

BBA182 Applied Statistics Week 2 (2) Types of Data – (continued)

DR SUSANNE HANSEN SARAL

EMAIL: SUSANNE.SARAL@OKAN.EDU.TR

HTTPS://PIAZZA.COM/CLASS/IXRJ5MMOX1U2T8?CID=4#

WWW.KHANACADEMY.ORG

NEW IN CLASS?

Send me an email to the following address:

susanne.saral@okan.edu.tr

Activation of piazza.com account

Enter your first and last name

Select: Undergraduate

Select : Economy

Select: Class 1 and add BBA 182 and click "join the class"

Organizing categorical data

Categorical data produce **values** that are names, words or codes, but **not** real numbers.

Only calculations based on the **frequency of occurrence** of these names, words or codes are valid.

We count the number of times a certain value occurs and add the frequency in the table.

The Frequency and relative frequency - istribution Table

Summarizing categorical data

A frequency table organizes data by recording totals and category names.

The variable we measure here is the number of times a country became world champion in

<i>c</i> . 1 1	
footbal	
$\mathbf{I}(\mathbf{I}(\mathbf{I}))$	
10000	

Year C	Champions	Year	Champions
1930	Uruguay	1974	W. Germany
1934	Italy	1978	Argentina
1938	Italy	1982	Italy
1950	Uruguay	1986	Argentina
1954	W. Germany	1990	W. Germany
1958	Brazil	1994	Brazil
1962	Brazil	1998	France
1966	England	2002	Brazil
1970	Brazil	2006	Italy
		2010 2014	Spain Germany

World champion in Football	Number of times
Italy	4
Argentina	2
France	1
Uruguay	2
Brazil	5
Germany	4
England	1
Spain	1
Total	20

Contingency table another type of frequency table

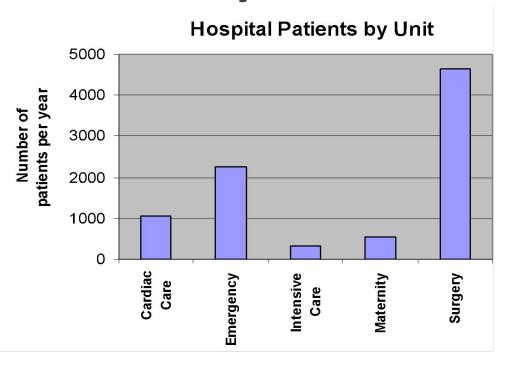
Contingency tables list the number of observations for every combination of values for **two** categorical variables

Contingency table

A larger retailer of electronics conducted a survey to determine consumer preferences for various brands of digital cameras. The table summarizes responses by brand and gender:

Electronics brand	Female	Male	Total
Cannon Power Shot	73	59	132
Nikon CoolPix	49	47	96
other brands	86	67	153
Total	208	173	381

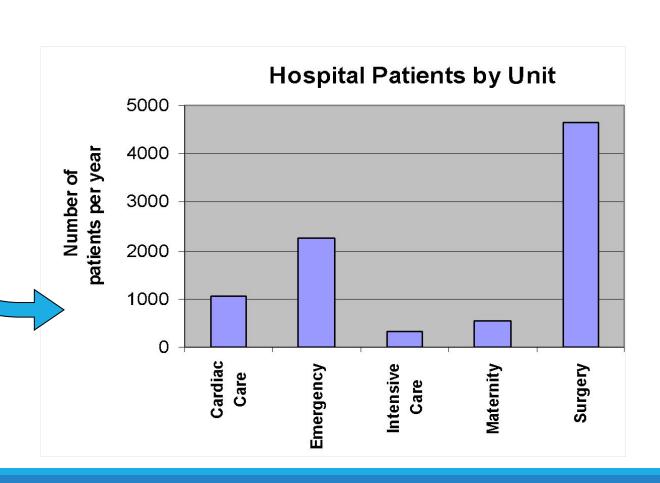
Each cell in a contingency table (any intersection of a row and column of the table) gives the **count** for a combination of values of two categorical variables

