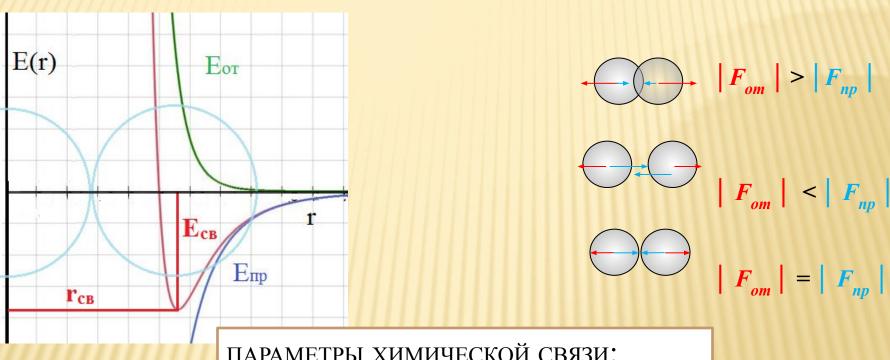

Молекулы и кристаллы

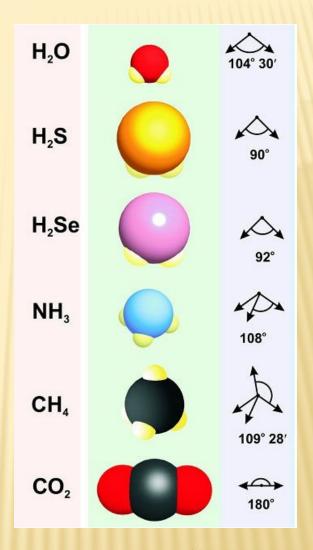
ХИМИЧЕСКАЯ СВЯЗЬ


АГРЕГАТНЫЕ СОСТОЯНИЯ ВЕЩЕСТВА

Энергия фазового перехода

- - Химическая связь имеет электронную природу.
 - **П** Химическая связь осуществляется за счет валентных электронов.
 - □ Потенциальная энергия образующейся частицы (молекулы или кристалла) меньше, чем суммарная потенциальная энергия исходных свободных атомов.

ВЗАИМОДЕЙСТВИЕ МЕЖДУ АТОМАМИ (MKT)


ПАРАМЕТРЫ ХИМИЧЕСКОЙ СВЯЗИ:

энергия - $\mathbf{E}_{\mathbf{c}\mathbf{B}}$ [э \mathbf{B} , кДж/моль] длина - $\mathbf{r}_{\mathbf{c}\mathbf{B}}$ [Å]

Увалентный угол

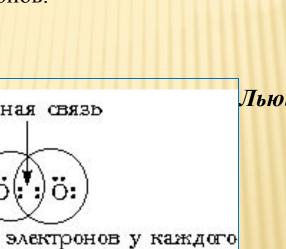
✓ кратность связи

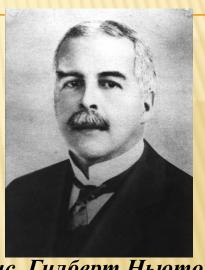
Валентный угол - угол, образованный двумя направлениями химических связей, исходящими из одного атома.

ВАЛЕНТНЫЕ УГЛЫ НЕКОТОРЫХ СОЕДИНЕНИЙ

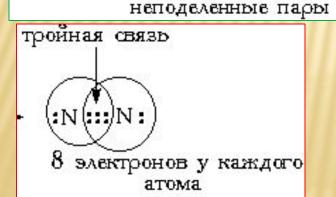
Виды химической связи					
A B					
Вид связи	Электроотрицательность атомов А и В	Тип кристаллической решетки	Пример		
Сильная $E_{cr} \cong 200 \div 1000$ кДж/моль ($2 \div 10$ эВ)					
Ковалентная:	$\chi_{\rm A} \cong \chi_{\rm B} \ (\Delta \chi_{\rm AB} < 2.1)$				
неполярная	$\chi_{\rm A} = \chi_{\rm B}$	Атомная (ковалентная)	C, SiC		
полярная	$\chi_{ m A} eq \chi_{ m B}$	Атомная (ковалентная)	SiO ₂		
Ионная	$\chi_A \neq \chi_B \ (\Delta \chi_{AB} > 2.1)$	Ионная	NaCl		
Металлическая	$\chi_{\rm A} = \chi_{\rm B}$	Металлическая	K, Al		
Слабые $E_{cp} \cong 10 \div 100 \text{ кДж/моль } (0.1 \div 1 \text{эВ})$					
Силы Ван-дер Ваальса		Молекулярная	I ₂ , CO ₂ ,BMC		
Водородная связь	$\chi_{\rm H} = 2.1, \ \chi_{\rm B} > 3 \ (\rm N, O, F)$	Молекулярная	H ₂ O, NH ₃		

СПОСОБЫ ОПИСАНИЯ ХИМИЧЕСКОЙ СВЯЗИ

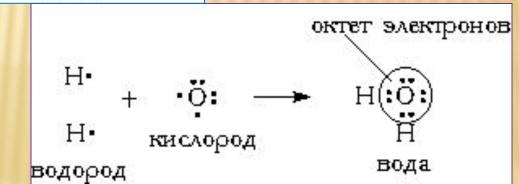

Ковалентная связь


ЭЛЕКТРОННАЯ ТЕОРИЯ ХИМИЧЕСКОЙ СВЯЗИ (1912-1915г.)

