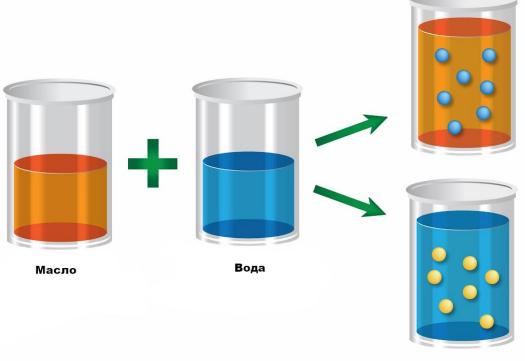

Дисперсные системы

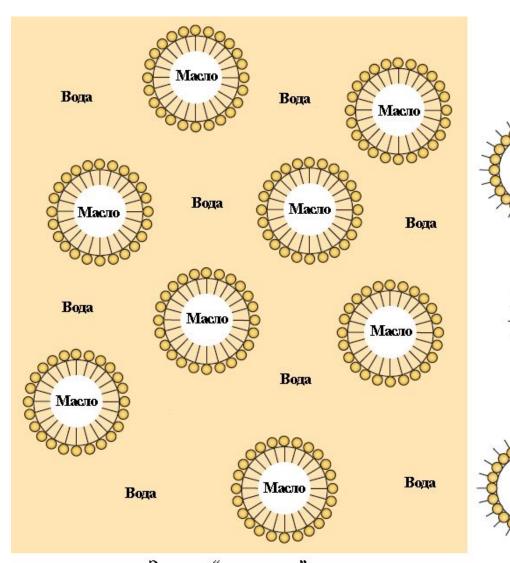

Эмульсии. Пены. Порошки.

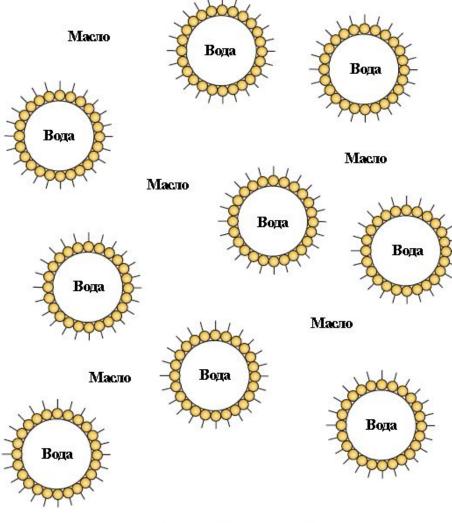
Системы с жидкой дисперсионной средой. Эмульсии

Эмульсии — это свободнодисперсные системы, в которых среда и фаза являются жидкостями. Обе жидкости, образующие эмульсию, должны быть нерастворимы или мало растворимы друг в друге, и в системе должен присутствовать стабилизатор.

Дисперсионная среда - масло Дисперсная фаза - вода

Дисперсионная среда - вода Дисперсная фаза - масло Эмульсии классифицируют либо по полярности дисперсной фазы и дисперсионной среды, либо по концентрации дисперсной фазы в системе.

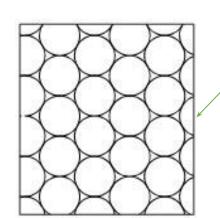

Согласно первой классификации различают:

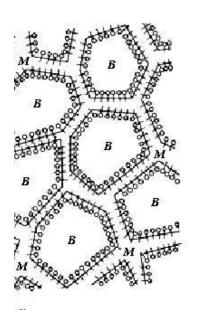

Эмульсии 1-го рода (прямые) – капельки органической жидкости (масла) распределены в водной среде. Такие эмульсии обозначают как М/В.

Эмульсии 2-го рода (обратные) — капельки воды диспергированы в органической жидкости. Это эмульсии типа В/М.

Множественные эмульсии – дисперсная фаза содержит капельки дисперсионной среды. Такие более сложные системы обозначают как M/B/M или B/M/B.

