
CMPE 466
COMPUTER 
GRAPHICS
Chapter 7
2D Geometric Transformations

Instructor: D. Arifler

Material based on
- Computer Graphics with OpenGL®, Fourth Edition by Donald Hearn, M. Pauline Baker, and Warren R. Carithers
- Fundamentals of Computer Graphics, Third Edition by by Peter Shirley and Steve Marschner
- Computer Graphics by F. S. Hill
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Basic geometric transformations
• Translation
• Rotation
• Scaling
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2D translation

3

Figure 7-1   Translating a point from 
position P to position P’ using a 
translation vector T.



2D translation equations
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Translation is a rigid-body transformation: Objects are moved without
deformation.



2D translation example
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Figure 7-2   Moving a polygon from position (a) to position (b) 
with the translation vector (−5.50, 3.75).



2D translation example program
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2D rotation
• All points of the object are transformed to new positions 
by rotating the points through a specified rotation angle 
about the rotation axis (in 2D, rotation pivot or pivot point)
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Figure 7-3   Rotation of an 
object through angle θ about 
the pivot point (xr , yr ).



2D rotation
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Figure 7-4   Rotation of a point from position (x, y ) to position 
(x', y' )  through an angle θ relative to the coordinate origin. 
The original angular displacement of the point from the x axis 
is Φ.

Setting

we have



2D rotation in matrix form

9

Rotation is a rigid-body transformation: Objects are moved without
deformation.

Equations can be compactly expressed in matrix form:



Rotation about a general pivot point
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Figure 7-5   Rotating a point from position (x , y ) to position 
(x' , y' ) through an angle θ about rotation point (xr , yr ).



2D rotation example
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// Make necessary allocations!!



2D scaling
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sx and sy are scaling factors
sx scales an object in x direction
sy scales an object in y direction

If sx=sy, we have uniform scaling: Object proportions are maintained.
If sx≠sy, we have differential scaling. 
Negative scaling factors resizes and reflects the object about one or more 
of the coordinate axes.



2D scaling
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Figure 7-6   Turning a square (a) into 
a rectangle (b) with scaling factors sx = 2 and sy = 1.

Scaling factors greater than 1 produce 
enlargements.



2D scaling
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Figure 7-7   A line 
scaled with Equation 
7-12 using sx = sy = 
0.5 is reduced in size 
and moved closer to 
the coordinate origin.

Positive scaling values less than 1 reduce the size of objects.



Scaling relative to a fixed point
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Figure 7-8   Scaling relative to a chosen fixed point (xf , yf ). The 
distance from each polygon vertex to the fixed point is scaled by 
Equations 7-13.

Fixed point remains
unchanged after the 
scaling transformation.



2D scaling relative to a fixed point
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2D scaling example
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// Make necessary allocations!!



Matrix representations and homogeneous 
coordinates
• Multiplicative and translational terms for a 2D 
transformation can be combined into a single matrix

• This expands representations to 3x3 matrices
• Third column is used for translation terms

• Result: All transformation equations can be expressed as 
matrix multiplications

• Homogeneous coordinates: (xh, yh, h)
• Carry out operations on points and vectors “homogeneously”
• h: Non-zero homogeneous parameter such that

• We can also write: (hx, hy, h)
• h=1 is a convenient choice so that we have (x, y, 1)
• Other values of h are useful in 3D viewing transformations

18



2D translation matrix
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2D rotation matrix
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2D scaling matrix
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Inverse transformations
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Inverse translation

Inverse rotation

Inverse scaling



Composite transformations
• Composite transformation matrix is formed by calculating 
the product of individual transformations

• Successive translations (additive)
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Composite transformations
• Successive rotations (additive)

• Successive scaling (multiplicative)
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2D pivot-point rotation
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Figure 7-9   A transformation sequence for rotating an object about a 
specified pivot point using the rotation matrix R(θ) of transformation 
7-19.



2D pivot-point rotation
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Note the order of operations:



2D fixed-point scaling
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Figure 7-10  A transformation sequence for scaling an object with 
respect to a specified fixed position using the scaling matrix S(sx , sy ) of 
transformation 7-21.



2D fixed-point scaling
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Matrix concatenation properties
• Multiplication is associative

• Multiplication is NOT commutative
• Unless the sequence of transformations are all of the same kind
• M2M1 is not equal to M1M2 in general
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Computational efficiency
• Formulation of a concatenated matrix may be more 
efficient

• Requires fewer multiply/add operations
• Rotation calculations require trigonometric evaluations

• In animations with small-angle rotations, approximations (e.g. 
power series) and iterative calculations can reduce complexity
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Other transformations: reflection
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Figure 7-16   Reflection of an object about the x 
axis.