двойная связь

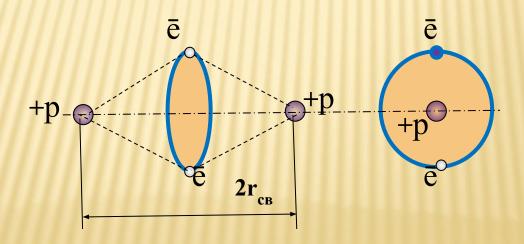

атома

- ✓ Ковалентная химическая связь образуется за счёт обобществления пары или нескольких пар электронов;
- ✓Эти пара располагается между атомами.
- ✓В результате: внешний электронный слой атома содержит восемь электронов.



Льюис, Гилберт Ньютон 1875 - 1946

поделенная пара


электронов

МОДЕЛЬ ХИМИЧЕСКОЙ СВЯЗИ БОРА

Нильс Бор в 1913 году предложил описание модели молекулы H_2 :

оба электрона вращаются по орбите вокруг линии, соединяющей ядра атомов водорода.

КВАНТОВО-МЕХАНИЧЕСКОЕ ОПИСАНИЕ

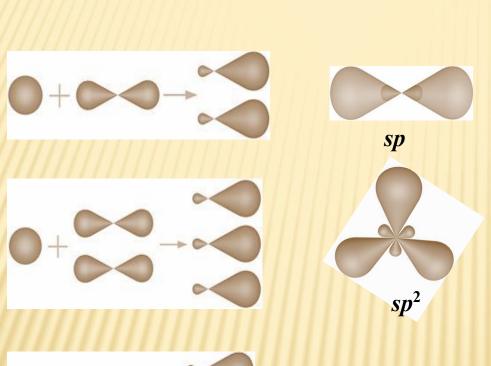
Приближенное решение уравнений Шредингера

Вальтер Гайтлер (1904 -1981)

Ф. Лондон и В. Гайтлер (1927г.) дали первое описание ковалентной связи с точки зрения квантовой механики для молекулы H_2 .

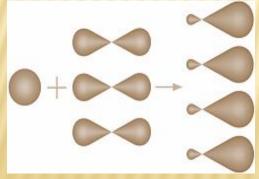
Фриц Лондон (1900 -1954)

Атомы в молекуле сохраняют свою электронную конфигурацию, а связь образуется в результате обмена электронов между атомами и спаривания спинов двух электронов, находящихся на атомных орбиталях.


Метод валентных связей

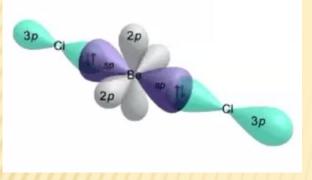
- ✔ Основные принципы образования химической связи по методу ВС:
- ✓ Химическая связь образуется только в том случае, если при сближении двух и более атомов полная энергия системы понижается.
- ✓ Химическая связь образуется за счет обобществления неспаренных электронов с антипараллельными спинами.
- ✓ Общая электронная пара локализована между атомами в области максимального перекрывания атомных орбиталей
- ✔ Силы, действующие в молекуле, имеют электрическое, кулоновское происхождение.
- ✓ Энергия зависит от величины перекрывания орбиталей

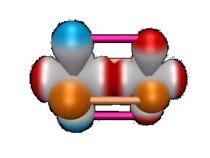
σ-связь, π-связь и δ-связь


	s-орбиталь	р-орбиталь	d-орбиталь
σ- связь			
π- СВЯЗЬ			
δ- связь			

ГИБРИДИЗАЦИЯ ОРБИТАЛЕЙ

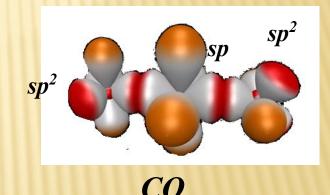
Лайнус Полинг (1901-1994)

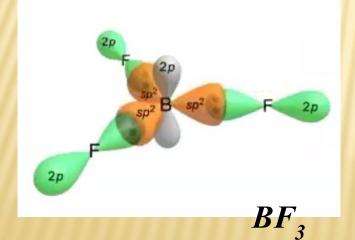


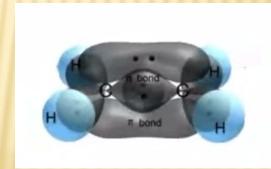


sp³

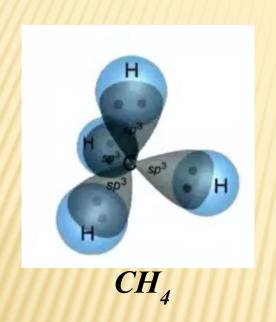
Гибридизация — выравнивание атомных орбиталей по форме и энергии.