Эмульсии типа «масло-вода» и «водамасло»

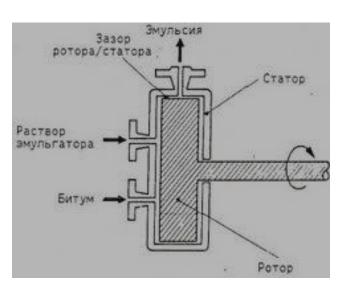




По концентрации эмульсии подразделяют на разбавленные, концентрированные и высококонцентрированные.

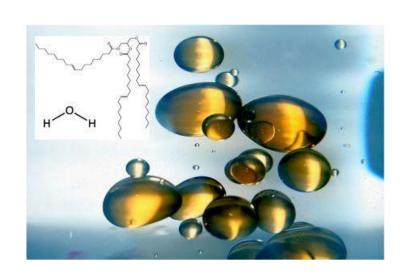
- Разбавленные 0,01-0,1%
- *Концентрированные эмульсии* содержат до 74 % дисперсной фазы.
- Высококонцентрированные или желатинированные эмульсии содержат до 90% дисперсной фазы.

Высококонцентрированные эмульсии, в которых достигнута максимально возможная концентрация дисперсной фазы, называют предельными или предельно концентрированными.


Строение высококонцентрированной эмульсии В/М.

В большинстве случаев эмульсии получают диспергированием. Тип получаемой эмульсии зависит:

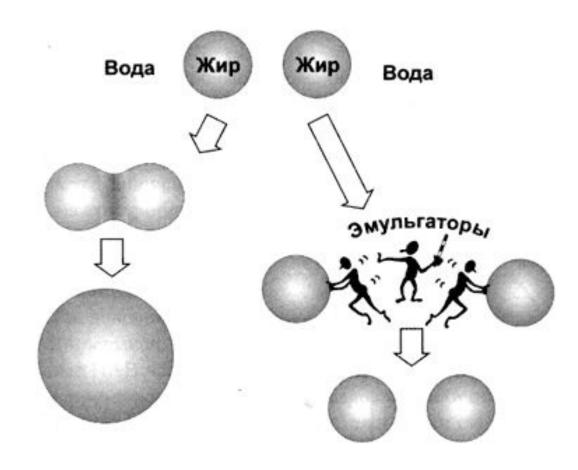
- ✓ от порядка смешения фаз,
- ✓ природы и способа введения эмульгатора,
- ✓ техники эмульгирования,
- ✓ соотношения объемов жидкостей: жидкость, присутствующая в существенно большем количестве, обычно становится дисперсионной средой.


Если желательно получить эмульсию масла в воде, то масляную фазу по частям добавляют к воде, причем эмульгатор растворяют перед смешением фаз либо в воде, либо в масляной фазе. Системы B/M непосредственно образуются при добавлении воды в масляный раствор эмульгатора.

Наиболее эффективный аппарат для получения эмульсий – коллоидная мельница.

Эмульсии, как и все микрогетерогенные системы, агрегативно неустойчивы. Их агрегативная неустойчивость проявляется в самопроизвольном слиянии капелек друг с другом.

Агрегативную устойчивость эмульсий характеризуют либо *скоростью расслаивания*, либо *продолжительностью существования* отдельных капелек в контакте друг с другом или с межфазной поверхностью



Эмульгаторы

На агрегативную устойчивость эмульсии сильнее всего влияют природа и содержание в системе эмульгатора.

С термодинамической точки зрения эмульгатор, адсорбируясь на межфазной границе, понижает межфазное натяжение σ.

Водорастворимые эмульгаторы лучше стабилизируют прямые эмульсии, а маслорастворимые эмульгаторы — обратные эмульсии, при этом эмульгатор препятствует слиянию капелек только тогда, когда он находится у поверхности с наружной стороны капельки, т.е. лучше растворяется в дисперсионной среде.

