Моделирование систем и процессов

Лекция 7.

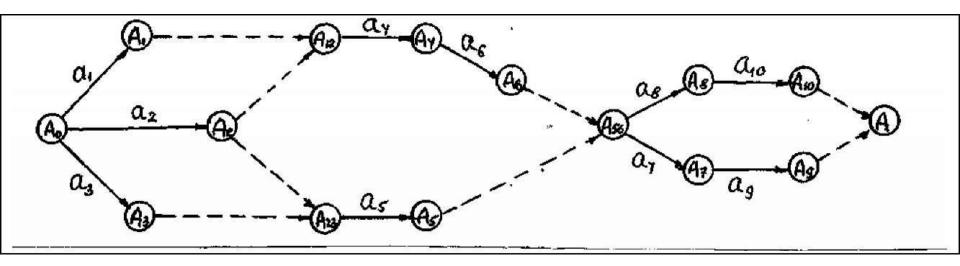
Метод сетевого планирования

Метод сетевого планирования или сетевое планирование управления используется для решения задач планирования работ в системах, в которых существенную роль играют последовательность отдельных этапов работ и их взаимосвязей.

Основным исходным материалом для сетевого планирования является список (таблица, перечень) работ, в котором указана их взаимная обусловленность.

Работа	Опирается на работы	t _{ai}
a_1		10
a_2	_	5
a_3	_	15
a_4	a ₁ , a ₂	18
a_5	a ₂ ,a ₆	19
a_6	a ₄	18
a_7	a ₅ , a ₆	8
a ₈	a ₃ a ₅ , a ₆	25
a_9	a ₇	30
a ₁₀	a ₅ , a ₈	10

Работы подразделяются на ранги.


Работы первого ранга - это такие работы, для выполнения которых не требуется выполнение никаких работ.

Работы второго ранга - это такие работы, которые обусловлены (опираются) одной или несколькими работами первого ранга, и т.д.

Работа **а**- это процесс, приводящий к определённому результату.

Событие **A**- означает факт завершения предшествующего комплекса работ

Сетевой график, отображающий взаимосвязь работ, перечисленных в таблице

А0- исходное событие;

а1, а2, а3 - работы первого ранга;

А1, А2, А3, - события, означающие завершение работ а1, а2, а3;

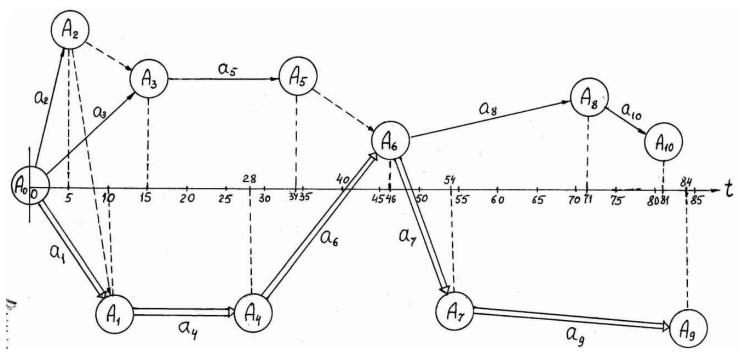
А12 - событие, означающее завершение работ и А1 и А2 (а4 опирается на работы а1 и а2);

А23 - событие, означающее завершение работ и А2 и А3 (а5 опирается на работы а2 и а3);

А56 - событие, означающее завершение работ и А5 и А6 (а5 опирается на работы а2 и а3);

А - событие, означающее завершение всех работ.

