Kazakh British Technical University

C.F. / Informatics / ICT

"The More You Sweat in Practice, the Less You Bleed in Battle."

Outline

- 1. Introduction
- 2. Body

A STANDER SANDER SANDER SANDERS SANDERS

3. Conclusion

Introduction

- A **network** is a combination of hardware and software that sends data from one location to another
- The hardware consists of the physical equipment that carries signals from one point in the network to another
- The software consists of instructions that make the services that we expect from a network possible

Introduction: physical structures type of connections

 A point-to-point connection provides a dedicated link between two devices, and the entire capacity of the link is reserved for transmission between these two devices

Introduction: physical structures type of connections

- A multipoint connection (also called multidrop connection) is one in which more than two specific devices share a single link
- In a multipoint environment, the capacity of the channel is shared, either spatially or temporally

Introduction: physical structures physical topology

- The term *physical topology* refers to the way in which a network is laid out physically
- Two or more devices connect to a link: one or more links form a topology
- The topology of a network is the geometric representation of the relationship of all the links and devices (usually called **nodes**) to one another
- There are four possible topologies:
 - Mesh
 - Star
 - · Bus, and
 - Ring

Mesh topology

 In a mesh topology, every device has a dedicated point-to-point link to every other device

Star topology

 In a star topology, each device has a dedicated point-to-point link only to a central controller, usually called a hub

Bus topology

- A bus topology uses a multipoint link
- One long cable, called the bus, acts as a backbone to link all the devices in a network
- Nodes are connected to the bus cable by drop lines and taps (connectors)

Ring topology

In a ring topology,
each device has a
dedicated
point-to-point
connection with
only the two
devices on either
side of it

LAN

- A local area network (LAN) is usually privately owned and links the devices in a single office, building, or campus
- LAN can be as simple
 as two PCs and a printer
 in someone's home
 office,

LAN (Ethernet/Wireless Wi-Fi)

MAN

- A metropolitan area network (MAN) is a network with a size between a LAN and a WAN
- It normally covers the area inside a town or a city
- It is designed for customers who need high-speed connectivity, normally to the Internet, and has end-points spread over a city or part of city
- A good example of a MAN is that part of a telephone company's network that can provide a high-speed DSL line to the customer
- Another example is the cable network that was originally designed for cable television, but today can also be used for high-speed data connection to the Internet

WAN

A wide area network (WAN) provides
long-distance transmission of data over large
geographic areas that may comprise a country, a
continent, or even the whole world

WAN

TCP/IP protocol suite

- To divide the services required to perform a task, the
 Internet has created a set of rules called protocols
- These allow different local and wide area networks, using different technologies, to be connected together and carry a message from one point to another
- The set, or *suite*, of protocols that controls the
 Internet today is referred to as the TCP/IP protocol suite

TCP/IP protocol suite

- The original TCP/IP protocol suite was defined as having four layers: host-to-network (or link), internet (network), transport and application
- However, the TCP/IP protocol suite today is normally considered as a five-layer model:

TCP/IP protocol suite

- Here we show the layers involved when a message is sent from device A to device B
- As the message travels from A to B, it may pass through many routers
- Routers use only the first three layers

Transport layer address (port numbers)

- The IP address of the server is necessary for communication, but more is required
- The server computer may be running several processes at the same time, e.g. an FTP server process and an HTTP server process
- When the message arrives at the server, it must be directed to the correct process
- We need another address for server process identification, called a port number

Transport layer protocols: TCP

- Transmission Control Protocol (TCP) supports all the duties of a transport layer
- However, it is not as fast and as efficient as UDP
- TCP uses sequence numbers, acknowledgment numbers, and checksums
- It also uses buffers at the sender's site

The transport layer is responsible for the logical delivery of a message between client and server processes.

Network layer: IP

The network layer is responsible for the delivery of individual packets from the source host to the destination host.

- The TCP/IP protocol suite supports one main protocol (IP) and several auxiliary protocols to help IP to perform its duties
- In the TCP/IP protocol suite, the main protocol at the network layer is Internet Protocol (IP)
- The current version is IPv4 (version 4) although
 IPv6 is also in use, although not ubiquitously
- IPv4 is responsible for delivery of a packet from the source computer to the destination computer
- For this purpose, every computer and router in the world is identified by a 32-bit IP address, which is presented in **dotted decimal notation**

Network layer: network layer protocols

- The notation divides the 32-bit address into four 8-bit sections and writes each section as a decimal number between 0 and 255 with three dots separating the sections
- For example, an IPv4 address
 00001010 00011001 10101100 00001111
 is written as

10.25.172.15

in dotted decimal notation

Network layer: network layer protocols

- At a message's source the IPv4 protocol adds the source and destination IP address to the packet passed from the application
- The packet is then ready for its journey
- However, the actual delivery is done by the data link and physical layer
- The address range of IPv4 (32 bits) can define up to 2³² (more than 4 billion) different devices
- However, the way in which addresses have been allocated in the past has created address depletion

Data link layer addresses

 The Ethernet protocol, the most prevalent LAN in the use today, uses a 48-bit address, which is normally written in hexadecimal format (group in 6 sections, each with two hexadecimal digits) as shown below

07:01:02:11:2C:5B

Data link addresses are often called physical addresses or media access control (MAC) addresses

The data link layer is responsible for node-to-node delivery of frames.

- The physical layer coordinates the functions required to carry a bit stream over a physical medium
- Although the data link layer is responsible for moving a frame from one node to another, the physical layer is responsible for moving the individual bits that make up the frame to the next node
- In other words, the unit of transfer in the data link layer is a frame, while the unit of transfer in the physical layer is a bit

- •L3 IP-address, router/poyтep/маршрутизатор transmits packets (host-to-host communication)
- •L2 MAC-address, hub/switch/коммутатор transmits frames (node-to-node)
- •L1 transmits bits

- •G generation (Поколение)
- •1G -
- •2G GSM (CSD 9.6Kbit/s)
- •2.5G GPRS 114 Кбит/с
- •2.75G EDGE 473,6 Кбит/с
- •3G UMTS 28 Мбит/с
- •4G LTE 326,4 Мбит/с

- •PAN (BlueTooth)
- •LAN (Ethernet/Wireless)
- •MAN (ADSL/FTTB/GPON)
- •WAN ()

- •Win8.1 change Public Network profile to Private
- •Win+R --> regEdit
- •HKLM/Software/Microsoft/Windows NT/CurrentVersion/NetworkList/Profiles
- •"Category" могут быть следующие:
- •0 "Общедоступная сеть".
- •1 "Частная сеть".
- •2 Сеть домена.

http://profit.kz/
http://tengrinews.kz/tech/
http://www.habrahabr.ru
http://www.computerworld.kz/
http://xakep.ru
http://www.securitylab.ru/
http://ictmagazine.kz/ and so on...

•Homework every day.

Thank you for attention!

A STATES A STATES A STATES A STATES A STATES A STATES