Lecture \# 3

Elements of probability

Definition 1

A simple event is an outcome of an experiment that can not be decomposed into a simpler outcome

Example 1. Tossing 1 fair coin

$$
\begin{array}{ll}
\left\{\omega_{1}, \omega_{2}\right\} \quad & \omega_{1} \rightarrow \operatorname{head}(\mathrm{H}) \\
& \omega_{2} \rightarrow \operatorname{tail}(\mathrm{~T})
\end{array}
$$

Example 2. Tossing 3 fair coins at once

$\left\{\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}, \omega_{5}, \omega_{6}, \omega_{7}, \omega_{8}\right\}$
$\omega_{1} \rightarrow$ HHH $\quad \omega_{5} \rightarrow$ TTT
$\omega_{2} \rightarrow$ TTH $\quad \omega_{6} \rightarrow$ HHT
$\omega_{3} \rightarrow$ THT $\quad \omega_{7} \rightarrow$ HTH
$\omega_{4} \rightarrow$ HTT $\quad \omega_{8} \rightarrow$ THH

A random variable $X(\omega)$ is a function of ω, e.g., $X(\omega)$ is the number of heads in one trial, hence,

$$
\begin{aligned}
& \mathbf{X}\left(\omega_{1}\right)=3, \quad X\left(\omega_{6}\right)=\mathbf{X}\left(\omega_{7}\right)=\mathbf{X}\left(\omega_{8}\right)=2 \\
& \mathbf{X}\left(\omega_{2}\right)=\mathbf{X}\left(\omega_{3}\right)=\mathbf{X}\left(\omega_{4}\right)=1, \quad X\left(\omega_{5}\right)=0
\end{aligned}
$$

Definition 2
An event is a collection of one or more simple events

Example 3.

A-2 Heads in one toss
$A=\left\{\omega_{6}, \omega_{7}, \omega_{8}\right\}$
B - More than one H in a trial
$B=\left\{\omega_{1}, \omega_{6}, \omega_{7}, \omega_{8}\right\}$
C- Exactly 2 tails (T)
$C=\left\{\omega_{2}, \omega_{3}, \omega_{4}\right\}$
D- At least one H or one T
$D=\left\{\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}, \omega_{5}, \omega_{6}, \omega_{7}, \omega_{8}\right\}$

Definition 3

The sample space of an experiment is the collection of all possible simple events

Denote it by Ω

For example 1: $\quad \Omega=\left\{\omega_{1}, \omega_{2}\right\}$
For example $2: \Omega=\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{8}\right\}$

Venn diagram

Definition 4.
The probability pof a simple event is a number that measures the likelihood that the event will occur when the experiment is performed.
I. Classical definition of probabilities. If one has n $\begin{array}{lll}\text { equiprobable } & \text { simple } & \text { events } \\ \omega_{1}, \ldots, \omega_{n}, & \text { then the } \\ \text { probability } & p(A) & \text { of }\end{array} \mathbf{A}=\left\{\omega_{i_{1}}, \omega_{i_{2}}, \ldots, \omega_{i_{m}}\right\}$ containing m simple events is

$$
P(A)=\frac{m}{n}
$$

Evidently, that $\mathbf{P}(\boldsymbol{\Omega})=1$.
II. We may take p being equal to the relative frequency f_{i} / n of a simple i th event if n is very large.
III. We may select p based on a priori knowledge of a situation under study.

The case III is more frequently occurred. We guess or formulate a hypothesis H concerning p and, using statistics, test this hypothesis based on realizations $\left(x_{1}, \ldots, x_{n}\right)$ of a sample $X_{n}=\left\{X_{1}, \ldots, X_{n}\right\}$.

Definition 5
The probability $P(A)$ of an event A is calculated by summing the probabilities of the simple events belonging to A .

Steps for calculating probabilities

1. List the simple events
2. Assign probabilities to simple events
3. Determine the number of simple events containing in the event
4. Sum the simple event probabilities to obtain the event probability

For example 2
$p\left(\omega_{\mathbf{i}}\right)=1 / 8, \quad \mathbf{i}=1,8$
$p(A)=p(2 H)=p\left\{\omega_{6}, \omega_{7}, \omega_{8}\right\}=\frac{1}{8}+\frac{1}{8}+\frac{1}{8}=\frac{3}{8}$
$p(B)=P($ more than $1 H)=$
$=p\left\{\omega_{1}, \omega_{6}, \omega_{7}, \omega_{8}\right\}=\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}=\frac{1}{2}$
$p(D)=p(\Omega)=1$ (certain event)

Compound events Definition 6

The union of $A \& B$ is the event that occurs if either A or B or both occur ($A \boxtimes B$)

Definition 7

The intersection of $A \& B$ is the event that occurs if both A and B occur (A B)

ω_{i}, belong to both A and B
A - the complement event to A

Example 3

$A=\left\{\omega_{6}, \omega_{7}, \omega_{8}\right\}, \quad B=\left\{\omega_{1}, \omega_{6}, \omega_{7}, \omega_{8}\right\}$