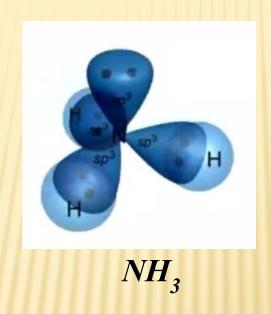

sp -гибридизация

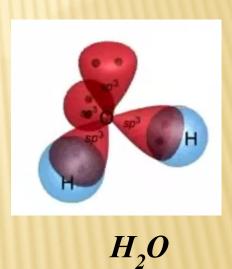



 $BeCl_2$

CO

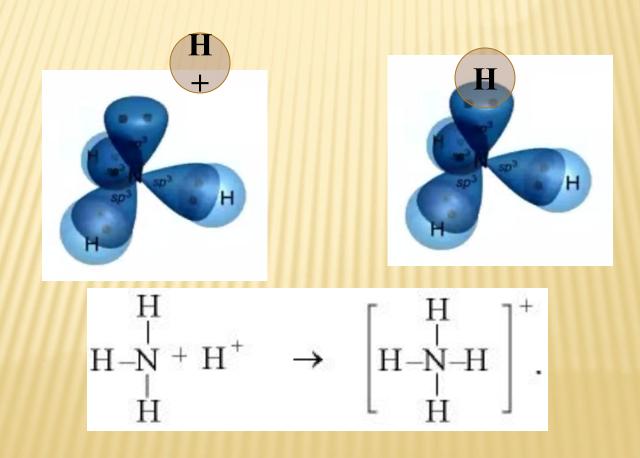

sp² -гибридизация

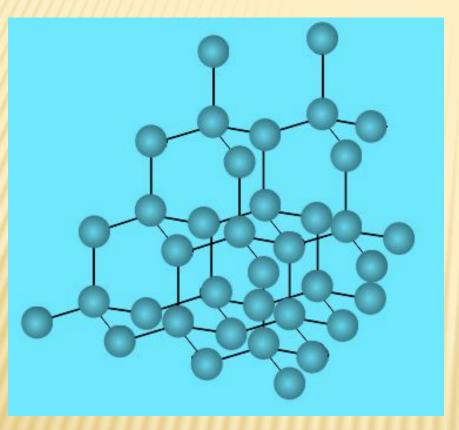


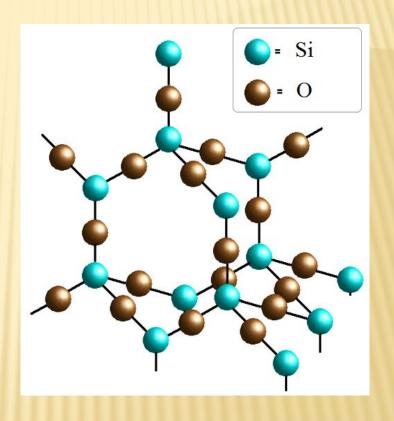


 C_2H_4

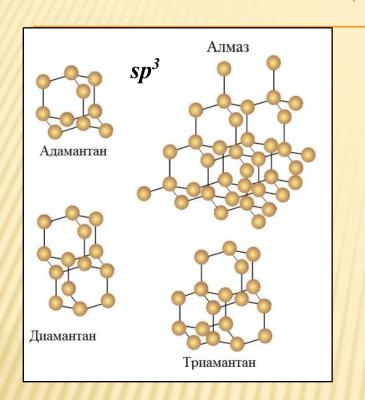
*sp*³ -гибридизация

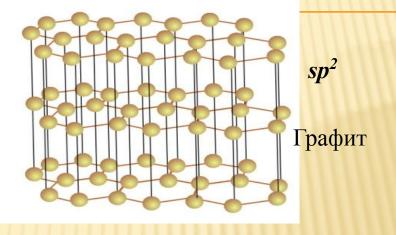





Донорно-акцепторный механизм образования связи