Reflection
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Figure 7-17   Reflection of an object about the y 
axis.



Reflection
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Figure 7-18   Reflection of an object relative to the coordinate 
origin. This transformation can be accomplished with a 
rotation in the xy plane about the coordinate origin.



Reflection
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Figure 7-19   Reflection of an object relative to an axis 
perpendicular to the xy plane and passing through point 
Preflect.



Reflection
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Figure 7-20   Reflection of an object with respect to the line y 
= x .



Other transformations: shear
• Distorts the shape of an object such that the transformed 
shape appears as if the object were composed of internal 
layers that had been caused to slide over each other
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Figure 7-23   A unit square (a) is converted to a 
parallelogram (b) using the x -direction shear matrix 7-57 
with shx = 2.



Shear
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Figure 7-24   A unit square (a) is transformed to a shifted parallelogram 
(b) with shx = 0.5 and yref = −1 in the shear matrix 7-59.



Shear
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Figure 7-25   A unit square (a) is turned into a shifted parallelogram (b) with 
parameter values shy = 0.5 and xref = −1 in the y -direction shearing transformation 
7-61.



Transformations between 2D coordinate 
systems
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Figure 7-30   A Cartesian x' y'   system 
positioned at (x0, y0) with orientation θ in an xy 
Cartesian system.

Figure 7-31   Position of the reference frames 
shown in Figure 7-30 after translating the origin 
of the x' y' system to the coordinate origin of the 
xy system.

Transform object descriptions from xy coordinates to x’y’ coordinates



Transformations
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x’y’ system can be obtained by rotation of xy
by Θ counter-clockwise

xy system can be obtained by rotation of x’y’
by Θ clockwise. For this, you can also
assign the elements of x’ to the first row 
of the rotation matrix and the elements of y’ 
to the second row.

P=(x,y) in system xy
P=(x’,y’) in system x’y’

x’=xcosΘ+ysinΘ
y’=-xsinΘ+ycosΘ

Example: Transform from xy to x’y’ frame:



Transformations between coordinate 
systems
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Alternative method
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Figure 7-32   Cartesian system x' y'  with origin at P0 = (x0, y0) and y'  axis parallel to vector V.



Transformations
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Figure 7-33   A Cartesian x ' y'  system defined with two 
coordinate positions, P0 and P1, within an xy reference frame.



Example: Rotating points vs. rotating 
coordinate systems
• Consider the following transformation:

• Rotation of points through 30o about point v=(-2, 3)T

• Translate the point through vector –v=(2, -3)T

• Rotate about origin through 30o

• Translate the point back through v=(-2, 3)T

• Hence the composite transformation is:
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Example continued
• You may think of this as mapping the origin and i and j 
axes into system 2

• The columns of the matrix in the previous slide reveal the 
transformed coordinate system
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i

j

System 1

System 2



Example continued
• Now consider the point P=(x(2),y(2),1)T in System 2
• What are the coordinates of this point expressed in terms 
of the original System 1?

• The answer is MP
• For example, (1, 2, 1)T in System 2 lies at (1.098, 3.634,1)T 

in System 1
• Now, consider the point P=(x(1),y(1),1)T in System 1
• What are the coordinates of this point expressed in terms 
of System 2?

• The answer is M-1P
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OpenGL matrix operations
• glMatrixMode ( GL_MODELVIEW )

• Designates the matrix that is to be used for projection 
transformation (current matrix)

• glLoadIdentity ( )
• Assigns the identity matrix to the current matrix

• Note: OpenGL stores matrices in column-major order
• Reference to a matrix element mjk in OpenGL is a reference to the 

element in column j and row k
• glMultMatrix* ( ) post-multiplies the current matrix

• In OpenGL, the transformation specified last is the one 
applied first
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OpenGL transformation example
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OpenGL transformation example
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Figure 7-34   Translating a rectangle using the OpenGL 
function glTranslatef (−200.0, −50.0, 0.0).



OpenGL transformation example

50

Figure 7-35   Rotating a rectangle about the z axis using the OpenGL 
function glRotatef (90.0, 0.0, 0.0, 1.0).



OpenGL transformation example
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Figure 7-36   Scaling and reflecting a rectangle using the OpenGL 
function glScalef (−0.5, 1.0, 1.0).