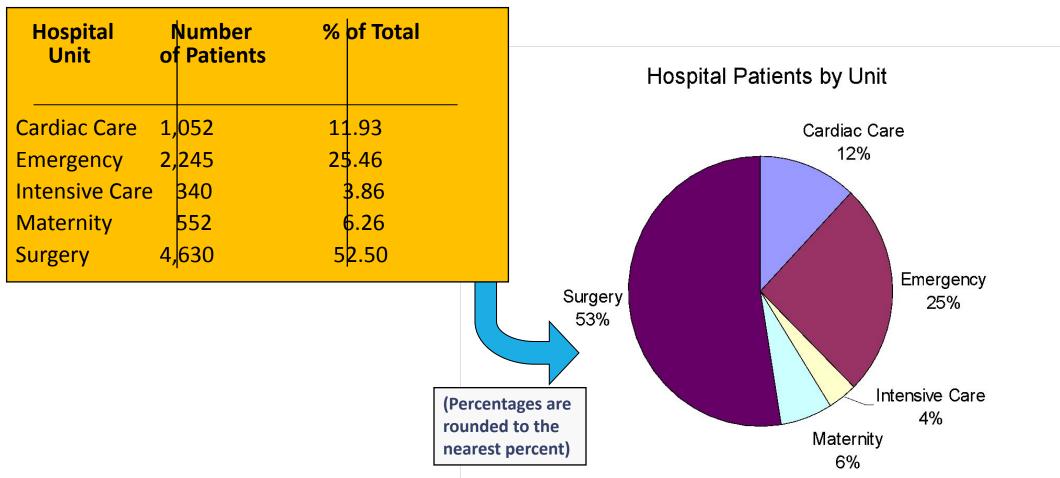


Three Rules of Data Analysis

Rule 1, 2 and 3: Make a picture of the data

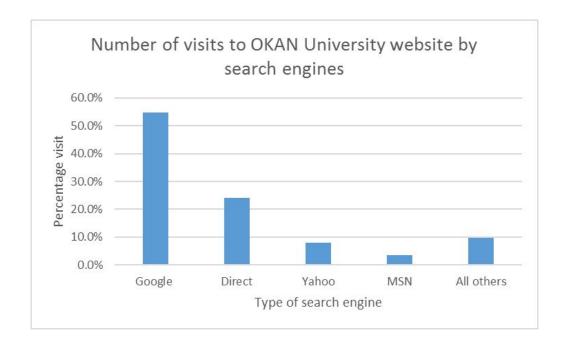
Pictures....


- Reveal things that cannot be seen in a frequency table
- Show important patterns in the data
- Provide an excellent way for presenting findings to other people


Bar Chart – Hospital patients

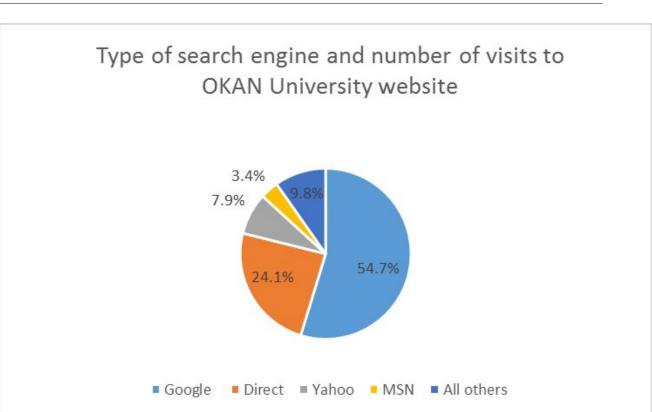
Hospital Unit	Number of Patients
Cardiac Care 1	052
Emergency 2	245
Intensive Care	340
Maternity	552
Surgery	4,630

Pie Chart – Hospital patients



Bar-chart Number of visits to OKAN University

Search engine	Frequency (# of visits)	Relative frequency
Google	50269	54.7%
Direct	22173	24.1%
Yahoo	7272	7.9%
MSN	3166	3.4%
All others	8967	9.8%
Total	91847	100.0%



Pie-chart Number of visits to OKAN University

Search engine	Frequency (# of visits)	Relative frequency
Google	50269	54.7%
Direct	22173	24.1%
Yahoo	7272	7.9%
MSN	3166	3.4%
All others	8967	9.8%
Total	91847	100.0%

Graphing Multivariate Categorical Data (continued)

MULTIVARIATE MORE THAN ONE VARIABLE

Why multivariate?

