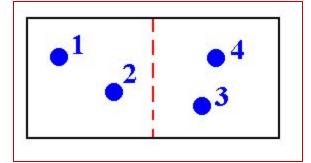
СТАТИСТИЧЕСКИЙ ХАРАКТЕР ВТОРОГО НАЧАЛА ТЕРМОДИНАМИКИ

Сама необратимость тепловых процессов связана с тем, что переход к равновесному состоянию в изолированной системе более вероятен по сравнению со всеми другими переходами. Поэтому наблюдаются только те изменения состояния, при которых изолированная система переходит из менее вероятного в более вероятное состояние. Если одинаковой и наибольшей вероятностью обладает несколько состояний, то изолированная система может переходить из одного состояния в другое.

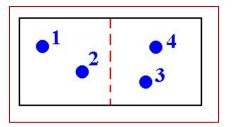
Обращает на себя внимание сходство поведения вероятности и энтропии, возрастающих при переходе к равновесию. Поэтому естественно связать энтропию изолированной системы в том или ином состоянии с вероятностью этого состояния. Больцман показал, что эта связь имеет следующий вид:

$$S = k \cdot lnW$$

k - постоянная Больцмана,


W - термодинамическая вероятность, или статистический вес состояния системы.

Под термодинамической вероятностью понимают число различных микросостояний, которыми может быть осуществлено данное макросостояние.


Рассмотрим следующий пример.

Пусть в сосуде имеется 4 молекулы. Разделим мысленно сосуд на 2 равные части. Рассмотрим состояния, отличающиеся друг от друга числом молекул в левой и правой частях сосуда. Пронумеруем

молекулы и подсчитаем число способов, которыми может быть реализовано каждое состояние.

Число молекул слева	Число молекул справа	Способы реализации состояний		W
		Номера молекул слева	Номера молекул справа	
0	4	0.00	1234	1
1	3	1 2 3 4	2 3 4 1 3 4 1 2 4 1 2 3	4
2	2	1 2 1 3 1 4 2 3 2 4 3 4	3 4 2 4 2 3 1 4 1 3 1 2	6
3	1	234 134 124 123	1 2 3 4	4
4	0	1234	•	1
9	22	В	его способов	16

Всего способов: $2^4 = 16$

Всякий необратимый процесс - это такой процесс, обратный которому маловероятен.

Придадим второму началу термодинамики статистический характер.

Второе начало термодинамики:

Процессы, развивающиеся в замкнутых системах, необратимы не в абсолютном смысле, а в том смысле, что их развитие в прямом направлении происходит с наибольшей вероятностью, а обратном, хотя и возможно, но очень маловероятно.

Наиболее вероятным ходом изменения энтропии замкнутой неравновесной системы является ее возрастание.