грудной клетки

Каждые 30 сек оценивать частоту сердечных сокращений Если частота сердечных сокращений низкая (менее 60) или не выявляется

Обеспечить внутривенный доступ и введение лекарственных препаратов

Когда грудная клетка двигается

Если частота сердечных сокращений низкая (менее 60) или не выявляется Начать компрессии грудной клетки

3 компрессии на каждый искусственный вдох

ЧТО ДЕЛАТЬ ВО ВРЕМЯ СЛР

- Обеспечить высокое качество СЛР: частоту, глубину, расправление грудной клетки
- Планировать свои действия до прерывания СЛР
- Обеспечить кислородотерапию
- Рассмотреть варианты проходимости дыхательных путей и использование капнографии (ВРЕМЯ НА ПОПЫТКУ ИНТУБАЦИИ НЕ БОЛЕЕ 10 СЕКУНД!!!)
- Продолжить непрерывные компрессии после обеспечения проходимости дыхательных путей
- Обеспечить сосудистый доступ (внутривенный, внутрикостный)
- Адреналин каждые 3-5 минут
- Корригировать обратимые причины

ОБРАТИМЫЕ ПРИЧИНЫ

Пять «Г»

- Гиповолемия
- Гипоксия
- Гипер/гипокалиемия
- Гипотермия
- Гидроген (рН)

Пять «Т»

- Торакальные причины (пневмоторакс)
- Тампонада сердца
- Токсины
- Тромбоз легочной
- Тромбоз коронарный

КОМПРЕССИЯ ГРУДНОЙ КЛЕТКИ

- Механизм грудного насоса
- Прямое сдавление сердца
- Глубина 5-6 см
- Частота ≥ 100 в мин, но не более 120 в мин

PUSH HARD, PUSH FAST!

ЖМИ СИЛЬНО И БЫСТРО!

NB!

- Контроль расправления грудной клетки между нажатиями. В 12% случаев медики опираются на грудную клетку пациента
- Качество компрессий грудной клетки снижается со временем!!!
- При проведении компрессий грудной клетки необходимо меняться каждые 2 минуты!!!
- Цель минимизация перерывов между компрессиями грудной клетки (hands-off), не более 5 секунд!
- Процент компрессий (Chest compression fraction) должен быть не менее 80% время компрессий деленное на все время СЛР.

МЕХАНИЧЕСКАЯ КОМПРЕССИЯ ГРУДОЙ КЛЕТКИ

AutoPulse (Zoll, USA) load-distributing band

Lund University Cardiac Arrest System (LUCAS)
 Chest Compression System (Physio-Control)

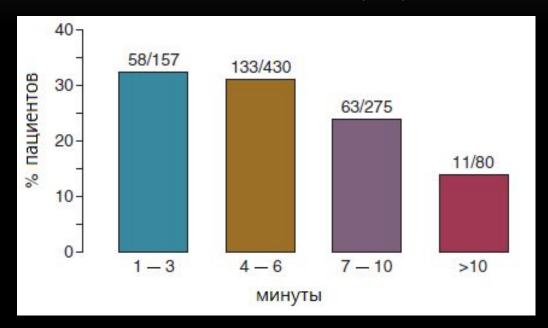
НЕТ РАЗНИЦЫ В ВЫЖИВАЕМОСТИ МЕЖДУ РУЧНОЙ И МЕХАНИЧЕСКОЙ СЛР!

Механическая компрессия может быть рекомендована для транспортировки пациента во время СЛР

ОТКРЫТЫЙ МАССАЖ СЕРДЦА

Открытый массаж сердца обеспечивает лучшее коронарное перфузионное давление по сравнению со стандартной СЛР.