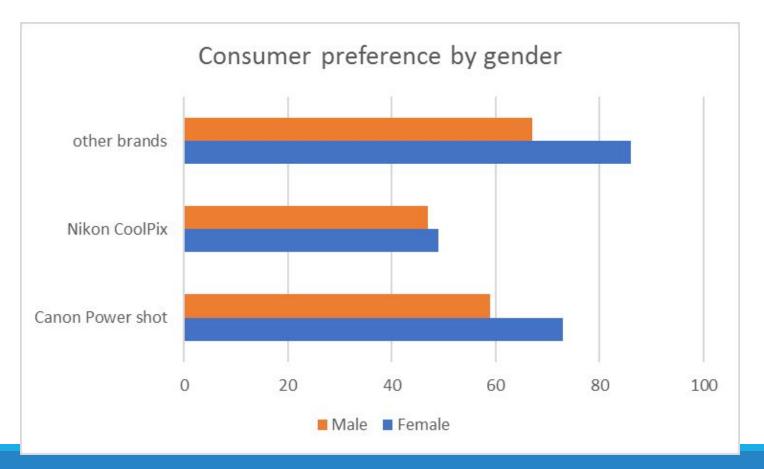
We are investigating more than one variable:


- (1) Gender: Female and male
- (2) Camera brand: Canon Powershot, Nikon CoolPix, other brands

Graphing Multivariate Categorical Data

Electronics brand	Female	Male	Total
Cannon Power Shot	73	59	132
Nikon CoolPix	49	47	96
other brands	86	67	153
Total	208	173	381

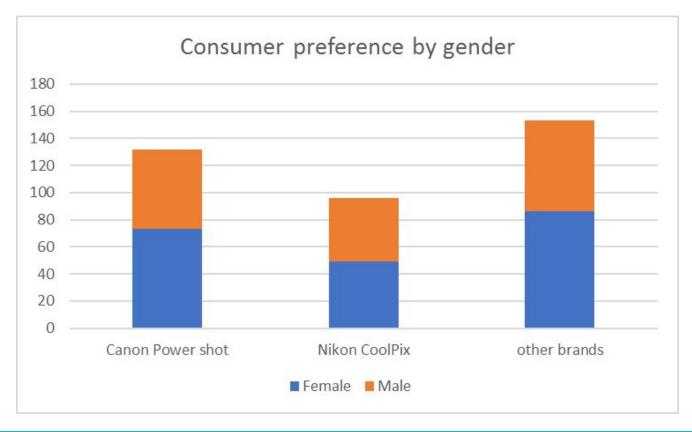
Graphing Multivariate Categorical


Data

(continued)

○ Side by side horizontal bar chart

Electronics brand	Female	Male	Total
Cannon Power Shot	73	59	132
Nikon CoolPix	49	47	96
other brands	86	67	153
Total	208	173	381


Graphing Multivariate Categorical Data

(continued)

Stacked bar chart

Electronics brand	Female	Male	Total
Cannon Power Shot	73	59	132
Nikon CoolPix	49	47	96
other brands	86	67	153
Total	208	173	381

Class exercise

The following raw data show responses to the question "What is your primary source for news?" from a sample of college students:

Internet Newspaper Internet TV Internet Newspaper TV Internet Internet TV Newspaper TV TV Newspaper TV Internet Internet Internet Internet TV TV Internet Internet TV TV