КОВАЛЕНТНЫЕ (АТОМНЫЕ) КРИСТАЛЛЫ

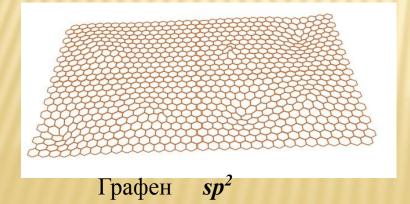


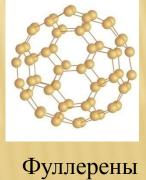


Кремний Кварц

 sp^3 -гибридизация

АЛЛОТРОПНЫЕ МОДИФИКАЦИИ УГЛЕРОДА

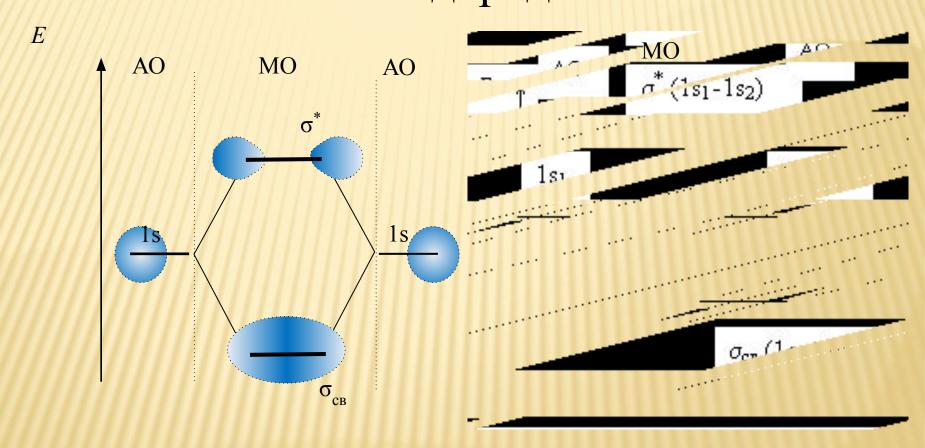


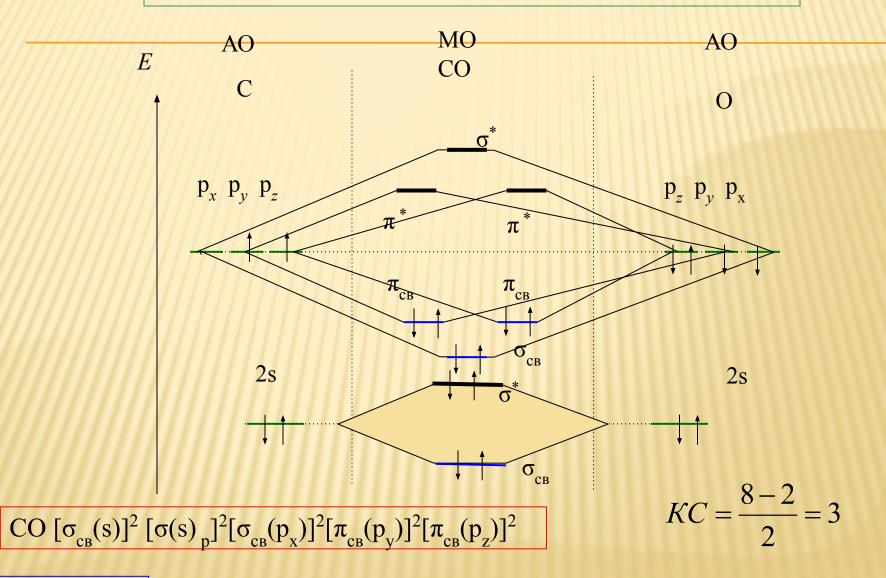

$$-C \equiv C - C \equiv C - C \equiv C - \frac{\text{полиин}}{(\mathbf{c} - \text{карбин})}$$

= $C = C = C = C = C = C = 0$ поликумулен ($\mathbf{\beta}$ -карбин)