Открытый массаж сердца показан при следующих состояниях:


- травма грудной клетки
- Ранний послеоперационный период в кардиохирургии
- Когда грудная клетка или живот уже открыты во время операции (трансдиафрагмальный подход)

ЭКСТРАКОРПОРАЛЬНАЯ ОКСИГЕНАЦИЯ

- Вено-артериальная экстракорпоральная мембранная оксигенация (ЭКМО)
 может быть дополнением кс СЛР в случаях рефрактерной СЛР
- Более полезна у пациентов с тяжелой гипотермией и с остановкой сердечной деятельности токсического характера
- Вероятность выжить возрастает до 50% если ЭКМО начинается в течение 30 минут от начала остановки сердца, до 30% если начинается между 30 и 60 минутами и до 18% если начинается через час.
- Вероятность выжить без ЭКМО составляет 20%, 9% и 0% соответственно.*

ДЕФИБРИЛЛЯЦИЯ

Задержка дефибрилляции влечет уменьшение выживаемости с каждой минутой!!
 (снижение эффективности на 7-10% с каждой минутой)

Взаимосвязь между интервалом времени до дефибрилляции и процентом пациентов, успешно выписанных из больницы после вне-госпитальной остановки сердца

МЕТОДИКА ПРОВЕДЕНИЯ ДЕФИБРИЛЛЯЦИИ

- Бифазный импульс: начальная доза 120-200 J. Вторая и последующие дозы должны быть одинаковы. Могу потребоваться дозы более 200 J если возможно.
- Монофазный импульс: 360 J
- Не рекомендовано проводить 2-х или 3—х минутный комплекс СЛР перед первым разрядом. СЛР проводится до момента готовности дефибриллятора.
- При катетеризации сердца или в раннем послеоперационном периоде у кардиохирургических пациентов показано использование серии из трех последовательных разрядов.

КАРДИОВЕРСИЯ ПРИ ИНЫХ НАРУШЕНИЯХ РИТМА

- Фибрилляция предсердий 120-200 J Biphasic
- Трепетание предсердий 50-100 J Biphasic

ВЕНТИЛЯЦИЯ

- Рекомендованная частота вентиляции: 2 вдоха после 30 компрессий
- После установки ЭТТ компрессии проводятся непрерывно, частота дыхания – каждые 6-8 секунд (10-12 в минуту без ЭТТ, 8-10 в минуту с ЭТТ).
- Дыхательный объем: 700-1000 мл без кислорода

400-600 мл с кислородом

Во время СЛР рекомендовано давать 100% О₂, поскольку наблюдается линейная увеличение выживаемости в зависимости от увеличения РаО₂.

NB!

- Необходимо избегать гипервентиляции!!!
- Умеренная гиперкапния увеличивает шансы выжить!

Минусы гипервентиляции:

- 1. Увеличение внутригрудного давления, снижение коронарного перфузионного давления, снижение сердечного выброса
- Развитие респираторного алкалоза со снижением ответа к катехоламинам
- 3. Уменьшение выживаемости

КОНТРОЛЬ КАЧЕСТВА СЛР

- ETCO₂ должно быть >10 (20)мм рт ст
- Диастолическое АД должно быть более 20 мм рт ст (артериальное >25 мм рт ст)
- Коронарное перфузионное давление должно быть более 20 мм рт ст
- Пульсоксиметр должен отображать пульсовую волну на периферии
- NIRS (инфракрасная спектроскопия): отсутствует выживаемость со средним значением rSO₂ <30% (нормальное значение 60-80%).

СЛР НЕ ПРОФЕССИОНАЛАМИ

Для не-профессионалов, выполняющим СЛР, проведение вентиляции легких больше не рекомендовано.

ОБОСНОВАНИЕ:

СЛР только с компрессией грудной клетки увеличивает количество эффективных компрессий (без перерыв на дыхание)

Не требуется контакт рот-в-рот (основное «отпугивающее» препятствие для проведения СЛР)

Как оказалось, СЛР при помощи только рук не уступает обычной СЛР с вентиляцией легких при проведении СЛР вне больницы (out-of-hospital cardiac arrest)

ПРОФЕССИОНАЛЬНОЕ ЖИЗНЕОБЕСПЕЧЕНИЕ

Профессиональное жизнеобеспечение – проведение СЛР специально обученными лицами, включает в себя медикаментозную терапию

Рекомендуемые препараты:

- 1. Адреналин 1 мг каждые 3-5 минут внутривенно или внутрикостно. При лечении ФЖ или ЖТ после 3-го разряда вводится 1 мг адреналина, затем каждые 3-5 минут.
- 2. Вазопрессин 40 мг вместо первой или второй дозы адреналина внутривенно или внтурикостно.
- 3. Амиодарон 300 мг в/в первая доза, 150 мг в/в вторая доза внутривенно или внутрикостно. Назначается после 3-го разряда.

