ОСОБЕННОСТИ СТРОЕНИЯ, РЕАКЦИОННОЙ СПОСОБНОСТИ И МЕТОДЫ СИНТЕЗА ГАЛОГЕНПРОИЗВОДНЫХ УГЛЕВОДОРОДОВ

Галогенпроизводные углеводородов можно рассматривать как результат замещения одного или нескольких водородных атомов на одинаковые или разные атомы **галогенов**

Галогеналканы

Изомерия

Изомерия галогеналканов связана CO углеродного скелета строением положением атома галогена цепи. Галогеналканы называют по радикалам; систематической названия ПО строятся исходя номенклатуре названия соответствующего алкана указанием галогена и его положения в цепи.

Галоидные алкилы

Галогеналканы

Простейшие представители

CH₃Cl

CH₃CH₂Cl

CH₃CH₂CH₂Cl

CH₃CHCICH₃

őeî ðeñòû é ì åòèë, őëî ðì åòàí

őeî ðeñòû é ýòèë, őeî ðýòàí

őeî ðeñoû é i ðî i èë, 1- őeî ði ðî i àí

őeî ðeñoû é eqî i ðî i eë, 2- őeî ði ðî i aí

CH₃CH₂CH₂CH₂Cl őëî ðèñòû é áóòèë, 1-őëî ðáóòàí

CH₃CHCH₃ xëî ðèñòû é òðåò.áóòèë, 2-õëî ð-2-ì åòèëï ðî ï àí

Галогеналканы

Способы получения

Галогенирование алканов

$$CH_4 + Cl_2 \longrightarrow CH_3CI + HCI$$

Гидрогалогенирование алкенов

$$CH_3$$
— CH — CH_3 + $HC1$ —— CH_3 — CH — CH — CH_3
 $C1$ H

бутен-2 2-хлорбутан

Галогеналканы

Способы получения

Замещение гидроксила в спиртах на галоген

$$ROH + HCI \longrightarrow RCI + H_2O$$

$$ROH + KBr + H_2SO_4 \longrightarrow RBr + KHSO_4 + H_2O$$

ROH +
$$PCl_5$$
 \longrightarrow RCl + HCl + $POCl_3$
3ROH + PCl_3 \longrightarrow 3RCl + $P(OH)_3$
ROH + SO_2Cl_2 \longrightarrow RCl + HCl + SO_2

Галогеналканы

Способы получения

Синтез фторпроизводных алканов

$$CH_2=CH_2 + HF = CH_3-CH_2F$$

$$2C_2H_5Br + HgF_2 \longrightarrow 2C_2H_5F + HgBr_2$$

Галогеналканы

Химические свойства

Важнейшие реакции галогеналканов

RCI + CH₃ONa → ROCH₃ + NaCl Ï ðî ñòî é ýô èð (ñèí òåç Âèëüÿì ñî í à

Галогеналканы

Химические свойства

Нуклеофильное замещение

Галогеналканы

Химические свойства

Дегидрогалогенирование (по правилу Зайцева)

Ди- и полигалогеналканы

Изомерия и номенклатура

Представители:

CH₂Cl₂ őëî ðèñòû é ì åòèëåí , äèőëî ðì åòàí

CHCl₃ őëî ðî ô î ðì , òðè őëî ðì åòàí

CCl₄ ÷ åòû ðåõõëî ðèñòû é óãë åðî ä, òåòðàõëî ðì åòàí

CH₂ClCH₂Cl őëî ðèñòû é ýòèëåí, 1,2- äèőëî ðýòàí

CCl₂F₂ äèõëî ðäèô òî ðì åòàí

CCl₃-CCl₃ ãåêñàõëî ðýòàí

Ди- и полигалогеналканы

Способы получения:

$$HOCH_2CH_2CH_2CH_2OH + 2PBr_3 \rightarrow BrCH_2CH_2CH_2CH_2Br + 2P(OH)_3$$

Ди- и полигалогеналканы

Химические свойства:

$$\begin{array}{c}
CH_3CCl_2CH_3 + 2H_2O \xrightarrow{-2HCl} & CH_3CCH_3 \\
OH
\end{array}
\right] \longrightarrow CH_3CCH_3 + H_2O$$

$$CH_3CCl_3 + 3H_2O \xrightarrow{-3HCl} CH_3C-OH \longrightarrow CH_3COOH + H_2O$$

Ди- и полигалогеналканы

Получение хлороформа галоформной реакцией:

Галогенпроизводные непредельных углеводородов

Номенклатура и изомерия:

Представители:

$$CH_2 = CCl_2$$

$$CH_2 = CH - CH_2CI$$

$$CF_2 = CF_2$$

őëî ðèñòû é âèí èë, őëî ðýòåí

őeî ðeñoû é âeí èeèäåí, 1,1-aeőeî ðýoåí

őeî ðèñòû é àëëèë, 3-őeî ð-1-ï ðî ï åí

1-õëî ð-1-ï ðî ï åí

òảò đàô òî đý òè ë aí

òðèõëî ðýòèëåí

Галогенпроизводные непредельных углеводородов

Получение тетрафторэтена:

$$2CHClF_2 \xrightarrow{700^{\circ}C} CF_2 = CF_2 + 2HCl$$

Получение тефлона:

$$nCF_2 = CF_2 \longrightarrow \begin{bmatrix} F & F \\ -\frac{1}{C} & -\frac{1}{C} \\ F & F \end{bmatrix}$$

Галогенпроизводные непредельных углеводородов

Получение трихлорэтилена:

$$CHCl = CCl_2 + HCl$$