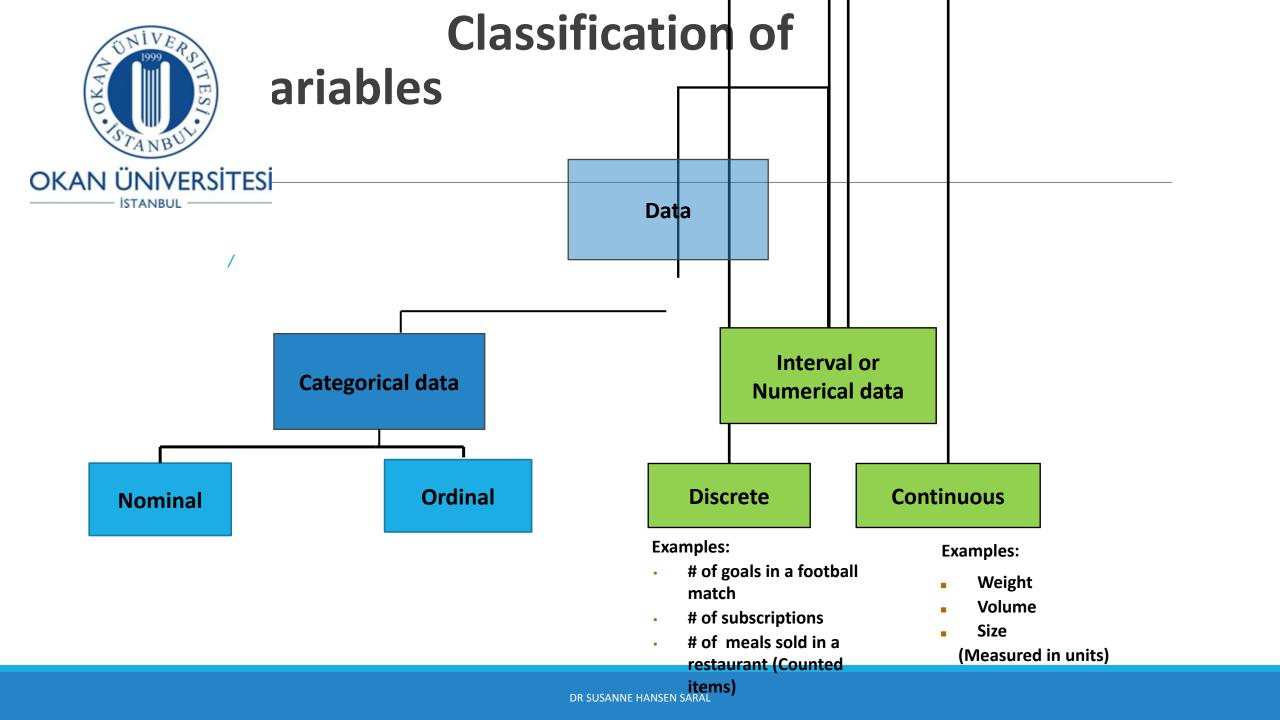
- a. Prepare a frequency table for these data. How many students were sampled?
- b. Prepare a relative frequency table for these data.
- c. Based on the frequencies, construct a bar chart manually.
- d. What is the variable we are measuring?

Class exercise

A cable company surveyed its customers and asked how likely they were to bundle other services, such as phone and Internet, with their cable TV subscription. The following raw data show the responses:

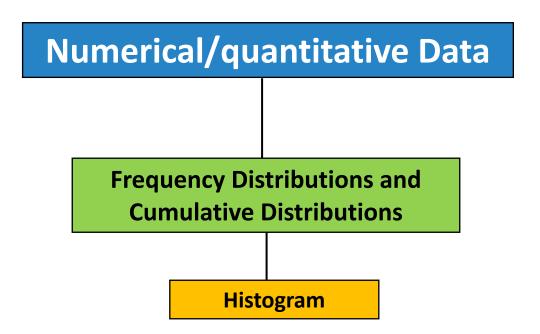
Very Likely	Unlikely	Unlikely	Very Likely
Likely	Unlikely	Likely	Likely
Unlikely	Unlikely	Likely	Likely
Very Likely	Unlikely	Unlikely	Very Likely
Unlikely	Unlikely	Unlikely	Likely

- a. Prepare a frequency table for these data. How many customers were sampled?
- b. Prepare a relative frequency table for these data.
- c. Based on frequencies, construct a bar chart manually
- d. What is the variable we are measuring?



Week 2 (2) How to organize and illustrate numerical data

DR SUSANNE HANSEN SARAL


EMAIL: <u>SUSANNE.SARAL@OKAN.EDU.TR</u> OR

SUSANNEHANSENSARAL@GMAIL.COM

Tables and Graphs to Describe Numerical Variables

Enron Corporation - energy trading OKAN ÜNİVERSİTESİDANY

Energy trading company from 1985 – 2001 (then went bankrupt):

- ☐ Company grew steadily over the 15 years
- ☐ Stock price in 1985 \$ 5/share. By the end of 2000 it was \$ 89.75
- ☐ At the end of 2000 the company was worth \$ 6 billion

At the end of 2001 the stock had fallen to \$ 0.25! The company had lost 99% of it's value

Were there any warning signs in the data?