АТРОПИН НЕ ВХОДИТ В СПИСОК ПРЕПАРАТОВ ДЛЯ СЛР!!! НЕ ПОКАЗАН ПРИ АСИСТОЛИИ ИЛИ БЕЗПУЛЬСОВОЙ ЭЛЕКТРИЧЕСКОЙ АКТИВНОСТИ!!!

NB!

- Введение препаратов через эндотрахеальную трубку больше не рекомендуется.
- В случае отсутствия внутривенного доступа препараты следует вводить внутрикостно.
- Влияние фармакотерапии на исход СЛР остается предметом дебатов. Нет четких доказательств, подтверждающих эффект любого лекарства при СЛР.
- Есть исследования, указывающие на отсутствие различия между базовой СЛР и СЛР с использованием лекарств!

ОТРИЦАТЕЛЬНЫЕ ЭФФЕКТЫ АДРЕНАЛИНА

- Увеличение потребления кислорода миокардом
- Пост-дефибриляционные желудочковые аритмии
- Увеличение частоты дисфункции миокарда в постреанимационном периоде

ДАННЫЕ ЭФФЕКТЫ ОБУСЛОВЛЕНЫ БЕТА-АДРЕНЕРГИЧЕСКОЙ АКТИВНОСТЬЮ АДРЕНАЛИНА

N.B. Частота восстановления сердечной деятельности выше при использовании адреналина, но не наблюдается значимой разницы в итоговой выживаемости пациентов

Менее частое введение адреналина при СЛР был связано с увеличением выживаемости (Seattle).

NB!

- Каждое введение препарата в периферическую вену должно сопровождаться болюсом физ. раствора в объеме 20 мл.
- Если болюс сделать невозможно, рекомендовано поднять конечность на 10-20 секунд (увеличение венозного притока к сердцу)
- Лучше качественное исполнение СЛР без адреналина, чем некачественное исполнение с адреналином!

ПРОЧИЕ ЛЕКАРСТВА

- Магнезия не увеличивает выживаемость. Показана только при лечении пируэтной желудочковой тахикардии, токсичности дигоксина.
- Лидокаин рекомендован только при отсутствии амиодарона.
- Кальций назначается только при гиперкалиемии, гипокальциемии, передозировке антагонистов кальция.
- Фибринолитики только при остановке сердца вследствие ТЭЛА. Реанимационные мероприятия в таком случае продолжаются по меньшей мере 60-90 минут.
- Гормоны не рекомендованы вследствие отсутствия эффекта
- Инфузионная терапия только при гиповолемии. НЕ использовать растворы глюкозы!
- Нейропротекторы не рекомендованы

БИКАРБОНАТ ПРИ СЛР

Рутинное использование бикарбоната при СЛР НЕ РЕКОМЕНДОВАНО!!!

Негативные эффекты бикарбоната при СЛР:

- усиление внутриклеточного ацидоза
- негативный инотропный эффект на ишемизированный миокард
- гипернатриемия, гиперосмолярное состояние
- смещение КДО влево и ухудшение отдачи кислорода в тканях
- увеличение продукции СО₂

Лучшее лечение ацидоза при остановке сердца – компрессия грудной клетки и вентиляция!

