Наномеханика Nanomechanics of materials and systems

Lecture 4 Кривизна и неустойчивость тонких пленок Curvature and surface instability

Деформации и изгиб в пленке и подложке Strain and bending in a film/substrate sandwich

Если деформации зависят только от z: $\varepsilon = \varepsilon(z)$

$$\nabla \times \underline{\varepsilon}^{t} \times \nabla = 0$$
 (Compatibility Relations)
 $\frac{\partial^{2}}{\partial z^{2}} (\varepsilon_{ij} + \varepsilon *_{ij}) = 0; \quad i, j = x, y$
then $\varepsilon_{ij} = -\varepsilon *_{ij} + a_{ij} + zb_{ij}$
Для подложки $\varepsilon *_{ij} = 0$ (eigenstrain in substrate)
Для пленки $\varepsilon *_{ij} = -\varepsilon_{(m)ij} \neq 0$ (eigenstrain in film)
Stoney formula

$$\varepsilon_{xx} = \varepsilon_0 - \kappa z; \quad \varepsilon_0 = -\frac{M_f h_f}{M_s h_s} \varepsilon_{(m)xx}; \quad \kappa = \frac{6M_f h_f}{M_s h_s^2} \varepsilon_{(m)xx}$$
$$\varepsilon_{xx} = 0 \text{ if } z = -\frac{h_s}{6}$$

€m

Упругие деформации в пленке и подложке Strain in film and substrate

The distribution of normalized strain $\varepsilon_{rr} = \varepsilon_m$ versus normalized distance z/h_s across the thickness of a substrate-film system for three values of the ratio h_f/h_s . The neutral plane of the substrate is located by the value of z at which $\varepsilon_{rr}/\varepsilon_m = 0$. The material properties are such that $M_f/M_s = 1$.

Точность формулы Стони Accuracy of Stoney formula

$$\sigma_{rr} = \begin{cases} M_s(\varepsilon_0 - \kappa z) & \text{for } -\frac{1}{2}h_s < z < \frac{1}{2}h_s \\ M_f(\varepsilon_0 - \kappa z + \varepsilon_m) & \text{for } \frac{1}{2}h_s < z < \frac{1}{2}h_s + h_f \end{cases}$$

$$\frac{\kappa}{\kappa_{\rm St}} = \left(1 + \frac{h_{\rm f}}{h_{\rm s}}\right) \left[1 + 4\frac{h_{\rm f}}{h_{\rm s}}\frac{M_{\rm f}}{M_{\rm s}} + 6\frac{h_{\rm f}^2}{h_{\rm s}^2}\frac{M_{\rm f}}{M_{\rm s}} + 4\frac{h_{\rm f}^3}{h_{\rm s}^3}\frac{M_{\rm f}}{M_{\rm s}} + \frac{h_{\rm f}^4}{h_{\rm s}^4}\frac{M_{\rm f}^2}{M_{\rm s}^2}\right]^{-1},$$

$$\kappa \approx \frac{6\epsilon_{\rm m}}{h_{\rm s}} \frac{M_{\rm f}}{M_{\rm s}} \frac{h_{\rm f}}{h_{\rm s}} \left[1 + \left(\frac{M_{\rm s} - 4M_{\rm f}}{M_{\rm s}} \right) \frac{h_{\rm f}}{h_{\rm s}} \right]$$

Экспериментальное определение кривизны структур Experimental study of curvature

- Лазерное сканирование поверхности (Laser scanning)
- Многолучевое оптическое отражение (Multibeam optical reflection)
- Отражение изображения светлой сетки (Grid reflection)
- Изменение картины интерференции (Optical interference fringes)

Scanning laser method

Используется для in-situ мониторинга деформаций при наращивании пленок, например, при MBE и MOCVD.

Многослойные структуры Multilayer structures

$$\kappa = \frac{6}{M_{\rm s}h_{\rm s}^2} \sum_{i=1}^{N_{\rm f}} \Delta f_i = \sum_{i=1}^{N_{\rm f}} \Delta \kappa_{\rm St,i}$$

To 1-rst order in the small parameters h_i/h_s , the total curvature is equal to the simple sum of the curvatures that would be induced if each individual layer would be deposited by itself on the substrate. Each individual curvature $\kappa_{St;i}$ is given by the Stoney formula.

Влияние анизотропии на деформации Anisotropy in curvature

Область геометрически-нелинейных деформаций Geometrically nonlinear deformations

Вращения, вызванные изгибом с вертикальным смещением w(r), могут быть не малы, даже если деформации малы. Stoney formula: $w'(R) = \kappa R$ and $\varepsilon_0 = 1/6 \kappa \cdot h_s$ $\frac{\{w'(R)\}^2}{2\epsilon} = 3\kappa R \frac{R}{h} \sim 1$

В выражение для деформации надо добавить член второго порядка малости, связанный с вращениями. Членами второго порядка малости, связанными с растяжением-сжатием, пренебрегаем. $\epsilon_{rr}(r,z) = u'(r) - zw''(r) + \frac{1}{2} \{w'(r)\}^2$

Изменение кривизны по площади Variation of curvature

Experimentally observed and numerically estimated variation of curvature as a function of radial position, measured from the center of a Si substrate with a W film deposit. After Finot et al. (1997).

