Republic of Kazakhstan Ministry of Education and Science Kazakh-British Technical University KAZAKH T E C H N I C A L U N I V E R S I T Y

Faculty of Power and Oil and Gas Industry Physical Engineering Department

Physics 1

Voronkov Vladimir Vasilyevich

Physics 1

Mechacnics
Molecular physics and Thermodynamics
Electricity
Magnetism

Lecture 1

SUBJECTS: Mechanics Kinematics Rectilinear motion Projectile motion Uniform circular motion

Mechanics

Mechanics is the science of motion and its cause.

Kinematics is the mathematical description of motion.

• **Main terms of Kinematics** • **Displacement** is the change in the position of an object. one-dimensional: $\Delta x = x_0 - x_1$ many-dimensional: $\Delta x = x_1 - x_2$ • **Average velocity** is the distance traveled per unit of time: $\Delta x = x_1 - x_2$

Instantaneous velocity is the velocity at infinitely small interval: V = difference dx $\Delta t \rightarrow 0 \Delta t$ is the velocity at infinitely Δx V = dx $\nabla = dx$ $\Delta t \rightarrow 0 \Delta t$

Average acceleration is the total change in velocity per unit of time: $a = \Delta v$

 Λt

Gravitational motion is the motion when gravitational acceleration $g=9.8 \text{ m/s}^2$ takes part. For example: rocket motion.

Displacement at constant acceleration in rectilinear motion :

 $r = r_0 + V_0 t + \frac{at^2}{2}$

Where r₀ and V₀ is initial displacement and velocity at t=0, a is constant acceleration.

Rectilinear motion in graphicsA) Object stands still.B) Object moves with constant speed.

Another example of rectilinear motion

The car motion in table

Position of the Car at Various Times

Position	<i>t</i> (s)	x(m)
۲	0	30
B	10	52
C	20	38
Ø	30	0
E	40	-37
Ē	50	-53

60 B 40 Δx^{\bowtie} $\nabla = \lim_{\Delta t \to 0} \frac{\Delta t}{\Delta t}$ Р (b)

Velocity and acceleration

Projectile motion is a gravitational motion but the object has no its own acceleration. So the motion goes with constant gravitational acceleration. For example: cannonball motion. • Usual method for solving projectile motion problems: - Separate the motion into two parts: vertical and horizontal: so we have: two coordinates x and y • two velocities V_x and V_y •one acceleration $a_v = -g$, and $a_v = 0$

- Then one should determine the elevation angle Θ_0 the initial angle to horizon.
- So the trajectory of an object in the gravitational field can be described as following:
- $\begin{array}{l} x = V_0 \text{Cos}\Theta_0 \text{ t,} \\ y = V_0 \text{Sin}\Theta_0 \text{ t} \text{gt}^2/2. \end{array}$
- Let's designate R as the range the object travels from zero height (y=0) till its fall (y=0 again) then we can calculate it as
- $R = V_0^2 Sin(2\Theta_0)/g.$
- Flight time t: it's easy (using the equation dy/dt = 0) to find that the time of ascent is $V_0 Sin\Theta_0/g$, then the full flight time is double:
- $t_{flight} = 2V_0 Sin\Theta_0/g.$
- Using the flight time one can find:
- the maximal height,
- the range of flight (the maximum range of flight from zero height (y=0) till the fall of the object (y=0 again)).

 $R = V_0^2 Sin(2\Theta_0)/g$

....

Circular uniform motion

• Uniform circular motion is performed with constant speed along a circular path. Circular motion is a special case of motion on a plane. Its coordinates is angular coordinate φ and radius *r*. The angular speed ω is defined as:

- The linear speed relates to the angular speed as: $v = \omega r$

 $\omega = \frac{d\varphi}{dt}$

Period T is the time of one full revolution:

 $T=2\pi/\omega.$

Units in SI

Displacementx,y m Velocity V m/s m/s^2 Acceleration a,g Angle φ rad • Angular speed ω rad/s Period Т S

Read before the next Lecture

Fishbane Chapters 4,5 pp.87-150
 Russian equivalents:

 Трофимова Т.И. Курс физики. Глава 2
 Динамика материальной точки.
 Савельев И.В. Курс общей физики. Т.1.
 Глава 2 Динамика материальной точки.