БИКАРБОНАТ ПРИ СЛР

Бикарбонат натрия показан при:

- угрожающей жизни гиперкалиемии
- остановке сердца, связанной с гиперкалиемией
- передозировке трициклических антидепрессантов

Доза: 50 ммоль (50 мл 8,4% раствора или 100 мл 4% раствора)

ПОСТ-РЕАНИМАЦИОННАЯ ТЕРАПИЯ

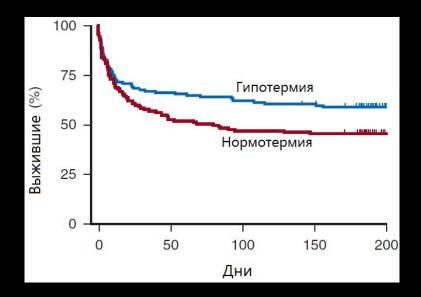
- 50-60% пациентов, успешно реанимированных вне больницы, погибают в больнице.
- Основная причина ишемически-реперфузионные поврежедния ЦНС (постаноксическая кома) и системный воспалительный ответ (подобный сепсису)
- Характерно оглушение миокарда (в т.ч. и вследствие дефибрилляции)
- Умеренная терапевтическая гипотермия улучшает прогноз.

Аноксическое повреждение мозга после СЛР является курабельным!!!

ТЕРАПЕВТИЧЕСКАЯ ГИПОТЕРМИЯ

- Должна быть начата до 15 минут после восстановления сердечной деятельности
- Целевая температура ядра 33-34 °C
- Длительность 12-24 часа
- Температурный датчик должен располагаться в пищеводе или мочевом пузыре

Сравнение терапевтической гипотермии и нормотермии в лечении выживших после СЛР*


	Соотношение пациентов			
Исход	Нормотермия	Гипотермия	Отношение риска (95% ДИ)	Р-величина
Благоприятный неврологический исход	54/137 (39%)	75/136 (55%)	1.40 (1.08-1.81)	0.009
Смерть	76/138 (55%)	56/137 (41%)	0.74 (0.58-0.95)	0.02

^{*}Неврологический исход и летальность оценивались через 6 месяцев

Reprinted with permission from Hypothermia After Cardiac Arrest Study Group: Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med 2002;346(8):549-556.

ПОКАЗАНИЯ К ГИПОТЕРМИИ:

- СЛР после ЖТ или ФЖ
- Отсутствие продуктивного речевого контакта с пациентом после восстановления сердечной деятельности.

Общая выживаемость в группе гипотермии и нормотермии среди коматозных пациентов после СЛР вследствие ФЖ или ЖТ, полученные в результате рандомизированного исследования.

Hypothermia

After Cardiac Arrest Study Group: Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med 2002;346(8):549-556.)

МЕТОДИКИ ПРОВЕДЕНИЯ

• Внешнее охлаждение

Лёд

Термоодеяла

• Внутреннее охлаждение

0.9% NaCl 4° C в/в 30 мл/кг в течение 30 минут (снижает центральную температуру на 1.5 °C)

- Комбинированное охлаждение (наиболее эффективное)
- Использование АИК

СЛЕДУЕТ ИЗБЕГАТЬ ДРОЖИ!!!

При возникновения дрожи добавляется анальгезия (опиоиды) и седация.

При отсутствии эффекта - миорелаксанты (фаза индукции)

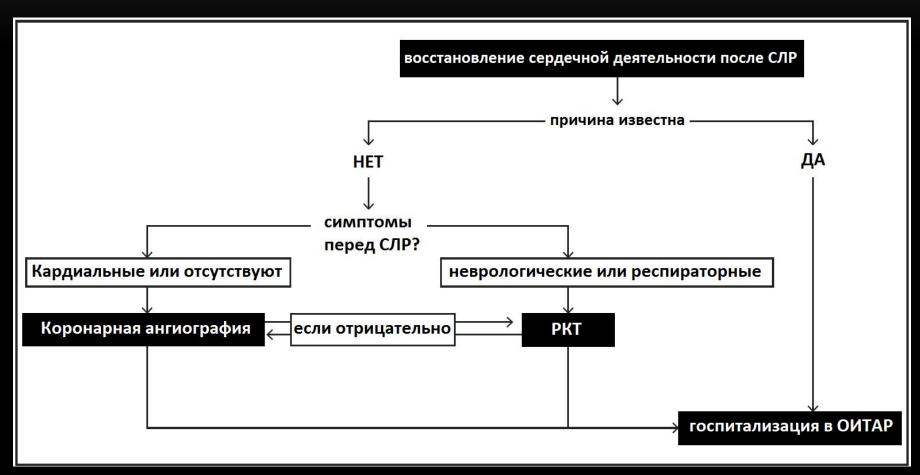
СОГРЕВАНИЕ ПОСЛЕ ГИПОТЕРМИИ

• Скорость согревания должна быть медленной: 0.25-0.5 °С в час.

