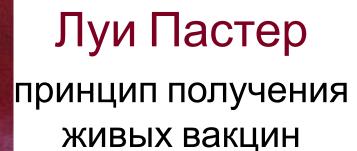
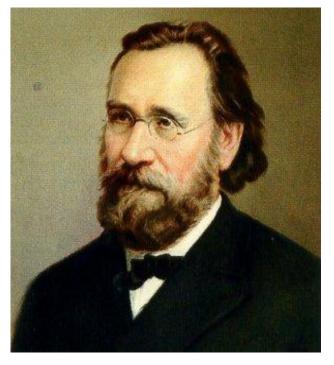

Понятие об иммунитете и его видах. Факторы врожденного иммунитета.




Основоположники иммунологии

Эдуард Дженнер прививка человеку

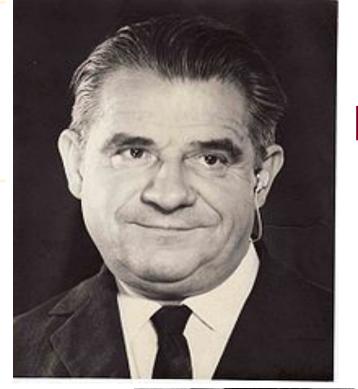
коровьей оспы

Илья Ильич Мечников

клеточная теория иммунитета

Габричевский Георгий Норбертоич

описал явления хемотаксиса лейкоцитов


Здродовский Павел Феликсович

обосновал физиологическое направление в иммунологии

Н. А. Гайский вакцины против чумы, туляремии

Лев Зильбер иммунология рака

Чумаков Михаил Петрович

вакцина против полиомиелита, кори, гриппа, паротита

Зарубежные исследователи «новой иммунологии» и современного периода:

Ф.М. Бернет - создание селекционно-клональной теории антителообразования, гибридомной технологии получения моноклональных антител

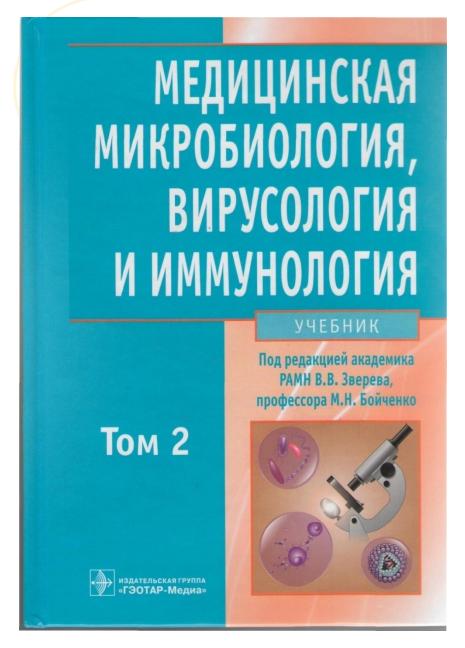
Ф.М. Бернет, П. Медовар — основоположники трансплантологии

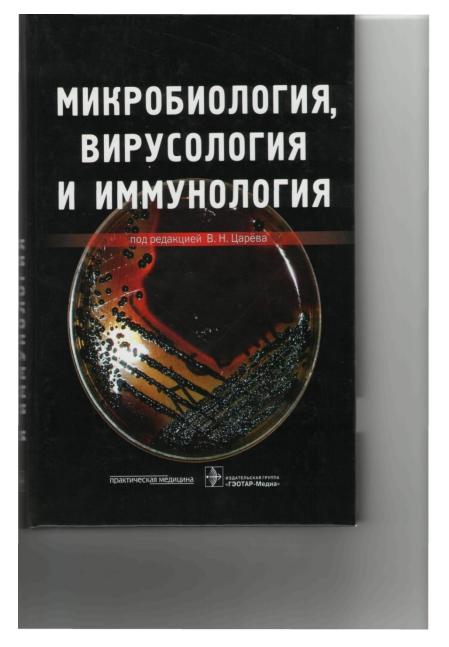
Д.Миллер - описание гетерогенности лимфоцитов и существования субпопуляций

