Решение задач по теме «Нагревание тел. Плавление и кристаллизация».

Осносные срезмулы

1. Рассмотри теоретический материал:

Название величины	Обозначение	Единица измерения	Формула
Macca	m	кг	$m = \frac{Q}{\lambda}$
Температура	t	°C	
Температура плавления	t _{na}	°C	
Удельная теплоемкость	с	Дж/кг °С	
Удельная теплота плавления	λ	Дж/кг	$\lambda = \frac{Q}{m}$
Количество теплоты при нагревании	Q	Дж	$Q=cm\left(t_2-t_1\right)$
Количество теплоты при плавлении	Q Note:>	Дж	$Q = \lambda m$

Houses Ne1

2. Рассмотри образец решения задачи:

Какую энергию нужно затратить, чтобы расплавить кусок льда массой 5 кг, взятый при температуре –10 °C?

Дано:

$$m = 5 \text{ кг}$$

 $t_1 = -10 \text{ °C}$
 $t_{nn} = 0 \text{ °C}$
 $c = 2100 \text{ Дж/кг °C}$
 $\lambda = 3,4 \cdot 10^5 \text{ Дж/кг}$
 $O - ?$

Решение:

1) Нагревание льда от -10 °C до 0 °C.

$$Q_1 = cm(t_{\rm rut} - t_1)$$

$$Q_1 = 2100$$
 Дж/кг °C • 5 кг • (0 °C – (-10 °C) = 105000 Дж

2) Плавление льда.

$$Q_2 = \lambda m = 3,4 \cdot 10^5$$
 Дж/кг • 5 кг = 1700000 Дж

3)
$$Q = Q_1 + Q_2 = 105000 \, \text{Дж} + 1700000 \, \text{Дж}$$

$$Q = 1805000$$
 Дж = 1805 кДж

Ответ: 1805 кДж

Houves M2

Какую энергию нужно затратить, чтобы расплавить кусок меди массой 2 кг, взятый при температуре 25 °C?

Дано:

$$m = 2 \text{ кг}$$

 $t_1 = 25 \text{ °C}$
 $t_{\text{run}} = 1085 \text{ °C}$
 $c = 400 \text{ Дж/кг °C}$
 $\lambda = 2,1 \cdot 10^5 \text{ Дж/кг}$
 $Q - ?$

Решение:

1) Нагревание меди от 25 °C до 1085 °C.

$$Q_1 = cm(t_{nn} - t_1)$$

$$Q_1 = 400$$
 Дж/кг °C • 2 кг • (1085 °C – 85 °C) = 800000 Дж

2) Плавление меди.

$$Q_2 = \lambda m = 2,1 \cdot 10^5$$
 Дж/кг • 2 кг = 420000 Дж

3)
$$Q = Q_1 + Q_2 = 8000000 \, \text{Дж} + 4200000 \, \text{Дж}$$

$$Q = 1220000$$
 Дж = 1,22 МДж

Ответ: 1,22 МДж

Hauwea Ne3

Какую энергию нужно затратить, чтобы расплавить кусок свинца массой 8 кг, взятый при температуре 27 °C?

Дано: m = 8 кг $t_1 = 27 \text{ °C}$ $t_{nn} = 327 \text{ °C}$ c = 140 Дж/кг °C $\lambda = 0.25 \cdot 10^5 \text{ Дж/кг}$ Q - ?

Решение:

1) Нагревание свинца от 27 °C до 327 °C.

$$Q_1 = cm(t_{\rm nut} - t_1)$$

$$Q_1 = 140$$
 Дж/кг • 8 кг(327 °C – 27 °C) = 336000 Дж

2) Плавление меди.

$$Q_2 = \lambda m = 0.25 \cdot 10^5 \,\text{Дж/кг} \cdot 8 \,\text{кг} = 2000000 \,\text{Дж}$$

$$Q = Q_1 + Q_2 = 336000$$
 Дж + 200000 Дж = 536000 Дж =

= 536 кДж

Ответ: 536 кДж

Алгоритм решения:

- 1. Проанализируй, какие процессы (нагрев/охлаждение плавление/кристаллизация) будут прецеходить с веществом при данной температуре. Проверь по таблице температур плавления, какова температура плавления/отвердевания данного вещества.
- 2. Вещеетво не может плавиться/отвердевать, вели сво температура ниже/выше температуры плавления и отвердевания. Значит, для плавления вещеетва тело нужно еначала навреть де температуры плавления (для криеталливации сначала охладить).
- 3. Удельная тепле a midonight stooters 4 CHILOCIVINOCHI A OTTOTION/ OTTOO U OU

Домашнее заданце Реши самостоятсяьно

- <u>1. Какуно энергию надо затратить, чтобы</u> раеплавить болванку из евинца маесой 10-кг, взятую при температуре плавления?
- 2. Для получения воды при температуре 25°С взяли глыбу пьда массой 15-кг при температуре 20°С. Какое количество теплоты надо затратить для этого?
- 3. Какее-количество тенноты выделитея в окружающую среду при охлаждении цинковая детали массей 300-г от температуры 450°С. препедующего отвересвания и охлаждения детемпературы 20°С?