ЭФФЕКТ ГИПОТЕРМИИ

- Снижение метаболических потребностей мозга
- Уменьшение митохондриальной дисфункции
- Стабилизация гомеостаза кальция
- Уменьшение эксайтотоксичности
- Снижение образование свободных кислородных радикалов
- Ингибирование апоптоза

ОСЛОЖНЕНИЯ ГИПОТЕРМИИ


- Брадикардия
- Холодовой диурез, ведущий к гиповолемии и электролитным расстройствам.
- Гипергликемия
- Коагулопатия
- Увеличение риска инфекций

Польза превышает риск!

КОРОНАРОГРАФИЯ

- Самой частой причиной остановки сердца является острый коронарный синдром.
- У пациентов с заподозренным ОКС после проведения успешной СЛР немедленно должна проводится коронарография, не зависимо от клинических симптомов и/или ЭКГ-критериев!
- При отсутствии иных объяснимых причин остановки сердца также рекомендовано рассмотреть вопрос о проведении коронарографии.
- Коронарные причины обнаруживаются у половины пациентов, реанимированных после внезапной остановки сердечной деятельности без явных внесердечных причин для остановки.

АЛГОРИТМ ПРИНЯТИЯ РЕШЕНИЯ О КОРОНАРОГРАФИИ ПОСЛЕ СЛР

Guillaume Geri et al. Should we perform a coronary angiography in all cardiac arrest survivors? Current opinion in critical care, vol. 20, Number 3, June 2014 pp 273-279

РАННЯЯ ЦЕРЕБРОПРОТЕКЦИЯ

- Кислород + ксенон (Fi 30% и 70% соответственно)
- Кислород + аргон (Fi 30% и 70% соответственно)
- Оксид азота ингибирование ROS-продуцирующих ферментов и связывание ROS
- Эритропоэтин нейропротекция и церебропротекция

ЭФФЕКТ ДОКАЗАН В ЭКСПЕРИМЕНТЕ, НЕТ ЧЕТКИХ ДАННЫХ, ПОДТВЕРЖДАЮЩИХ ЭФФЕКТИВНОСТЬ ДАННЫХ МЕТОДОВ У ЛЮДЕЙ.

ПОСТ-КОНДИЦИОНИРОВАНИЕ

- Прекондиционирование лечение, начатое до начала ишемии
- Пери-кондиционирование лечение, начатое во время ишемии, но до реперфузии
- Пост-кондиционирование лечение, начатое после начала реперфузии

Пост-кондиционирование снижает реперфузионное повреждение, улучшает сердечную функцию, улучшает неврологическую функцию, улучшает выживаемость в опытах на животных. Необходимы клинические исследования, подтверждающие их эффект у людей.

ВИДЫ ПОСТ-КОНДИЦИОНИРОВАНИЯ

- Ишемическое серия коротких эпизодов ишемии во время начальной фазы реперфузии (активация защитных путей RISK и SAFE)
- Фармакологическое пост-кондиционирование:
- Оксид азота (нитропруссид натрия)
- Аденозин эффект наблюдался если назначался в первые 3 часа.
- <mark>Циклоспорин</mark> стабилизация митохондриальных мембран, необходимо введение в первые минуты, уменьшает размер инфаркта у пациентов со STEMI
- Опиоиды активируют RISK и SAFE пути через опиоидные рецепторы
- Ингаляционные анестетики: (севофлюран) уменьшает апоптоз кардиомиоцитов, снижает ROS, улучшает неврологический прогноз, активирует RISK
- **Ксенон**: ингибирует NMDA, что предотвращает гибель нейронов.
- Ингибиторы Na⁺/H⁺антипортера (карипорид, сабипорид) предотвращают накопления натрия в клетке, снижает уровень внутриклеточного кальция