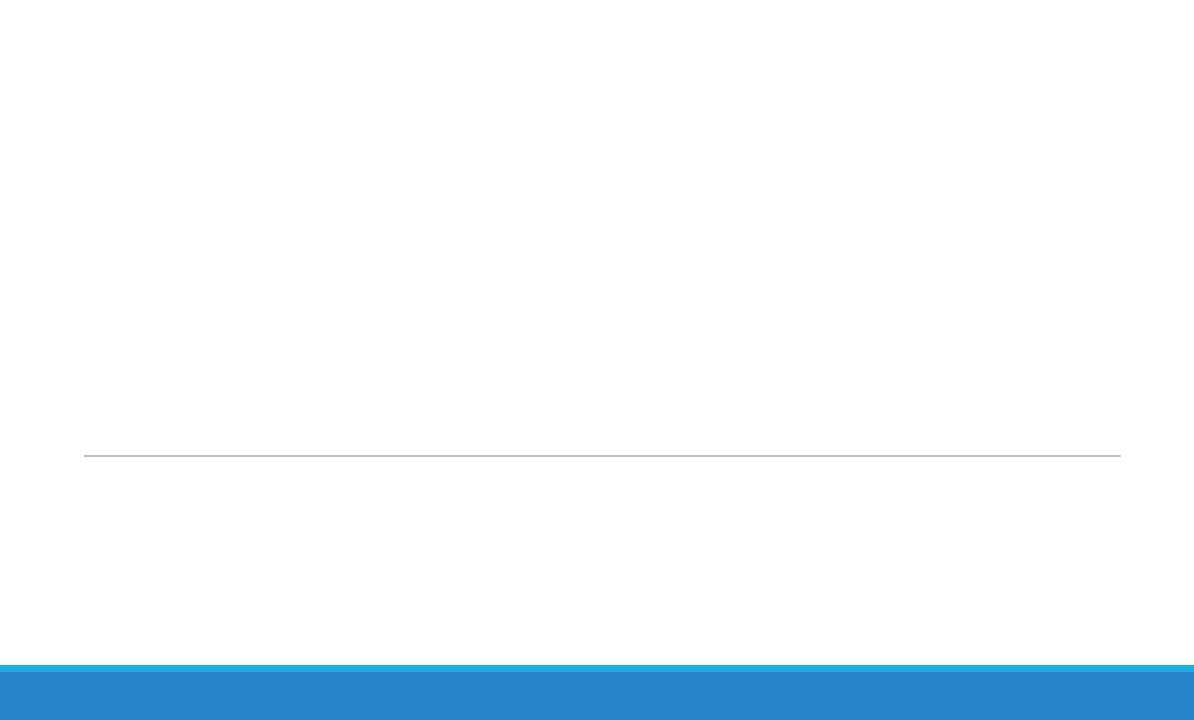
OKAN ÜNİVERSİTESİDANY

Enron Corporation - energy trading

Energy trading company from 1985 – 2001:

☐ Were there any warning signs in the data?

Month	Monthly stock price change in dollars of Enron stock for the period January 1997 to December 2001											
	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
1997		-1.75	-0.69	-0.88	0.12	0.75	0.81	-1.75	0.69	-0.22	-0.16	0.34
1998	0.78	0.62	2.44	-0.28	2.22	-0.5	2.06	-0.88	-4.5	4.12	1.16	-0.5
1999	3.28	3.34	-1.22	0.47	5.26	-1.59	4.31	1.47	-0.72	-0.038	-3.25	0.03
2000	5.72	21.06	4.5	4.56	-1.25	-1.19	-3.12	8	9.31	1.12	-3.19	-17.75
2001	14.38	-1.08	-10.11	-12.11	5.84	-9.37	-4.74	-2.69	-10.61	-5.85	-17.16	-11.59