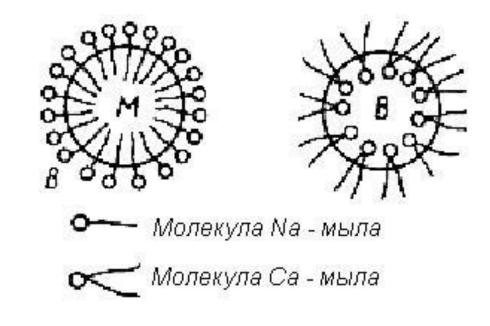
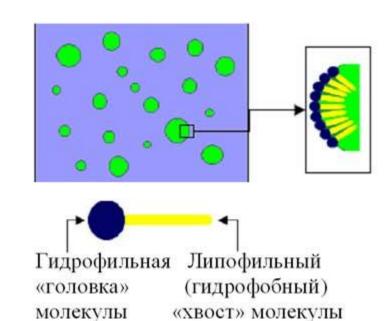
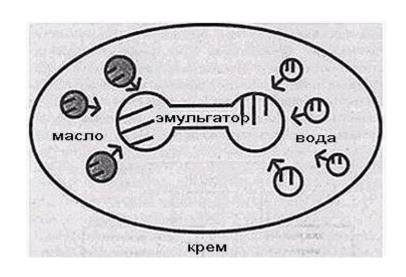
В качестве эмульгаторов могут применяться самые разнообразные по природе вещества:

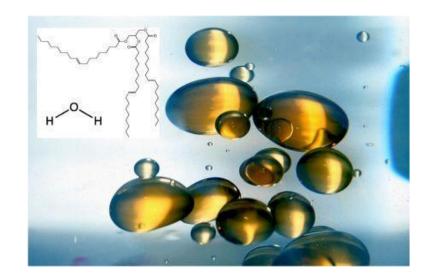
- **✓** ПАВ,
- ✓ молекулы которых содержат ионогенные полярные группы (мыла),
- ✓ неионогенные ПАВ,
- ✓ высокомолекулярные соединения (ВМС).
- У Эмульгирующей способностью обладают также порошки.

Стабилизация эмульсий с помощью неорганических электролитов невозможна вследствие недостаточной адсорбции их ионов на межфазной границе М/В.

Способность эмульгатора обеспечивать высокую устойчивость эмульсии определяется строением молекулы ПАВ и энергией ее взаимодействия с полярной или неполярной средами.

Согласно «теории ЭМУЛЬСИИ клина» прямые масла в воде образуются при введении в систему молекул ПАВ СИЛЬНО гидратированной («крупной») полярной группой и умеренно развитой гидрофобной частью (например, олеат натрия).

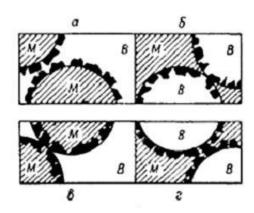




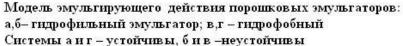

Рис. 3.3. Схема стабилизации эмульсий мылами

Соотношение гидрофильных и липофильных свойств молекул ПАВ называют ГЛБ.

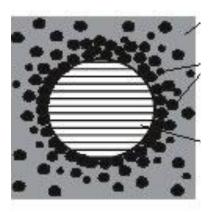
Обратные эмульсии, согласно этим представлениям, стабилизируются молекулами ПАВ со слабо гидратированной («небольшой») полярной группой и сильно развитой углеводородной частью, предпочтительно содержащей 2-3 углеводородные цепи

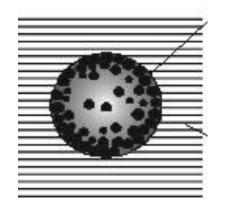
Эмульгаторы


• Для получения эмульсий медицинского назначения особенно широко применяются оксиэтилированные неионогенные ПАВ. Вещества типа Плюроник могут применяться для получения дисперсий лекарственных препаратов, вводимых в систему кровообращения. Они были использованы для эмульгирования перфторуглеродов, предложенных в качестве переносчиков кислорода в искусственной крови. ПАВ типа Твин используются чаще всего для получения лекарственных эмульсий наружного применения.