Bifurcation in equilibrium shape

Требование минимума упругой энергии приводит к (minimum of the elastic energy requires) $(\kappa_x - \kappa_y) \left[\kappa_x \kappa_y R^4 (1 + \nu) - 16(h_s + h_f)^2 \right] = 0$, *R* is radius of the wafer

Экспериментальное определение упругих деформаций в пленках Experimental determination of strain in films

- Измерения параметра решетки пленок по рентгеновской дифракции
 X-ray diffraction
- Измерения кривизны структур Optical measurements of curvature
- Микро-Рамановская спектроскопия Micro-Raman scattering
- Просвечивающая электронная микроскопия *Transmission electron microscopy*
- Изменение энергий электронных состояний Change in electronic states

Микро-Рамановская спектроскопия Micro-Raman scattering

Просвечивающая электронная микроскопия Transmission electron microscopy

Численный анализ электронномкроскопических изображений позволяет построить поле смещений.

Strain mapping into a uniaxial 45 nm strained channel pinched between Si₈₀Ge₂₀ source and drain. Simulation is on the left and experiment on the right. Courtesy of *CEMES-CNRS*, *Toulouse*, *France*

Изменение энергий электронных состояний Change in energy of electronic states

Should a surface of a stressed solid be flat?

Does a flat surface provide the lowest energy?

Нестабильность механически напряженной пленки Instability of mechanically stressed films

Причина нестабильности – избыточная упругая энергия Origin of instability is elastic energy

$$\Phi = \int_{V} U(\underline{\varepsilon}) dV + \int_{S} \gamma dS$$

Механизм развития нестабильности - поверхностная диффузия Mechanism of instability development is surface diffusion

Малые периодические изменения толщины Small periodic variation of thickness $y \rightarrow film$ $\lambda \rightarrow h$ $h \rightarrow h$ h_{x} h_{x

$$y = h(x,t) = \bar{h}(t) + a(t)\cos\frac{2\pi x}{\lambda} \qquad a/\lambda \ll 1 \qquad \omega = 2\pi/\lambda$$
$$\underline{n} = (n_x, n_y); n_x \approx \frac{\partial h}{\partial x} = -a\omega\sin\omega x + o(\omega^2 a^2), n_y \approx 1 + o(\omega^2 a^2)$$

 $\underline{n} \cdot \underline{\underline{\sigma}} = 0$

Плоская задача. РРешенис помощью функций Айри.

Plane strain. Solving via Airy stress function. $\sigma_{xx} = \frac{\partial^2 A}{\partial y^2}; \sigma_{yy} = \frac{\partial^2 A}{\partial x^2}; \sigma_{xy} = -\frac{\partial^2 A}{\partial x \partial y}$

$$\underline{\underline{\sigma}} = \underline{\underline{\sigma}}^{(1)} + \underline{\underline{\sigma}}^{(2)}; \nabla^4 A = 0; A^{(1)} = \frac{1}{2} \sigma_m y^2 \Longrightarrow \sigma_{xx}^{(1)} = \sigma_m; \sigma_{yy}^{(1)} = \sigma_{xy}^{(1)} = 0$$

Малые периодические изменения толщины
Small periodic variation of thickness

$$\nabla^4 A(x, y) = 0; \sigma^{(2)} \to 0$$
 as $y \to -\infty$
 $A^{(2)} = (c_0 + c_1 y) a \sigma_m \exp(\omega(y - h)) \cos(\omega x)$
 $A^{(2)} = a \sigma_m (y - h) \exp(\omega(y - h)) \cos(\omega x)$
 $\sigma_{xx}^{(2)} = \partial^2 A / \partial y^2 = [2\omega + \omega^2 (y - h)] a \sigma_m \exp(\omega(y - h)) \cos(\omega x)$
 $\sigma_{yy}^{(2)} = \partial^2 A / \partial x^2 = -a \sigma_m (y - h) \omega^2 \exp(\omega(y - h)) \cos(\omega x)$
 $\sigma_{xy}^{(2)} = -\partial^2 A / \partial x \partial y = a \sigma_m [\omega + \omega^2 (y - h)] \exp(\omega(y - h)) \sin(\omega x)$
Граничные ууслови (Boundary conditions) $y = h$:
 $t_x^{(2)} = \sigma_{xx}^{(2)} n_x + \sigma_{xy}^{(2)} n_y = a \sigma_m \omega \sin(\omega x) + o(a^2 \omega^2)$
 $t_y^{(2)} = \sigma_{xy}^{(2)} n_x + \sigma_{yy}^{(2)} n_y = 0 + o(a^2 \omega^2)$
 $t_x^{(1)} = \sigma_{xx}^{(1)} n_x = -a \sigma_m \omega \sin(\omega x) + o(a^2 \omega^2)$