Дохерти и Цинкернагель – феномен «двойного распознавания»

Основоположники отечественной «новой иммунологии» и современного этапа

- **А.Д.Адо** создатель клинической и экспериментальной аллергологии в России
- **Р. В. Петров** развитие отечественной неинфекционной иммунологии, генетический контроль иммунного ответа
- **А.А.Ярилин** фундаментальные исследования молекулярных и клеточных аспектов физиологии иммунной системы
- **В.А.Черешнев** исследования в области экологической иммунологии, причин формирования вторичных иммунодефицитов
- **Р.И.Сепиашвили** иммунореабилитология


Петров Рэм Викторови<mark>н</mark>


Москаленко Е.П., д.м.н. проф., засл. деятель науки России, зав.каф. микробиологии и вирусологии №2

Под ред. Зверева В.В.

Под ред. Царева В.Н.

<u>Иммунитет</u>

- это способ защиты живых многоклеточных организмов от потенциально опасных клеток и молекул, необходимый для

поддержания клеточного гомеостаза. Обеспечивается факторами

Врожденного иммунитета Адаптивного (приобретенного) иммунитета Защита осуществляется как от экзогенных агентов, проникающих из внешней среды, так и эндогенных агентов — видоизмененных молекул собственного организма.

Основной источник внешней биологической агрессии - микроорганизмы, внутренней — опухолевые клетки.

При формировании иммунного ответа наблюдается последовательная триада реакций:

1. распознавание потенциально опасных для организма объектов экзогенного и эндогенного происх кдения

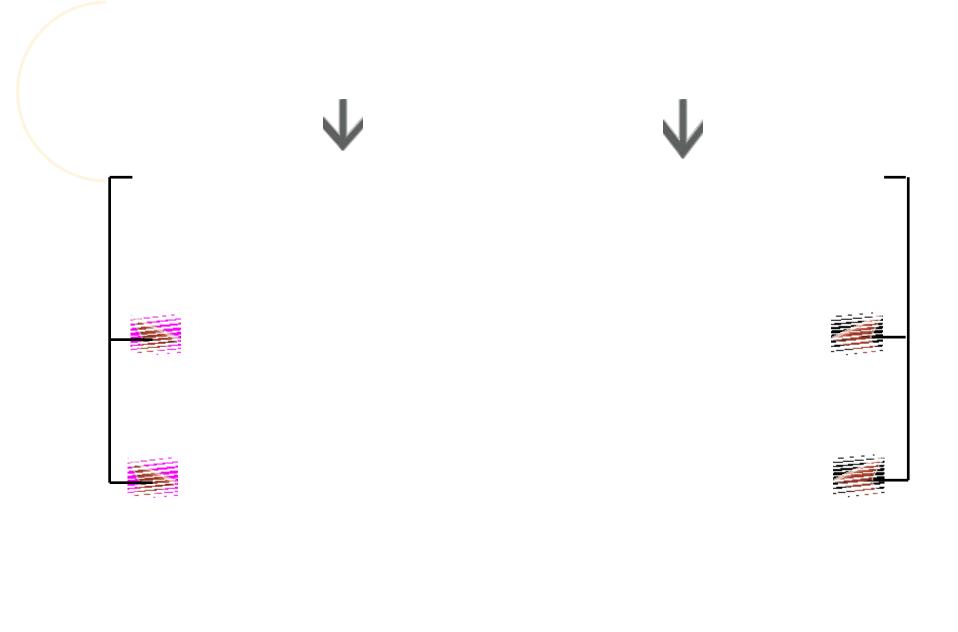
2. их

элимиация

3. запоминание информации о контакте с ними (формирование иммунологической памяти)