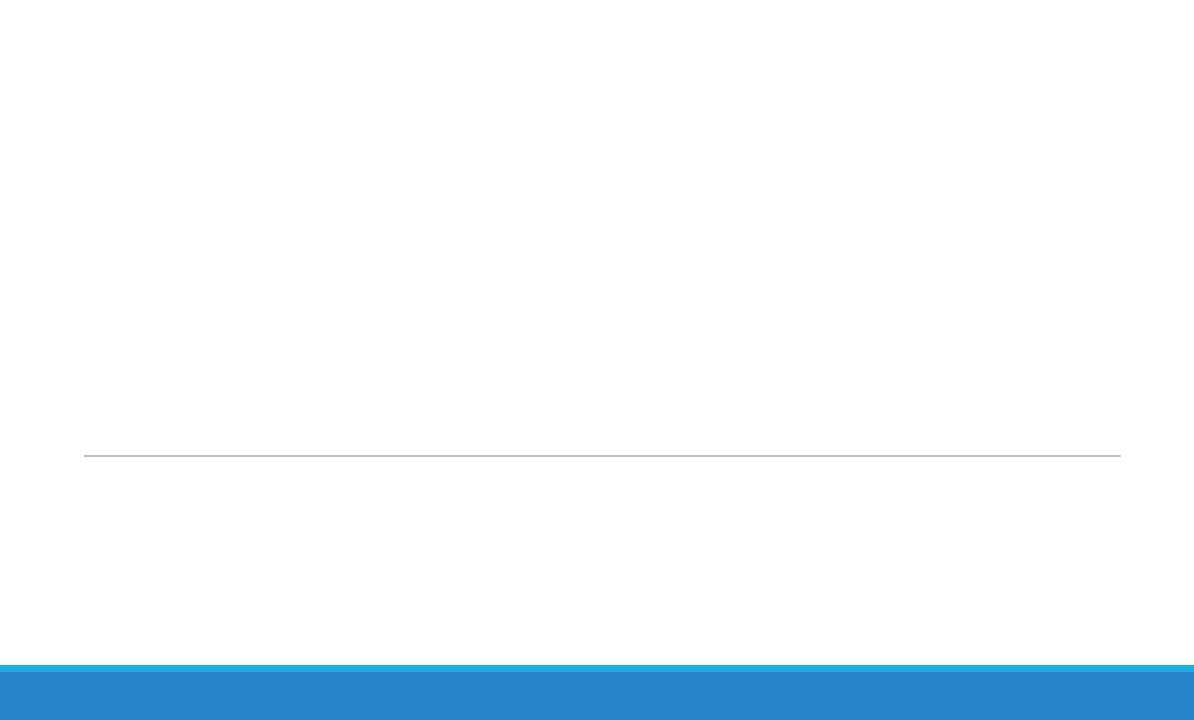

Enron Corporation - energy trading OKAN ÜNİVERSİTESİDANY

Energy trading company from 1985 – 2001:

☐ Were there any warning signs about the fall of the stock price in the data?

Hard to tell from the raw data

Let's follow the first rule of data analysis and make a picture of the data



Enron Corporation – frequency distributio

Frequency table for the price change of Enron s

													Price change	# of montns	
													-20	0	
Month	ly stock	price ch	ange in d	ollars of E	nron sto	ck for tl	he perio	d Januar	y 1997 to	o Decem	ber 200)1	-15	2	
							-						-10	4	
	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	-5	2	
1997	-1.44	-1.75	-0.69	-0.88	0.12	0.75	0.81	-1.75	0.69	-0.22	-0.16	0.34	0	24	
1998	0.78	0.62	2.44	-0.28	2.22	-0.5	2.06	-0.88	-4.5	4.12	1.16	-0.5			
1999	3.28	3.34	-1.22	0.47	5.26	-1.59	4.31	1.47	-0.72	-0.038	-3.25	0.03	5	21	
2000	5.72	21.06	4.5	4.56	-1.25	-1.19	-3.12	8	9.31	1.12	-3.19	-17.75	10	5	
2001	14.38	-1.08	-10.11	-12.11	5.84	-9.37	-4.74	-2.69	-10.61	-5.85	-17.16	5 -11.59	15	1	
<u>I</u>		<u>I</u>	ı			Į.	J.	<u> </u>					20	0	
													More	1	

Why Use Frequency Distributions and graphs for numerical data?

- ☐A frequency distribution is a way to summarize numerical data
- It condenses the raw data into ranges/intervals
- ☐ and allows for a quick visual interpretation of the data a PICTURE

The picture of numerical/quantitative data is called a histogram

Frequency Distributions

15	-20	0	
	-15	2	
	-10	4	
	-5	2	
	0	24	
	5	21	
	10	5	
	15	1	
	20	0	
	More	1	

Price change | # of months

What is a Frequency	Distribution for	numerical	data?
---------------------	------------------	-----------	-------

- ☐ A frequency distribution is a table
- ☐ containing ranges/intervals within which the data fall
- ☐ and the corresponding frequencies with which data fall within each class or category

Frequency table for the price change of Enron

Frequency Distributions for numerical data

Intervals for numerical data are not as easy to identify as for categorical data.