Карбин

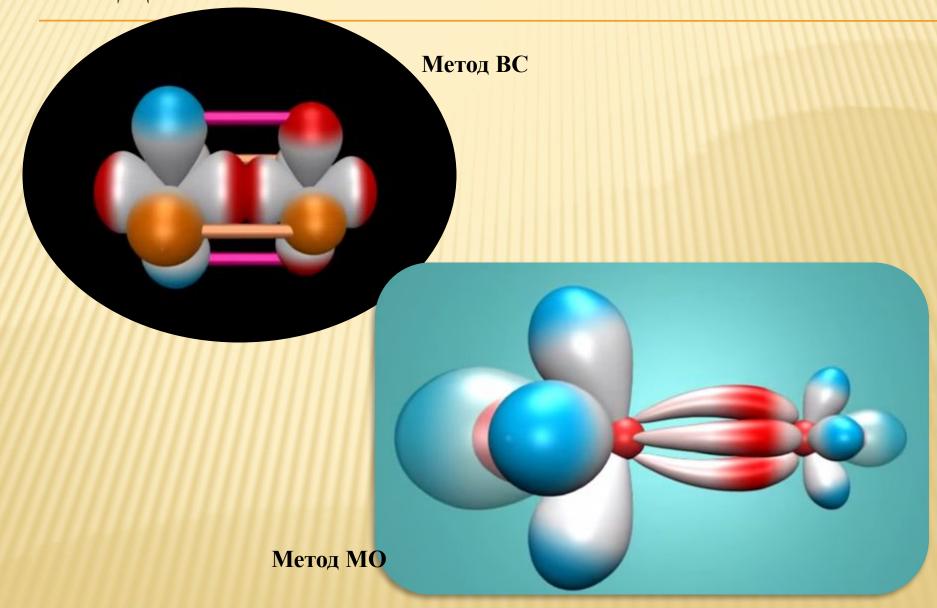
sp




МЕТОД МОЛЕКУЛЯРНЫХ ОРБИТАЛЕЙ

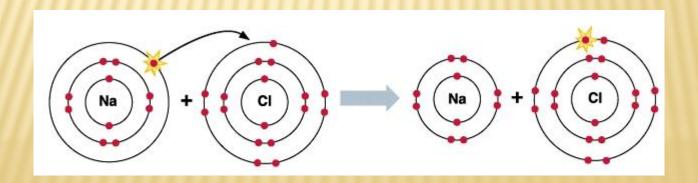
- ✓ Молекула рассматривается как единая частица.
- ✔ Каждый электрон в молекуле находиться в результирующем поле всех ядер и остальных электронов.
- ✓ Волновые функции описывают молекулярные орбитали. Линейная комбинация АО. МО многоцентровые. Число МО равно чиклу АО.
- ✓Заполнение электронами молекулярных орбиталей осуществляется в соответствие с
 - 1. принципом минимума энергии,
 - 2. принципом Паули,
 - 3. правилом Хунда.

Молекулярные орбитали молекулы водорода



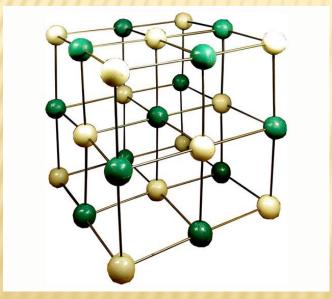
МОЛЕКУЛЯРНЫЕ ОРБИТАЛИ СО

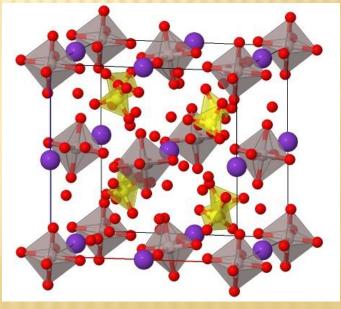
диамагнетик


МОДЕЛИ МОЛЕКУЛЫ СО

ИОННАЯ СВЯЗЬ

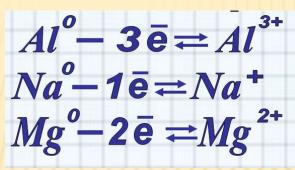
- ✔ связь, образованная в результате электростатического взаимодействия ионов
- ✓ предельный случай полярной ковалентной связи
- ✓ образуется при взаимодействии элементов значительно различающихся по электротрицательности ($\Delta \chi_{AR} > 2.1$)
- ✓ сильное смещение электронной плотности приводит к образованию ионов:

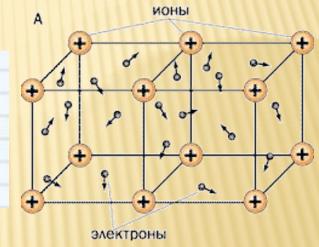

Na -
$$\bar{e} \rightarrow$$
 Na ⁺ (катион) Cl + $\bar{e} \rightarrow$ C⁻ (анион) $\chi_{Na} = 0.9 \; \chi_{Cl} = 3.0$


ИОННАЯ КРИСТАЛЛИЧЕСКАЯ РЕШЕТКА

В узлах расположены разноименно заряженные ионы, удерживаемые силами электростатического притяжения.

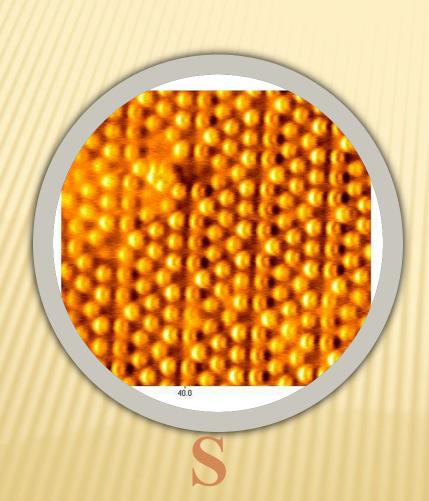
Нелетучие, твердые, тугоплавкие, растворы и расплавы проводят электрический ток

