
Object Oriented Programming

Consider the following points

● Wrapper Classes
● Dates and Times
● Inheritance
● Encapsulation
● Polymorphism

Wrapper Classes
Primitive type Wrapper class Example of constructing
boolean Boolean new Boolean(true)

byte Byte new Byte((byte) 1)

short Short new Short((short) 1)

int Integer new Integer(1)

long Long new Long(1)

float Float new Float(1.0)

double Double new Double(1.0)

char Character new Character(‘c’)

Converting from a String
Wrapper class Converting String to Converting String to wrapper class
Boolean Boolean.parseBoolean(“true”) Boolean.valueOf(“true”)

Byte Byte.parseByte(“1”) Byte.valueOf(“2”)

Short Short.parseShort(“1”) Short.valueOf(“2”)

Integer Integer.parseInt(“1”) Integer.valueOf(“2”)

Long Long.parseLong(“1”) Long.valueOf(“2”)

Float Float.parseFloat(“1”) Float.valueOf(“2”)

Double Double.parseDouble(“1”) Double.valueOf(“2”)

Character none none

Dates and Times

Periods

Formatting

Parsing Dates and Times

Inheritance
Inheritance is the process by which the new child subclass automatically includes any

public or protected primitives, objects or methods defined in the parent class.

Encapsulation
Encapsulation in Java is a

mechanism of wrapping the data
(variables) and code acting on the data
(methods) together as a single unit. In
encapsulation, the variables of a class will
be hidden from other classes, and can be
accessed only through the methods of
their current class. Therefore, it is also
known as data hiding.

Access Modifiers

● public – from any class
● protected – from classes in the same package or subclasses
● default (package private) access - from classes in the same

package
● private – from within the same class

Polymorphism
Polymorphism in Java is a concept by which we can perform a single

action in different ways.

There are two types of polymorphism in Java

● compile-time
● runtime

Overloading
Should be different

● types of parameters
● numbers of parameters

Can be different
● access modifiers
● optional specifiers
● return types
● exception lists

Order Java uses to choose the
right overloaded method

1) Exact match by type
2) Larger primitive type
3) Autoboxed type
4) Varargs

Overriding methods
1) The method in the child class must have the same signature as the method

in the parent class
2) The method in the child class must be at least as accessible or more

accessible then the method in the parent class
3) If the method returns a value, it must be the same or a subclass of the

method in the parent class, known as covariant return types
4) The method defined in the child class must be marked as static if it is

marked as static in the parent class and otherwise.