НЕОБХОДИМО ИЗБЕГАТЬ ФАКТОРОВ, УХУДШАЮЩИХ ПРОГНОЗ

- Гипотония
- Гипероксия (целевое SpO2 = >94%)
- Гипергликемия
- Гипертермия
- Гипервентиляция (может потребоваться для выведения накопленного CO₂)

ИЗБЕГАТЬ ГИПЕРОКСИЮ В ПОСТРЕАНИМАЦИОННОМ ПЕРИОДЕ!

- Назначение 100% кислорода после восстановления сердечной деятельности приводит к более худшему неврологическому исходу и большему повреждению мозга, чем назначение 21% О₂, (OR 1.486; 95% CI 1.032-2.136; р = 0.033) а также увеличивает летальность (OR 1.439; CI 95% 1.028-2.015; р = 0.034).
- Причина реперфузионные повреждения

ИЗБЕГАТЬ ГИПЕРВЕНТИЛЯЦИЮ В ПОСТРЕАНИМАЦИОННОМ ПЕРИОДЕ!

- При ИВЛ выживших пациентов рекомендовано поддерживать нормокапнию (PaCO₂ 40-45 мм рт ст)
- У пациентов с гипокапнией (PaCO₂ <35 мм рт ст) и выраженной гиперкапнией (PaCO₂ >50 мм рт ст) выше летальность и хуже неврологический прогноз по сравнению с пациентами, у которых поддерживалась нормокапния.
- При оценке газового состава крови рациональнее использовать alpha-stat значения PaCO₂. Клиническая ценность значений PaCO₂ на основе pH-stat (корригированные на истинную температуру тела пациента) остается неясной

ОПТИМИЗАЦИЯ ГЕМОДИНАМИКИ

- АДсреднее 80-100 мм рт ст
- ЦВД 8-20 мм рт ст
- Центральная венозная сатурация (S_{cv}O₂) > 65%

НЕВРОЛОГИЧЕСКИЙ ПРОГНОЗ

- 25-50% пациентов, находящихся в коме сразу после СЛР, имеют благоприятный исход, особенно при использовании гипотермии.
- 50% выживших пациентов имеют значительные когнитивные расстройства.
- Рекомендовано ждать не менее 72 часов для адекватного неврологического прогноза (время может быть больше при использовании гипотермии).
- Отсутствие признаков неврологического улучшения в течение двух последовательных дней является неблагоприятным прогностическим признаком.

ШКАЛА ИСХОДОВ ГЛАЗГО (ШИГ)

ШИГ	Клинические признаки
5	В сознании, адекватен, способен работать, может иметь легкий неврологический или психологический дефицит
4	Умеренное расстройство функций мозга: в сознании, достаточно компетентен для самообслуживания, может работать в спец. Условиях
3	Тяжелое расстройство функций мозга: в сознании, не способен к самообслуживанию, вплоть до тяжелой деменции или паралича
2	Кома или вегетативное состояние: любой уровень комы без наличия всех признаков смерти мозга.
1	Смерть мозга