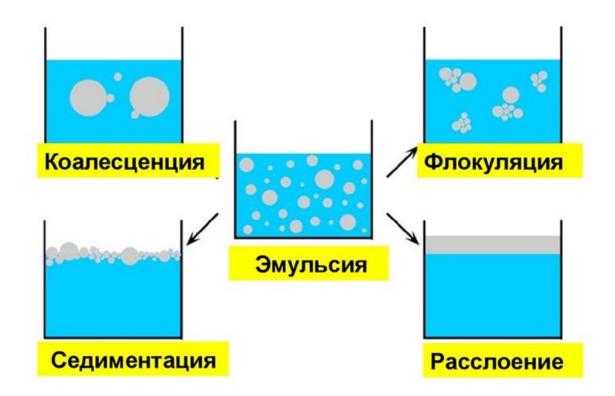

Интересными свойствами обладают природные эмульгаторы *лецитин и холестерин*.

Из других природных эмульгаторов хорошо изучены сапонины и белки – альбумин, казеин, желатин.

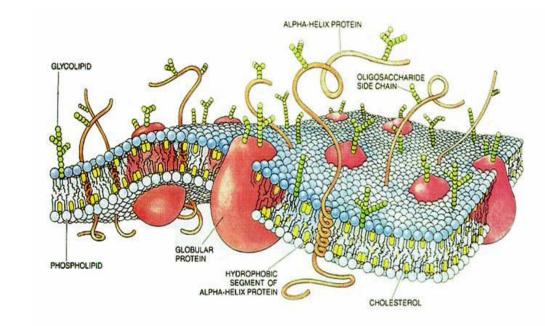

Эмульгаторы


Хорошей стабилизирующей способностью обладают не только ПАВ, но и тонко измельченные порошки, не обладающие поверхностной активностью, например, мел, глина, сажа, гипс.

Стабилизация эмульсии твердым эмульгатором возможна только при условии, что размер частиц порошка меньше размера капелек эмульсии.



Разрушение эмульсий


К разрушению эмульсий ведут три процесса:

- ✔ Коалесценция при недостаточной агрегативной устойчивости эмульсии необратимый процесс;
- ✓ коагуляция или флокуляция обратимые процессы;
- ✓ седиментация всплывание или оседание капель дисперсной фазы, приводящее к образованию слоя «сливок».

• Важным объектом разносторонних исследований стали в последнее время изолированные эмульсионные пленки, особенно пленки обратных эмульсий. Стабилизированные ПАВ пленки углеводородов в водной среде являются простейшей и вместе с тем наиболее близкой по природе моделью биологических мембран

Интересные результаты получены при изучении ионного транспорта через подобные мембраны и электропроводности элементарных пленок обратных эмульсий

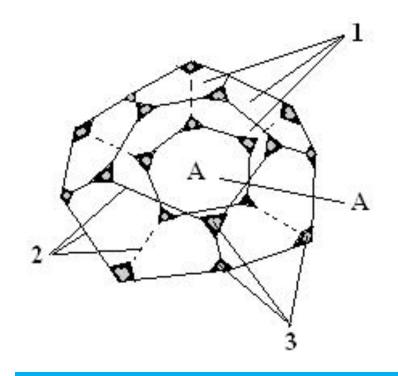
Применени

- Усвоение жиров проходит через стадию их эмульгирования;
- Эмульсии относят к жидким лекарственным формам.