Различают следующие виды работ:

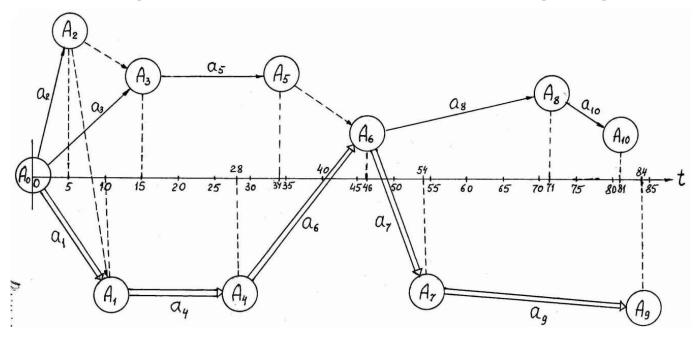

- <u>действительные работы,</u> которые сопровождаются затратами времени и ресурсов (изображены сплошными линиями);
- фиктивные работы, которые не требуют затрат ресурсов, но показывают взаимосвязь начала какойлибо работы от окончания другой (изображены пунктирными линиями).

Основными характеристиками каждой работы являются ресурсы, необходимые для её выполнения: время, количество специалистов, материальные ресурсы (оборудование, запчасти, сырьё и т.п.).

Разновидностью действительной работы является <u>ожидание</u> - процесс, требующий только затрат времени (например, простой специалистов в ожидании освобождения салона самолёта).

Основные правила составления сетевого графика

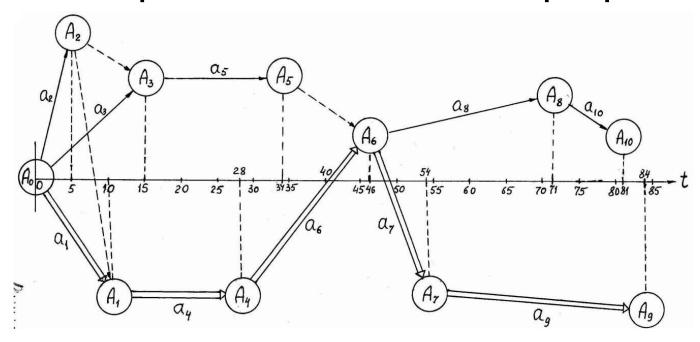
- на графике не должно быть событий, кроме завершающего, с которых не начинается ни одной работы;
- не должно быть событий, кроме исходного, в которое не входит ни одной работы;
- не должно быть замкнутых контуров работы;
- при наличии между двумя событиями нескольких работ, выполняемых параллельно, для определённости вводят дополнительные события и фиктивные работы (фиктивные работы вводят также для обозначения зависимости отдельных работ в сети).



Если соединить сетевой график с осью времени, то мы получим временной сетевой график.

На этом графике проекция длины каждой стрелки будет соответствовать времени выполнения этой работы, t_{ai} взяты из таблицы

Общее время выполнения работ:


$$T = ta1 + ta4 + ta6 + ta7 + ta9 = 10 + 18 + 18 + 8 + 30 = 84$$

Работы a1, a4, a6, a7 и a9 называются <u>критическими</u> <u>работами</u>, а цепочка, обозначенная двойными стрелками, является <u>критическим путём</u>.

По временному сетевому графику могут быть определены резервы, соответствующие некритическим работам (a_2 , a_3 , a_5 , a_8 и a_{10})

<u>Некритические дуги</u> - совокупность некритических работ, начинающихся и кончающихся на критическом пути

"некритические дуги":

 A_0 - a_2 - A_2 - A_1 (одна некритическая работа a2); A_0 - a_3 - A_3 - a_5 - A_6 (две некритические работы a3 и a5); A_0 - a_2 - A_2 - A_3 - a_5 - A_5 - A_6 (две некритические работы a_2 и a_5); A_6 - a_8 - A_8 - a_{10} - A_{10} (две некритические работы a_8 и a_{10}).