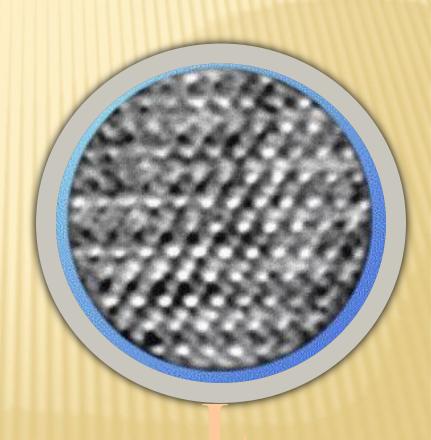

NaCl



 $K^{+}Al^{3+}(SO_{4})_{2}^{2-}\cdot 12H_{2}O)$

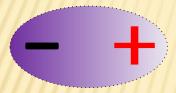
МЕТАЛЛИЧЕСКАЯ СВЯЗЬ

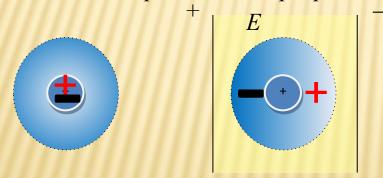




В узлах кристаллической решётки -ионы металла. Связь осуществляется за счет делокализованных электронов внешнего уровня (электронного газа).

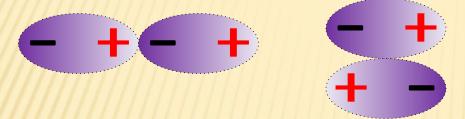
- ✓ Ковкость,
- ✓ тягучесть,
- ✓электропроводность,
- ✓ теплопроводность,
- ✓ металлический блеск


ПОВЕРХНОСТЬ МЕТАЛЛА ПОД ЭЛЕКТРОННЫМ МИКРОСКОПОМ



МЕЖМОЛЕКУЛЯРНЫЕ ВЗАИМОДЕЙСТВИЯ

Диполь - система из двух разноименных, но равных по величине электрических зарядов на некотором расстоянии друг от друга. **Полярная молекула** имеет два полюса и поэтому является **диполем**.

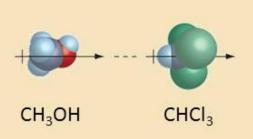


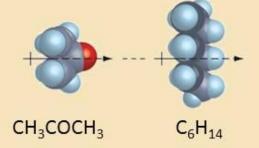
Неполярная молекула не является диполем, под действием внешнего поля может пояризоваться, превращаясь в **наведенный диполь.**

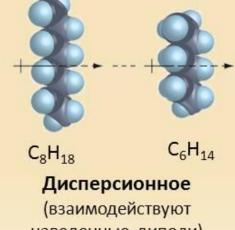
СИЛЫ ВАН-ДЕР-ВААЛЬСА

1. Ориентационный эффект (диполь – диполь).

2. Индукционный эффект (диполь – наведенный диполь).


3. Дисперсионный эффект (мгновенные наведенные диполи).




Ван-дер-ваальсово взаимодействие

Слабые невалентные взаимодействия электростатического характера между частицами относят к группе ван-дер-ваальсовых взаимодействий.

Принято выделять три основных типа ВдВ-взаимодействий:

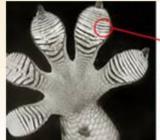
Ориентационное

(взаимодействуют постоянные диполи)

~ r -3

Индукционное

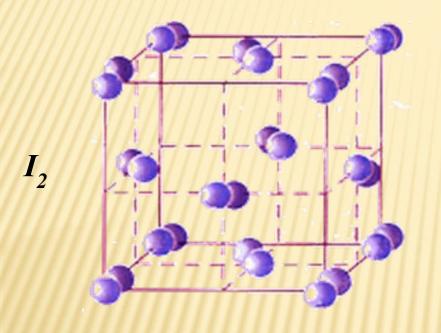
(диполь – наведенный диполь)

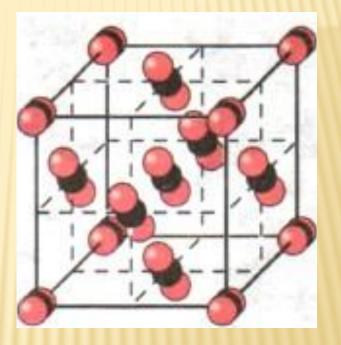

~ r -6

наведенные диполи)

~ r-6

Отвлечемся от науки, вспомним живой мир: именно благодаря вандер-ваальсовым силам гекконы могут подниматься по гладким поверхностям.