ПЕНЫ И ГАЗОВЫЕ ЭМУЛЬСИИ

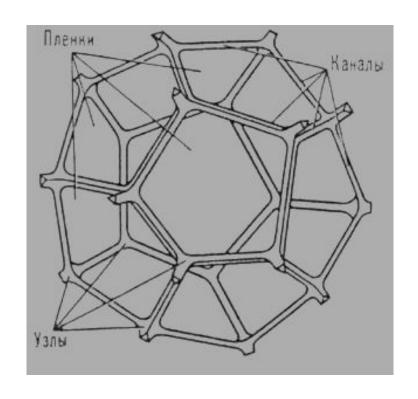
Жидкая пена представляет собой систему, в которой дисперсной фазой является газ или пар, а дисперсионной средой – жидкость.

К пенам относятся концентрированные и высококонцентрированные системы.


Низкоконцентрированные системы (содержание дисперсной фазы менее 0.1%), в которых газовые пузырьки находятся на сравнительно большом расстоянии друг от

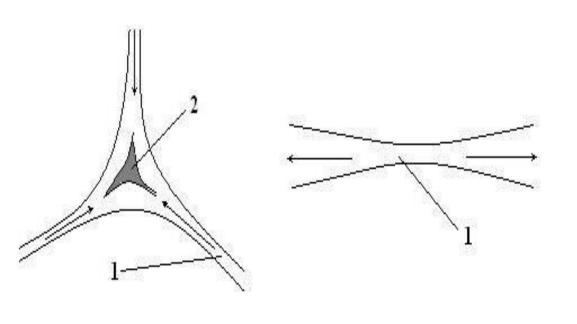
СТРОЕНИЕ ПЕН

Характерной идеализированной фигурой ячеек является *пентагональный додекаэдр* - двенадцатигранник с пятиугольными гранями, имеющий 30 ребер и 20 вершин, где грани ячеек – тонкие жидкие пленки.


Пленки жидкости, находящиеся между пузырьками, образуют так называемые треугольники Плато. В каждом ребре многогранника сходятся три жидкие пленки, которые являются стенками пузырьков. Эти пленки образуют между собой углы, близкие к 1200. Сечение пленки жидкости пены по линии АА.

1-пленка жидкости, 2-каналы, 3-узлы

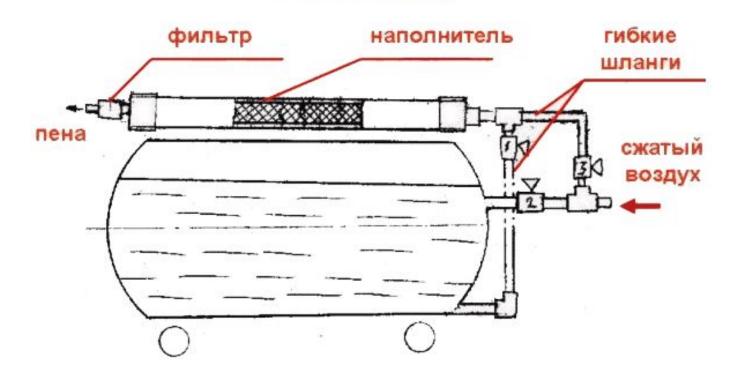
СТРОЕНИЕ ПЕН


В местах стыков пленок образуются утолщения, которые называют каналами. Каналы в поперечном сечении являются треугольниками. Четыре канала сходятся в одной точке, создавая узлы. Каналы и узлы пронизывают всю структуру пены.

Жидкие пленки в центре плоскопараллельны. Вблизи каналов они утолщаются и становятся вогнутыми.

Способы получения пен

Пены могут быть получены как диспергационными, так и конденсационными методами.


1-пленка, 2-канал

Пена образуется и при механическом перемешивании газа с жидкостью, что можно наблюдать при флотации, стирке и других процессах.

Способы получения пен

Образование пены в *пеногенераторах* различных конструкций происходит на сетке или наполнителе; при этом, задавая расход воздуха и пенообразователя, можно получить пену заданной кратности.