$A \boxtimes B=\left\{\omega_{6}, \omega_{7}, \omega_{8}\right\}$
$A \boxtimes B=\left\{\omega_{1}, \omega_{6}, \omega_{7}, \omega_{8}\right\}$

Let a set $\Omega=\left\{\omega_{1}, \ldots, \omega_{\mathrm{n}}\right\}$ be given, then all possible events (combinations of ω_{i} th $)+\Omega+\varnothing$ (empty set, corresponding to the improbable event) is algebra S of events

If two events $A \quad \& \quad B$ are mutually exclusive (incompatible), then

$$
\mathbf{P}(\mathbf{A} \boxtimes \mathbf{B})=\mathbf{P}(\mathbf{A})+\mathbf{P}(\mathbf{B}) .
$$

Suppose we have a target. A shooter produced a shot.

$A \Rightarrow$ to hit the target $B \Rightarrow$ fail to hit
A\&B are incompatible $\mathbf{P}(\mathbf{A})+\mathbf{P}(\mathrm{B})=1$
$A \boxtimes B$ is the certain
event

Axioms of probability

For every Ω (a set of all possible simple events) and S (algebra of events) we postulate

1) Axiom 1. For every $A \in S \quad P(A) \geq 0$
2) Axiom 2. $P(\Omega)=1 \quad \Omega$-is certain event
3) Axiom 3. If $A \in S$ and $B \in S$ are incompatible, then

$$
\mathbf{P}(\mathbf{A} \boxtimes \mathbf{B})=\mathbf{P}(\mathbf{A})+\mathbf{P}(\mathbf{B}) .
$$

The following two rules are consequences of axioms:

Additive rule

$$
\mathbf{P}(\mathbf{A} \boxtimes \mathbf{B})=\mathbf{P}(\mathbf{A})+\mathbf{P}(\mathbf{B})-\mathbf{P}(\mathbf{A} \boxtimes \mathbf{B})
$$

Multiplicative rule

$\mathbf{P}(\mathbf{A} \boxtimes \mathbf{B})=\mathbf{P}(\mathbf{A} \mid \mathbf{B}) \mathbf{P}(\mathbf{B})$
$\mathbf{P}(\mathbf{A} \boxtimes \mathbf{B})=\mathbf{P}(\mathbf{B} \mid \mathbf{A}) \mathbf{P}(\mathbf{A})$

The conditional probability

Ω

A contains m elements of Ω
B contains k elements of Ω
$A \boxtimes B$ contains r elements of Ω
$\Omega \in\left\{\omega_{1}, \ldots, \omega_{n}\right\}, \omega_{i}$ th are equiprobable

$$
\mathbf{P}(\mathbf{A} \otimes B)=\frac{\mathbf{r}}{\mathbf{n}} \quad \mathbf{P}(\mathbf{B})=\frac{\mathbf{k}}{\mathbf{n}}
$$

Let the event B occurred. What is the prob. for A to occur?

$$
\begin{aligned}
& \mathbf{P}(\mathbf{A} \mid \mathbf{B})=\frac{\mathbf{r}}{\mathbf{k}}=\frac{\mathbf{r} / \mathbf{n}}{\mathbf{k} / \mathbf{n}}=\frac{\mathbf{P}(\mathbf{A} \otimes \mathbf{B})}{\mathbf{P}(\mathbf{B})} \\
& \mathbf{P}(\mathbf{A} \mid \mathbf{B})=\frac{\mathbf{P}(\mathbf{A} \otimes \mathbf{B})}{\mathbf{P}(\mathbf{B})}
\end{aligned}
$$

Independence

Events A and B are independent if the assumption that B has occurred does not alter the probability that A occurs, or if

$$
\mathbf{P}(\mathbf{A} \mid \mathbf{B})=\mathbf{P}(\mathbf{A})
$$

or
$\mathbf{P}(\mathbf{B} \mid \mathbf{A})=\mathbf{P}(\mathbf{B})$
Otherwise, A\&B are dependent

Example 2

$$
\begin{aligned}
& A=\left\{\omega_{6}, \omega_{7}, \omega_{8}\right\} \Rightarrow \text { two } H \text { in one tossing } \\
& B=\left\{\omega_{1}, \omega_{6}, \omega_{7}, \omega_{8}\right\} \Rightarrow>\text { than } 1 H \text { in one tossing }
\end{aligned}
$$

$$
P(A)=\frac{3}{8} \quad P(B)=\frac{4}{8} \quad P(\Omega)=\frac{8}{8}=1
$$

$$
A \boxtimes B=\left\{\omega_{6}, \omega_{7}, \omega_{8}\right\}=A
$$

$$
\mathbf{P}(\mathbf{A} \boxtimes \mathbf{B})=\mathbf{P}(\mathbf{A})=\frac{\mathbf{3}}{\mathbf{8}}
$$

$$
P(A \boxtimes B)=P(A \mid B) P(B)=\frac{3}{4} \cdot \frac{4}{8}=\frac{3}{8}
$$

$$
P(A) \cdot P(B)=\frac{3}{8} \cdot \frac{1}{2}=\frac{3}{16} \neq P(A \boxtimes B)=\frac{3}{8}
$$

