
Good written code
Use indentation to highlight the structure 

of code 



Some important best practices for writing readable code:

1 - Commenting & Documentation

The comment should disclose things that can not be 
immediately learned from the code.



2 - Consistent Indentation

But that is only a matter of preference. There is no "best" style that everyone should be following. 
Actually, the best style, is a consistent style. If you are part of a team or if you are contributing code 
to a project, you should follow the existing style that is being used in that project.



When you use unclear and non-descript names for variables, classes, 
and functions, you’re essentially obfuscating the application logic 
from any programmer who reads the code, including yourself.

3. Use Descriptive Names

What does a variable named dxy actually mean? Who knows. You’d probably have 
to read the entire chunk of code to reverse engineer its meaning. On the other 
hand, the meaning of a variable like distanceBetweenXY is instantly 
recognizable.

But, this doesn't necessarily apply to temporary 
variables. They can be as short as a single 
character.

Consistent Naming Scheme

mysql_real_escape_string()

MysqlRealEscapeString()



4 - Avoid Obvious Comments



5 - Code Grouping



6 - DRY Principle

DRY stands for Don't Repeat Yourself. Also 
known as DIE: Duplication is Evil.



7 - Avoid Deep Nesting
Too many levels of nesting can make code harder to read and 
follow.



Functions and procedures   



Computer programs can consist of thousands of lines of code, 
just like a textbook can have thousands of words.
In the same way that a textbook is divided into chapters, a 
program is divided into related functionality using modules.



The C # program is built from modules, the role of 
which is performed by classes.
The functionality of the class is provided by methods.

In C #, these methods are of two kinds: procedures and 
functions.

The syntax for declaring a method allows you to uniquely 
determine what the method is, a procedure or a function.



<access modifier> void <name> (parameters) 
{
body procedures
}

<access modifier> <type> <name> (parameters)
{
Body functions
Return <type>;
}

Example

What is the class name?
How many methods does the class include?
What are the names of these methods?
What access modifier?
What kind of methods, procedures or functions?
What events correspond to the methods?
What actions are performed when these methods are 
called?
What parameters?



Global variable - declared at the start of the program, 
their global scope means they can be used in any 
procedure or subroutine in the program

Local variable declared within subroutines or programming blocks, 
their local scope means they can only be used within the subroutine 
or program block they were declared in



<access modifier> void <name> (parameters) 
{
body procedures
}

<access modifier> <type> <name> (parameters)
{
Body functions
Return <type>;
}

What are the differences?

Procedure Function
returns a formal result void 
indicating that there is no result

always computes a value returned as 
the result of the function

call procedure is the operator of the 
language

is called in expressions



What are the procedures and functions for?

•They help you structure your code

•They allow you to create a common routine once and re-use as many 
times as you want

•They allow you to share code with other programs

•They allow you to test sub routines independently of the rest of the code



Draw a triangle and 
calculate its area