Пеногенератор

УСТОЙЧИВОСТЬ ПЕН

- •Из всех дисперсных систем с жидкой дисперсионной средой пена самая неустойчивая. Время ее жизни определяется временем существования пленки жидкости.
- •Вспенивание идеально чистых жидкостей происходит при скорости газа 0.7-1.3 м/с. Снижение скорости газа практически мгновенно вызывает исчезновение пены.
- •Сапонины, красители и ВМС (белки) образуют пены, устойчивость которых увеличивается с повышением концентрации

Стабилизация пен

Устойчивые пены получают при диспергировании газа в жидкости, содержащей стабилизаторы или, как их называют в данном случае, пенообразователи. В качестве пенообразователей можно использовать различные ПАВ.

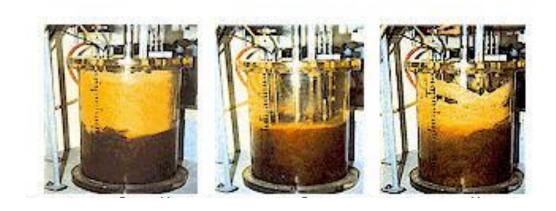
Механизм стабилизации жидких пен заключается в том, что в результате введения веществ в тонком слое жидкости, составляющем оболочку пены, образуются адсорбционные слои. Адсорбция вызывает изменение поверхностного натяжения на границе воды с воздухом. В результате уменьшения поверхностного натяжения замедляется отток жидкости из пены, что приводит к увеличению ее устойчивости.

Пенообразователи делят на два типа.

Пенообразователи 1-го рода – низшие спирты, кислоты.

Пенообразователи 2-го рода – ВМС - белки, сапонины – гликозиды, выделяемые из растений, и т.д.

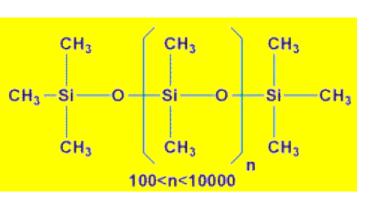
Разрушение пен

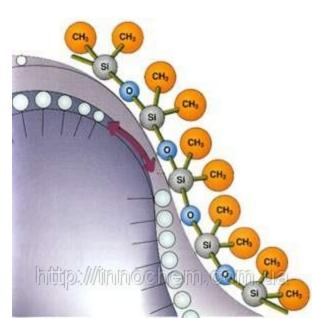

Пену разрушают с помощью различных методов:

действием перегретого пара – при этом происходит испарение жидкости из пленок пены;

ультразвука частотой от 1 до 1000 кГц.

Механические методы заключаются в разбивании пены **с помощью мешалок, крыльчаток, циклонов**, вращающихся с частотой порядка 3000 мин⁻¹.




Разрушение пен

Одним из способов пеногашения является **введение** в систему так называемых *пеногасителей* (спирты, органические кислоты и эфиры, а также кремний- и фосфорорганические соединения). По Ребиндеру пеногасителями являются ПАВ, имеющие более высокую поверхностную активность, чем пенообразователи

. В производстве антибиотиков, витаминов, дрожжей, сахара для гашения пен используют растительные масла (подсолнечное, соевое), животные жиры, кремнийорганические полимеры (полиметилсилоксаны).

Применение пен

Образование пены является положительным фактором при стирке.

Пены используют для проверки герметичности сварных швов.

Исключительно значение пен в противопожарном деле.

В пенном режиме могут проводиться технологические процессы, связанные с массообменом (абсорбция газов жидкостями, удаление летучих компонентов из жидкой фазы). В частности, насыщение крови кислородом осуществляется в пенных аппаратах - «искусственное легкое». Пенные аэрозоли используют в качестве кровеостанавливающих и противоожоговых средств.

Концентрация бактерий в ней в сотни и тысячи раз выше, чем в водной толще. Стабилизация такой пены происходит за счет «своих» ПАВ — продуктов жизнедеятельности и разложения организмов, обитающих в морской воде.