Determining the intervals of a frequency table for numerical data requires answers to the following questions:

- -How many intervals should be used?
- -How wide should each interval be?

Raw data (sample of 110 employees in a production plant)

Completion Times of a particular task (in seconds) for 110 employees

Not easy to see a picture or pattern!

271 236 294 252 254 263 266 222 262 278 288

262 237 247 282 224 263 267 254 271 278 263

262 288 247 252 264 263 247 225 281 279 238

252 242 248 263 255 294 268 255 272 271 291

263 242 288 252 226 263 269 227 273 281 267

263 244 249 252 256 263 252 261 245 252 294

288 245 251 269 256 264 252 232 275 284 252

263 274 252 252 256 254 269 234 285 275 263

263 246 294 252 231 265 269 235 275 288 294

263 247 252 269 261 266 269 236 276 248 299

How to determine the number of tervals/classes

A quick guide

Sample size Number of intervals

Fewer than 50 5 - 7

50 to 100 7 - 8

101 to 500 8 - 10

501 to 1,000 10 - 11

1,001 to 5,000 11 - 14

More than 5,000 14 - 20

Use at least 5 intervals but no more than 15-20 otherwise we loose the overview of the data

How to determine the interval width

Each class/interval grouping has to have the same width

Determine the width of each interval by

$$w = interval \ width = \frac{largest \ number - smallest \ number}{number \ of \ desired \ intervals}$$

- Use at least 5 but no more than 15-20 intervals
- Intervals never overlap
- Round up the interval width to get desirable interval endpoints

Employee completion time

110 employees' time have been recorded and the plant supervisor needs to report to his manager how long on average his employees finish the job.

We have 110 values ranging from 222 seconds to 299

We need to determine the *number of intervals*:

Sample size	Number of intervals
Fewer than 50	5 - 7
50 to 100	7 - 8
101 to 500	8 - 10
501 to 1,000	10 - 11
1,001 to 5,000	11 - 14
More than 5,000	14 - 20

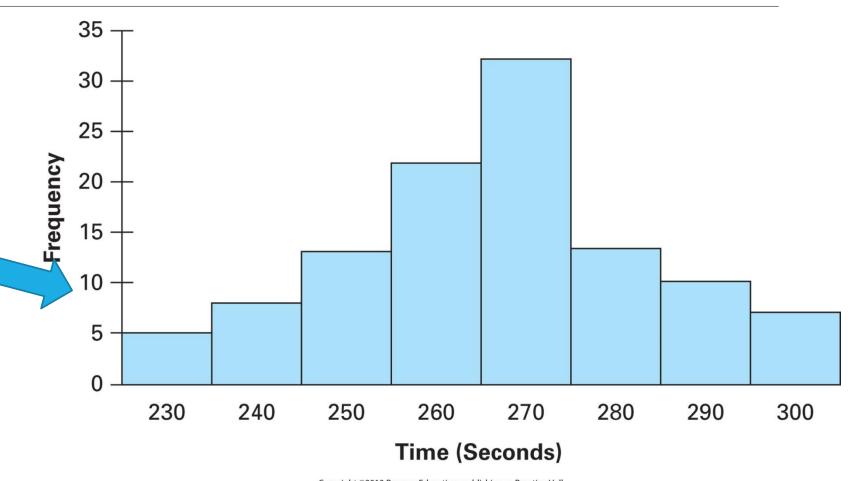
Employee completion time

Determine width of interval:

$$Interval width = \frac{largest number - smallest number}{number of intervals}$$