НЕВРОЛОГИЧЕСКИЕ КРИТЕРИИ

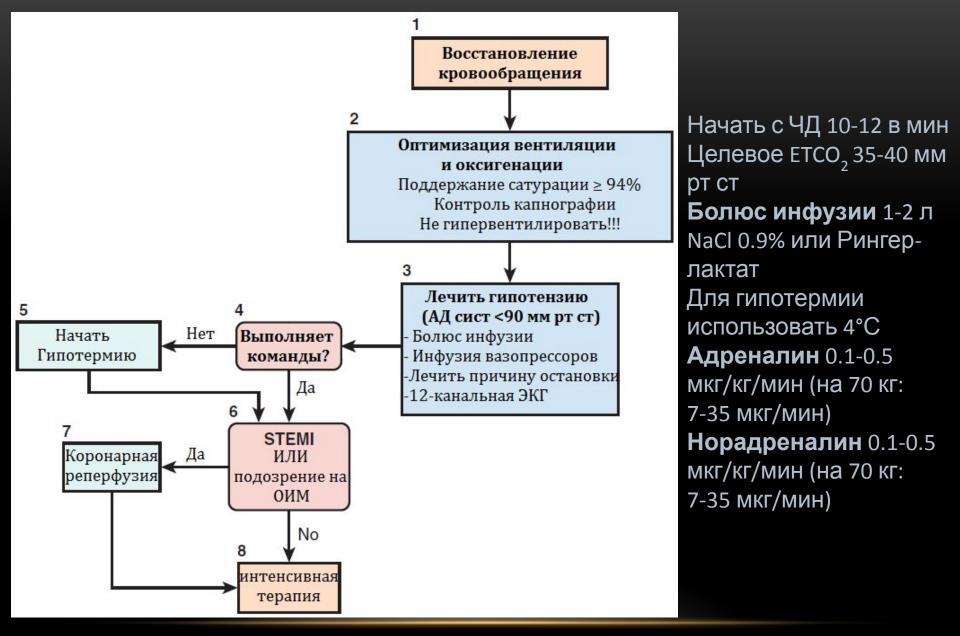
- Через 48-72 часа после последнего введения седативных препаратов наличие координированной моторной реакции на боль (ШКГ-М ≥ 5) является благоприятных прогностическим признаком, не требующим дополнительных диагностических тестов.
- ШКГ-М <2 на третий день после СЛР является неблагоприятным прогностическим фактором у 80% пациентов.

ЭЛЕКТРОЭНЦЕФАЛОГРАФИЯ

- У 10-40% пациентов после СЛР возникает постаноксический эпилептический статус (PSE, post-anoxic status epilepticus). PSE является плохим прогностическим признаком
- Выделяют несколько патологических паттернов ЭЭГ:
- 1. Постаноксический эпилептический статус
- 2. Изоэлектрическое молчание
- 3. Альфа-кома (клинические признаки комы при сохраненной альфа-активности)
- 4. Паттерн вспышек и молчания (suppression-burst pattern)
- 5. Низковольтажная ЭЭГ (flat pattern)

СОМАТОСЕНСОНРНЫЕ ВЫЗВАННЫЕ ПОТЕНЦИАЛЫ,

- Для прогнозирования плохого исхода после СЛР используется только короткие кортикальные латентности (short cortical latencies) – N20, В норме возникающие через 20 мс после стимуляции срединного нерва.
- На N20 не влияет умеренная седация или метаболические расстройства
- Сохранение N20 Не гарантирует благоприятный исход, в то время как их отсутствие через 24-48 часов после прекращения седации свидетельствует о необратимом повреждении мозга
- Для прогнозирования благоприятного исхода рационально использовать когнитивно-вызванные потенциалы: P300 и негативность рассогласования (ssssssssssssssssss).


БИОМАРКЕРЫ ПОВРЕЖДЕНИЯ ЦНС

- Нейрон-специфическая энолаза (NSE) > 33 мкг/л через 72 часа после СЛР является индикатором плохого прогноза
- S-100β >0.2-1.5 мг/л является индикатором плохого прогноза

Уровень NSE может быть увеличен при:

- Гемолизе
- NSE-секретирующих опухолях
- травме мозга при ЧМТ

S-100β может высвобождаться из адипоцитов и хондроцитов и может увеличиваться в результате компрессий грудной клетки

Алгоритм пост-реанимационной интенсивной терапии American Heart Association, 2010

Принципы обучения СЛР

Самый эффективный метод обучения – видеокурсы в сочетании с практическими занятиями.

Навыки СЛР уменьшаются через 3-6 месяцев. Рекомендовано повторять

обучающие курсы не реже 1 раза в 6 месяцев.

СЛР – командная работа

Ключевая роль в СЛР принадлежит лидеру команды: при его наличии увеличивается качество СЛР, укорачиваются паузы перед дефибрилляцией, выше процент компрессий грудной клетки и меньше время до первой дефибрилляции!

TEAMWORK

Спасибо за внимание!