Системы с газовой дисперсионной средой. Порошки

Порошки представляют собой свободнодисперсные системы с газообразной дисперсионной средой и твердой дисперсной фазой. Порошки обычно полидисперсны.

Классификация порошков

Порошки классифицируют в зависимости от размеров частиц:

песок $2 \cdot 10^{-2} - 1 \cdot 10^{-5}$ м

пыль...... $2 \cdot 10^{-5} - 1 \cdot 10^{-6}$ м

пудра.....< 2⋅10⁻⁶ м.

Получение

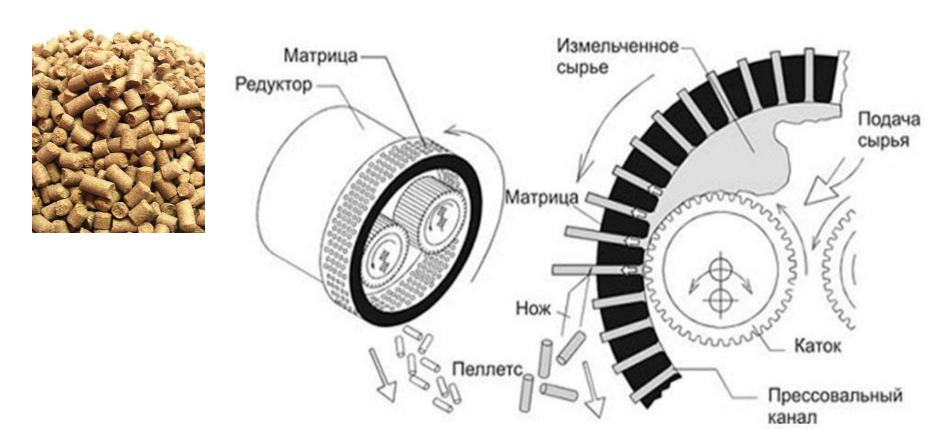
- 1. **Физико-механические** способы получения. В основе производства порошков лежат процессы окисления, восстановления, электролиза.
- 2. Очень часто для получения порошков применяют метод осаждения из растворов.

Свойства порошков

Под *насыпной плотностью* понимают массу единицы объема порошка, свободно насыпаемого в какую-либо емкость.

Под *слипаемостью* имеют в виду склонность частиц порошка к образованию агрегатов.

Явления распыления и *флуидизации* используется в промышленности.


Свойства порошков

Сыпучестью называют подвижность частиц порошка относительно друг друга и способность перемещаться под действием внешней силы.

Гигроскопичность и смачиваемость - это способность порошка поглощать влагу из окружающей среды.

Влажностью называют отношение массы влаги в материале ко всей массе материала. Влагосодержание — это отношение массы влаги в материале к массе абсолютно сухого материала.

Гранулированием называют процесс образования в порошкообразной массе конгломератов шарообразной или цилиндрической формы, более или менее однородных по величине.

По составу фармацевтические порошки могут быть одно- и многокомпонентными

ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ ПОРОШКОВ

• ПИЩЕВАЯ ПРОМЫШЛЕННОСТЬ (мука, крахмал, сахарный песок, сахарная пудра, специи, молотые кофе и какао, сухое молоко и сливки, различные крупы и др.)

Порошки для приготовления растворов

химическая промышленность

1. МИНЕРАЛЬНЫЕ УДОБРЕНИЯ (АЗОТНЫЕ – продукт нефтехимии).
2. БЫТОВАЯ ХИМИЯ И ФАРМАЦЕВТИКА

Задание

1. Посмотрите видео:

https://www.youtube.com/watch?v=KQIIZzNGqyc

2. Заполнить таблицу:

Название дисперсной системы	Определени е	Характеристика	Способы получени я	Применение

3. Какое значение имеют дисперсные системы в ваше профессиональной деятельности, приведите примеры.