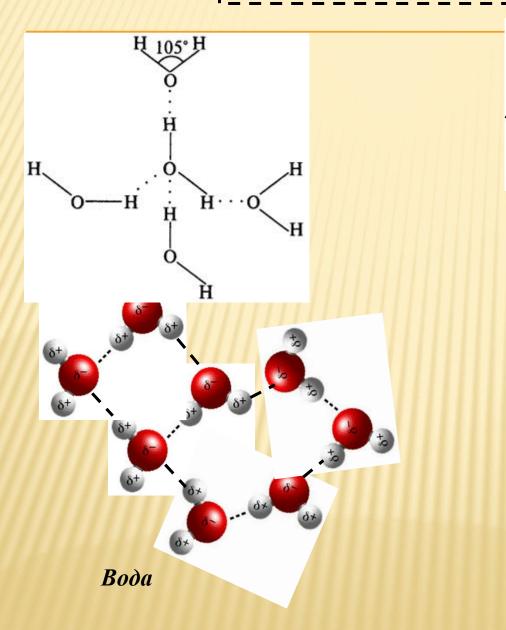
МОЛЕКУЛЯРНЫЕ КРИСТАЛЛЫ

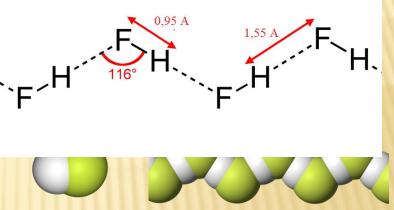
В узлах молекулы с ковалентной связью (I_2 , S_8 , CO_2 , NH_3 , макромолекулы полимеров)

 CO_2

- ✓ Малая твёрдость,
- ✓ низкие температуры плавления,
- ✓ летучесть.
- ✓ Свойства кристаллических полимеров связаны с большим размером молекул

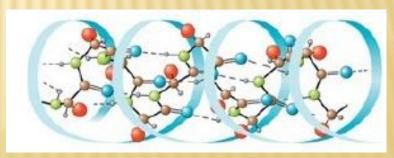
ВОДОРОДНАЯ СВЯЗЬ

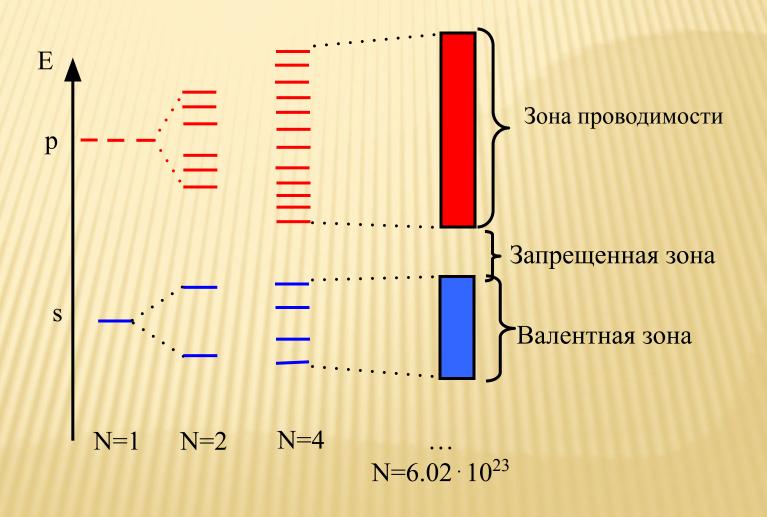

Химическая связь, образованная положительно заряженным водородом молекулы и электроотрицательным атомом другой молекулы, называется водородной связью.


Энергия водородной связи возрастает с ростом электроотрицательности и уменьшением размера атома.

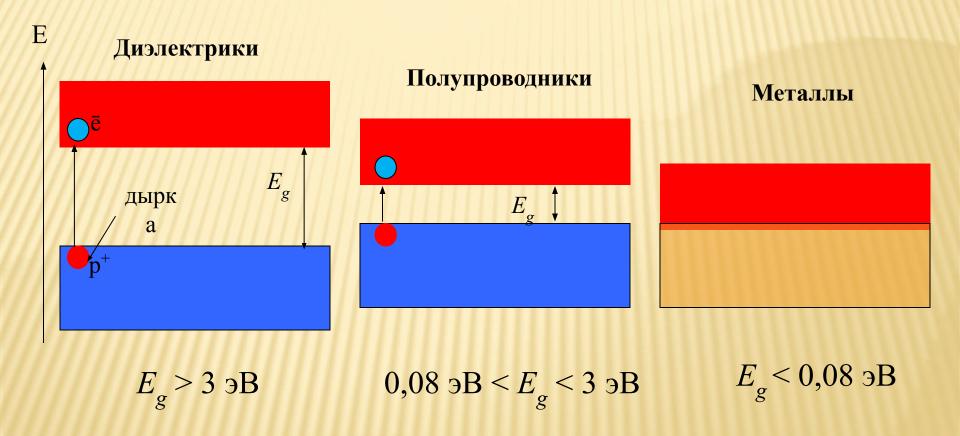
Наиболее прочная водородная связь возникают между водородом и F, O или N.