Резерв времени, приходящийся на работу a2, равен R2 =t1- t2=10-5=5

Резерв времени на работы а3 и а5

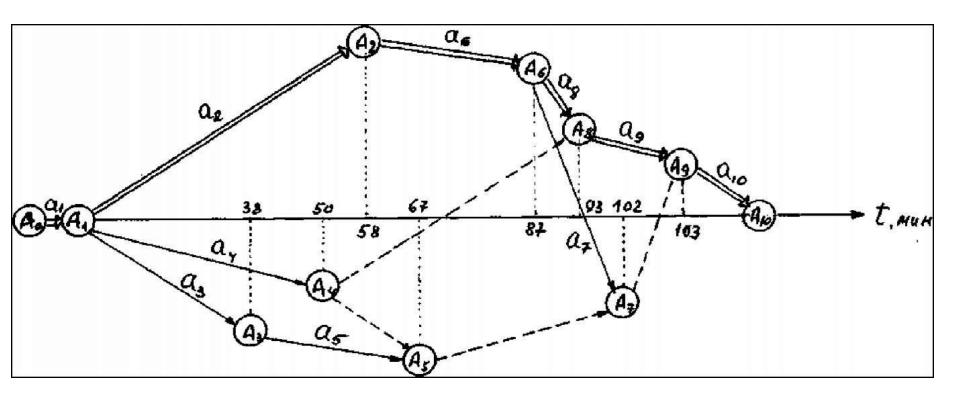
$$R3.5 = t1 + t4 + t6 - (t3 + t5) = 10 + 18 + 18 - (5 + 19) = 22$$

Резерв времени на работы а8 и а10

$$R8,10 = t7 + t9 - (t8 + t10) = 8+30-(25+8) = 5.$$

<u>Вывод</u>

Знание критического пути


Во-первых, позволяет выявить совокупность наиболее "угрожаемых" работ, в случае необходимости их форсировать.

Во-вторых, даёт возможность ускорить выполнение всего комплекса работ за счёт привлечения ресурсов, скрытых в некритических работах (за счёт их замедления перебросить часть сил и средств на более важные критические работы).

Пример составления сетевого графика

Условное Обозначение работы	Содержание работы	Опирается на работы	t _{ai}
a_1	Руление самолёта к аэровокзалу после приземления	-	8
a_2	Разгрузка самолёта	a_1	50
a_3	Выход пассажиров из самолёта	a_1	3
a_4	Техническое обслуживание самолёта	a_1	42
a_5	Заправка самолёта топливом	a_3	29
a_6	Загрузка самолёта	a_2	29
a_7	Посадка пассажиров в самолёт	a ₅ , a ₆	15
a_8	Подсоединение к самолёту тягача	a ₅ , a ₆	6
a_9	Выруливание самолёта на предварительный старт	a ₄ , a ₇	10
a ₁₀	Взлёт самолёта	a_9	10

Временной сетевой график рассматриваемых работ

Критический путь:

A0- a1- A1- a2- A2– a6–A6- a8- A8- a9 - A9 - a10- A10 Общая продолжительность работ равна сумме критических работ.

T= ta1+ta2+ta6 + ta6 + ta9 + ta10 = 80 + 50 + 29 + 60 + 10 + 10 = 113 мин.

Некритические дуги:

1.
$$A1 - a3 - A3 - a5 - A5 - A6$$
;

Некритические работы а3 и а5.

Резерв времени (a2 + aб) - (a3 + a5) = (50 + 29) - (30 + 20) = 20 мин. Этот резерв может быть использован между выходом пассажиров из самолёта (работа a3) и заправкой самолёта (работа a5).

2. A1 - a4 - A4 - A6;

Некритическая работа а4.

Резерв времени (a2 + aб+ a8) - a4 = (50 + 29 + 6) -42 = 43 мин. Это время может быть использовано для технического обслуживания самолёта (работа a4).

3. A6-a7-A78 -a9;

Некритическая работа а7.

Резерв времени (a8+ a9) - a9 = (б + 10) - 15 = 1 мин. Этот резерв может быть использован для посадки пассажиров в самолёт (работа a7).