Interval width =
$$\frac{299-222}{8}$$
 = 9.6 - rounded up to 10

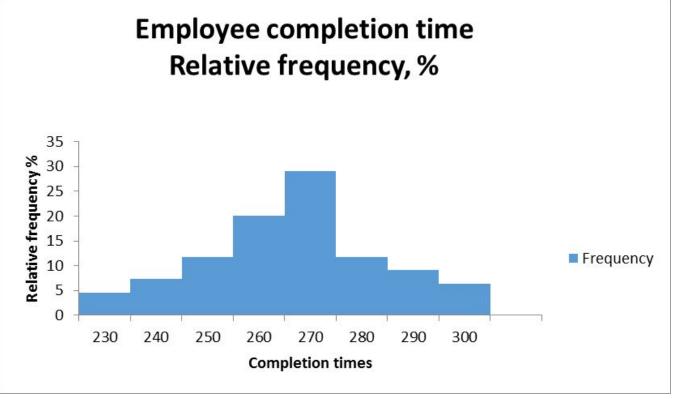
Interval width = 10


Employee completion time

Completion tim	<u>e (in seconds)</u> Frequ	ency	Relative frequency %
220 – 229	5	4.5	
230 – 239	8	7.3	
240 – 249	13	11.8	
250 – 259	22	20	.0
260 – 269	32	29.1	
270 – 279		13	11.8
280 – 289		10	9.1
<u>290 – 300</u>	7		6.4
Total	110	100	0 %

Histogram of employee completion time Absolute frequency

Interval (sec.)	Frequency
230	5
240	8
250	13
260	22
270	32
280	13
290	10
300	7

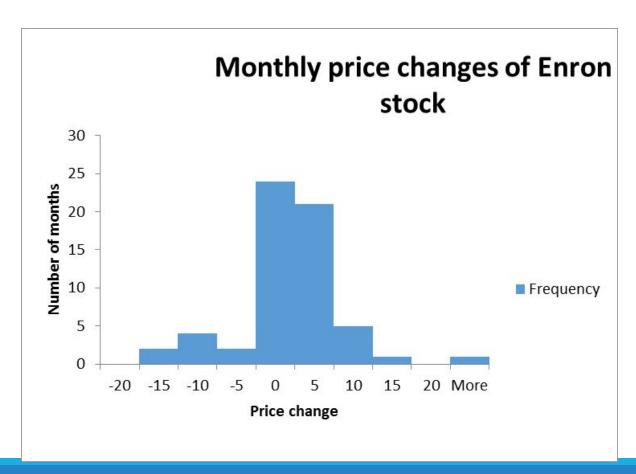

Copyright ©2013 Pearson Education, publishing as Prentice Hall

Histogram of employee completion times Relative frequency

same graph as absolute frequency

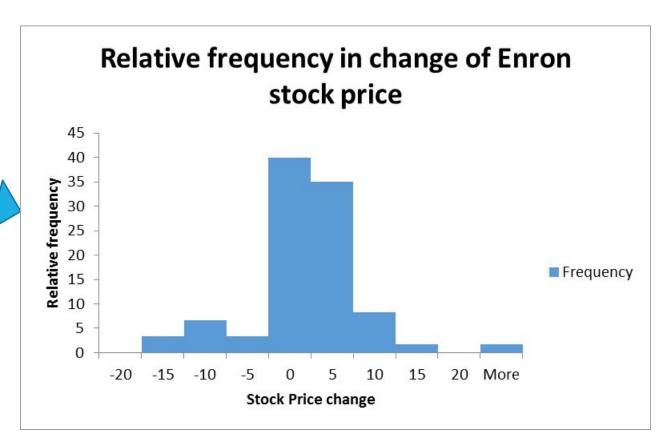
ISTANDOL		
Completion time in sec.	Relative frequency	_
230	4.5	
240	7.3	
250	11.8	
260	20	
270	29.1	
280	11.8	
290	9.1	
300	6.4	

Employee completion time Cumulative frequency


Intervals (sec.)	Frequency	Relative frequency	Cumulative %	
230	5	4.5%	4.5%	4.5
240	8	7.3%	11.8%	4.5 +7.3 = 11.8
250	13	11.8%	23.6%	11.8 + 11.8 = 23.6
260	22	20.0%	43.6%	23.6 + 20 = 43.6
270	32	29.1%	72.7%	43.6 + 29.1 = 72.7
280	13	11.8%	84.5%	72.7 + 11.8 = 84.5
290	10	9.1%	93.6%	84.5 + 9.1 = 93.6
300	7	6.4%	100.0%	93.6 + 6.4 = 100
N =	110			

Histogram – Absolute frequency Enron: Change in stock price

Price change	# of months	
-20	0	
-15	2	
-10	4	
-5	2	
0	24	
5	21	
10	5	
15	1	
20	0	
More	1	



Histogram – Relative frequency Enron: Change in stock price

Change in stock price	Relative frequencyin months
-20	0
-15	3.3
-10	6.7
-5	3.3
0	40
5	35
10	8.3
15	1.7
20	0
More	1.7
	100