Водородная связь Н…С1 слабая из-за большого размера атома хлора


ВОДОРОДНАЯ СВЯЗЬ

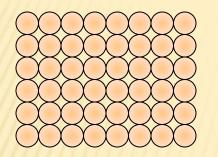

Плавиковая кислота

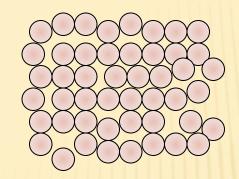
Молекулы биополимеров



N=4

КВАНТОВО-МЕХАНИЧЕСКОЕ ОПИСАНИЕ ТВЕРДЫХ ТЕЛ. ЗОННАЯ ТЕОРИЯ


ЭЛЕКТРОПРОВОДНОСТЬ КРИСТАЛЛОВ


 E_g — ширина запрещенной зоны

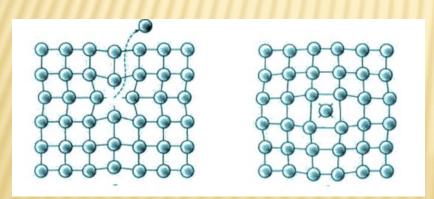
Особенности аморфного состояния вещества

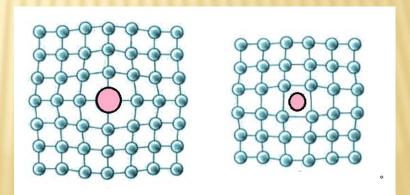
	Кристаллическое	Аморфное состояние
	состояние	
Структура	Дальний порядок	Ближний порядок
Характер свойств	Анизотропный	Изотропный
Температура	Точка кипения (2 фазы)	Интервал температур. Точка
фазового перехода		стеклования
Зависимость	При фазовых переходах	Плавное измнение
термодинамических	меняются скачком	
функций от		
температуры		
Методики	Равновесное ведение	Неравновесное ведение процесса
получения	процесса	кристаллизации. Высокая
	кристаллизации	скорость охлаждения.
		Охлаждение ниже температуры
		кристаллизации.
Деформации	Хрупкость	Эластичность

Кристаллическое состояние

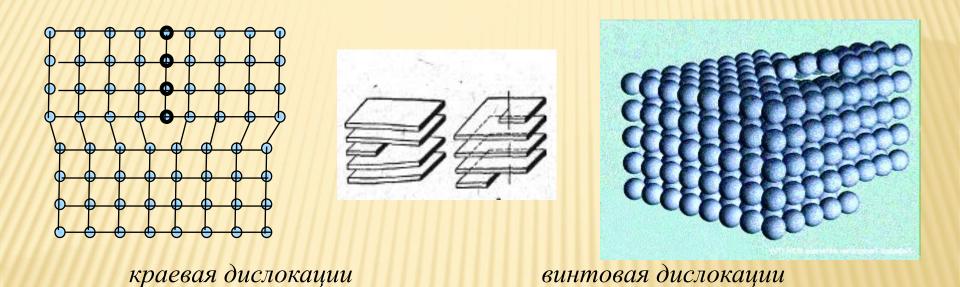
Аморфное состояние

Быстрозакаленный металл


ДЕФЕКТЫ КРИСТАЛЛИЧЕСКОЙ РЕШЕТКИ


Нульмерные (точечные):

энергетические: фононы — кванты тепловой волны, результат искажения регулярности решетки, вызванные тепловыми колебаниями.


возбужденные состояния атомов, вызываемые воздействием различных излучений (света, рентгеновского, у-излучения и проч) электронные: избыточные электроны, дырки, экситоны (пары электрона и дырки, связанные кулоновскими силами).

атомные: вакантные узлы, смещения атома из узла в междоузлие, внедрение в решетку чужеродного атома.

Одномерные (линейные): дислокации, например краевая и винтовая.

Двумерные: поверхность кристалла, границы зерен

Трехмерные: поры, пузыри, каналы, примесные фазы.

Составьте конспект по теме «Химическая связь», раскрыв следующие положения:

- 1. Агрегатные состояния вещества
- 2. Понятие химическая связь
- 3. Параметры химической связи
- 4. Способы описания химической связи. Электронная модель, модель Бора, квантовомеханические представления.
- 5. Виды химической связи
- 6. Метод валентных связей. Понятие о σ-,π-,δ- связях.
- 7. Понятие о гибридизации орбиталей. Sp, sp^2 , sp^3 гибридизация.
- 8. Метод молекулярных орбиталей. Примеры (H_2, CO, O_2) .
- 9. Ионная связь.
- 10. Металлическая связь
- 11. Силы Ван-дер Ваальса.
- 12. Водородная связь.
- 13. Виды кристаллической решетки (примеры).
- 14. Зонная теория.
- 15. Аморфное состояние твердых веществ.
- 16. Дефекты в кристаллах.

Конспект должен содержать краткое изложение данных вопросов с использованием нескольких интернет-источников.

В процессе конспектирования оставьте место (широкие поля) для дополнений. Вами должно быть отмечено то, что требует разъяснений. Запись ведите своими словами, что поможет лучшему осмыслению текста.