Hence, A and B are dependent

$$
P(A \mid B)=\frac{P(A \boxtimes B)}{P(B)}=\frac{3 / 8}{1 / 2}=\frac{3}{4} \neq P(A)=\frac{3}{8}!!
$$

For independent events

$$
\mathbf{P}(\mathbf{A} \boxtimes \mathbf{B})=\mathbf{P}(\mathbf{A}) \bullet \mathbf{P}(\mathbf{B})
$$

Random variable $\mathbf{X (\omega)}$ (discrete)

$X(\omega)$ is the number of H for example 2. From the symmetry of a coin we may suppose that the probability p to obtain a head in one trial is $p=1 / 2 .(q=1 / 2=1-p)$. Then
$\mathbf{P}(\mathbf{X}=k)=\binom{3}{k} \mathbf{p}^{k} q^{3-k}, \quad k=0,1,2,3$.
$P(A)=P(X=2)=\binom{3}{2}\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)^{3-2}=3 \cdot \frac{1}{4} \cdot \frac{1}{2}=\frac{3}{8}$
$P(B)=P(X>1)=P(X=2)+P(X=3)=$
$=\frac{3}{8}+\binom{3}{3}\left(\frac{1}{2}\right)^{3}\left(\frac{1}{2}\right)^{0}=\frac{3}{8}+\frac{1}{8}=\frac{1}{2}$

Events $(X=2) \boldsymbol{\&}(X=3)$ are mutually exclusive, hence

$$
P((X=2) \boxtimes(X=3))=P(X=2)+P(X=3) .
$$

We may consider $P(X=k)$ as both known and known within the unknown parameter p.

Population moments (discrete case)

Let $P(X=k)$ be the p. d. of $X, k \in\{$ set of discrete numbers $\}=$ K.

$$
\sum_{k \in K} P(X=k)=1
$$

Definition 9
The initial population moment of $P(X=k)$ of order m is

$$
\begin{aligned}
\alpha_{m}= & \sum_{k \in K} k^{m} P(X=k)=E\left(X^{m}\right) \\
E X^{m} & - \text { expectation of } X^{m} \text { or } \\
& \text { expected value of } X^{m}
\end{aligned}
$$

Definition 10

The central population moment of $P(X=k)$ of order m is

$$
\beta_{\mathbf{m}}=\sum_{\mathbf{k} \in \mathbf{K}}(\mathbf{k}-\mathbf{E X})^{\mathbf{m}} \mathbf{P}(\mathbf{X}=\mathbf{k})=\mathbf{E}(\mathbf{X}-\mathbf{E X})^{\mathbf{m}}
$$

Definition 11 (p.210)
The mean or expected value of a discrete r. $v . X$ is

$$
\boldsymbol{\mu}=\mathbf{E X}=\sum_{\mathbf{k} \in \mathbf{K}} \mathbf{k} \mathbf{P}(\mathbf{X}=\mathbf{k})
$$

Definition 12

The variance of a discrete random variable X is

$$
\sigma^{2}=E(X-\mu)^{2}=\sum_{k \in K}(k-\mu)^{2} P(X=k)
$$

Example Binomial distribution

$$
\begin{aligned}
& \mathbf{P}=(X=k)=\binom{\mathbf{n}}{k} \mathbf{p}^{k}(\mathbf{1}-\mathbf{p})^{\mathbf{n}-\mathbf{k}}, \quad \mathbf{k}=\overline{\mathbf{0}, \mathbf{n}} \Rightarrow \\
& \Rightarrow \mathbf{K}=\{\mathbf{0}, \mathbf{1}, \ldots, \mathbf{n}\}
\end{aligned}
$$

$$
\mu=\mathbf{E X}=\sum_{k=0}^{n} k\binom{n}{k} \mathbf{p}^{k}(1-p)^{n-k}=
$$

$$
=\sum_{k=1}^{n} \frac{k n!}{k!(n-k)!} p^{k}(1-p)^{n-k}=
$$

$$
=\sum_{k=1}^{n} \frac{n(n-1)!}{(k-1)!(n-k)!} p \bullet p^{k-1} q^{n-k}=
$$

$$
=\operatorname{np} \sum_{k=1}^{n}\binom{n-1}{k-1} p^{k-1} q^{n-k}=
$$

$$
\mathbf{k}-1 \rightarrow \mathbf{r} \Rightarrow \mathbf{k}=\mathbf{r}+1
$$

$=n p \sum_{r=0}^{n-1}\binom{n-1}{r} p^{r} q^{(n-1)-r}=n p$,

$$
\sum_{r=0}^{n-1}\binom{n-1}{r} p^{r} q^{(n-1)-r}=(p+q)^{n-1}=1
$$

Thus,

$\boldsymbol{\mu}=\mathbf{E X}=\mathbf{n p}$
By the same lines
$\sigma^{2}=E(X-\mu)^{2}=n p q$
S tandard deviation
$\sigma=\sqrt{n p q}$ (ia)