Плотность энергии и химический потенциал Energy and chemical potential

Плоская задача (plane strain)

$$\varepsilon_{zz}^{(2)} = 0; \sigma_{zz}^{(2)} = \nu(\sigma_{xx}^{(2)} + \sigma_{yy}^{(2)}); \varepsilon_{xx}^{(2)} = \frac{1}{E} \left[\sigma_{xx}^{(2)} (1 - \nu^2) - \sigma_{yy}^{(2)} \nu(1 + \nu) \right] \varepsilon_{xy}^{(2)} = \frac{(1 + \nu)}{E} \sigma_{xy}^{(2)}$$

Изменение ээнерги деформации вдоль поверхности (*Deformation energy along x*)

$$U(x) \approx \underline{\underline{\sigma}}^{(1)} \cdot \underline{\underline{\varepsilon}}^{(2)} \approx \frac{\sigma_m^2 (1 - v^2)}{E_f} 2a\omega \cos \omega x = \frac{\sigma_m^2 (1 + v)}{M_f} \frac{4\pi a}{\lambda} \cos \frac{2\pi x}{\lambda}$$

Увеличение площади поверхности квадратично по a / λ (change in surface area)

$$\frac{1}{2} \left[\frac{\partial h(x,t)}{\partial x} \right]^2 = 2\pi^2 \frac{a^2}{\lambda^2} \sin^2 \frac{2\pi x}{\lambda}$$

Кривизна поверхности (curvature of surface)

$$M = E/(1-\nu)$$

$$\kappa = \frac{\partial^2 h(x,t)}{\partial x^2} = -4\pi^2 \frac{a}{\lambda^2} \cos \frac{2\pi x}{\lambda}$$

Химический потенциал (Chemical potential)

$$\chi = U - \kappa \gamma = U_m + 4\pi \frac{a}{\lambda} \left[\frac{\pi}{\lambda} \gamma - (1 + \nu) \frac{\sigma_m^2}{M_f} \right] \cos \frac{2\pi x}{\lambda}$$

Критическая длина стабильности Critical length of stability

Пусть а зависит от времени

$$v_n = \dot{a} \cos \frac{2\pi x}{\lambda}$$

Изменение свободной энергии, усредненное по периоду λ : Free energy over a period

$$\Phi = \int_{0}^{\lambda} \chi v_n dx = 2\pi a \partial \left[\frac{\pi}{\lambda} \gamma - (1+\nu) U_m \right]$$

Критическая длина периода (Critical period)

$$\lambda_c = \frac{\pi \gamma M}{(1+\nu)\sigma_m^2} = \frac{\pi \gamma}{(1+\nu)M\varepsilon_m^2}$$

Нестабильность Азаро-Тиллера—Гринфельда Asaro-Tiller-Grinfeld instability

Нестабильность напряженной пленки Asaro-Tiller--Grinfeld instability

$$v = 0.3$$

 $G = 0.67 \ 10^{11} \ Pa$
 $\gamma = 1 \ J/m^2$
 $\varepsilon = 0.007$
 $\lambda = 200 \ nm$

Нестабильность пленки GeSi на Si Asaro-Tiller--Grinfeld instability of GeSi on Si

Transmission electron microscopy cross-sectional image of a Si_{0:81}Ge_{0:19} alloy film grown epitaxially on a Si substrate (a). The ridges are aligned with a <100> crystallographic direction. While the TEM image appears to represent a fully two-dimensional configuration, the planview images of the film surface (b) shows that the regular ordering has a relatively short range. The normal distance between parallel lines in the lower images is the peak-to-peak distance in the upper image, or about 300nm. Reproduced from Cullis et al. (1992). ε_m =0.66%

Возмущения второго порядка Second order disturbation

$$h(x,t) = a_1(t)\cos\frac{2\pi x}{\lambda} + a_2(t)\cos\frac{4\pi x}{\lambda}$$

Применимость приближения малых флуктуаций Applicability of small perturbation approach

The dependence of change in surface energy and elastic energy of a solid due to sinusoidal perturbation of surface shape versus the amplitude-to-wavelength ratio of that perturbation. The results show that the small slope approximation is reliable for values of a/λ up to 0.1, and is a fair approximation for significantly larger values.

Домашнее задание (Homework) 4

Пленка Ge толщиной 4 нм выращена эпитаксиально на подложке Si с ориентацией (111) и толщиной 400 мкм. 4-nm-thick Ge epitaxial film was grown over 400µm-thick Si substrate with (111) orientation.

Определить (determine)

1. Анизотропию кривизны структуры по Стони Anisotropy of Stoney curvature (if any?) 2. Критическую длину Asaro-Tiller-Grinfeld нестабильности пленки ($\gamma = 1 \text{ J/m}^2$). Asaro-Tiller-Grinfeld critical length ($\gamma = 1 \text{ J/m}^2$).