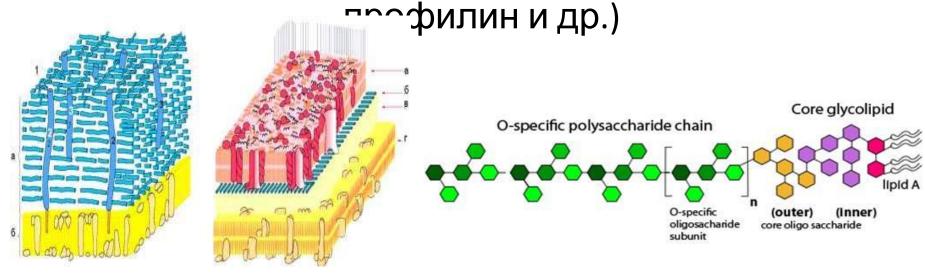
Классификация видов иммунитета по этиологической направленности

Классификация видов иммунитета по этиологической направленности


Классификация видов иммунитета по локализации

Классификация видов иммунитета по происхождению

Молекулы — мишени иммунитета:


1. PAMP -

образы патогенности, или патогенассоциированные молекулярные паттерны (Pathogen-associated molecular patterns) 2.

Антигены
3. Стрессорные молекулы и образцы опасности

PAMP -

группы молекул, отсутствующие в организмехозяина, но характерные для отдельных групп микроорганизмов, связанные с их патогенностью и заведомо опасные; не являются индивидуальными (эндотоксины Грам- бактерий, пептидогликан, микробные нуклеиновые кислоты или белки - флагеллин,

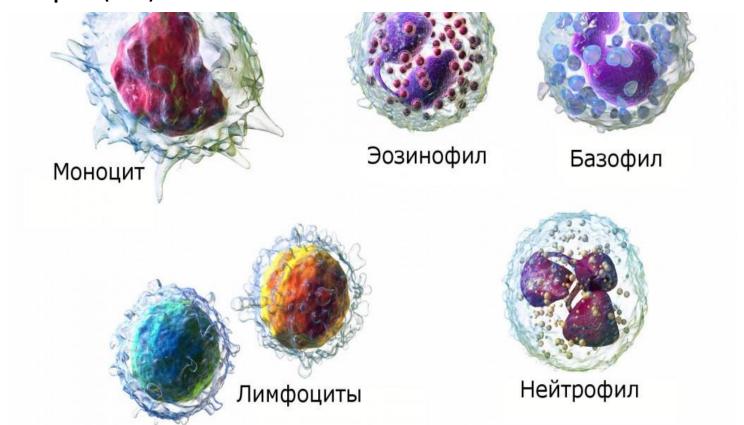
Антигены —

высокомолекулярные соединения, способные специфически стимулировать иммунокомпетентные лимфоидные клетки и обеспечивать тем самым развитие иммунного ответа

Стрессорные молекулы и образцы опасности —

собственные молекулы организма на мембранах клеток, сигнализирующие преимущественно об опасности эндогенного происхождения (трансформации, повреждении, клеточном стрессе)

Врожденный иммунитет —


наследственно закрепленная система защиты, объектом распознавания для которой являются РАМР и DAMP, формирующаяся в онтогенезе постоянно, вне зависимости от «запроса»

(возникла эволюционно раньше адаптивного):

- а). формируется в период внутриутробного развития организма;
- б). предсуществует в организме всегда, независимо от наличия/ отсутствия биологической агрессии;
- в). популяция клеток реагирует как единое целое, при этом клетки не образуют клонов;
- г). обеспечивает распознавание и элиминацию объектов в первые несколько минут или часов после их обнаружения;
- д). характерно вовлечение в процесс клеток других систем организма
- е). не формируется иммунологической памяти

Клетки врожденного иммунитета

- 1. <u>клетки миелоидного ряда</u> (сегментоядерные лейкоциты нейтрофилы, эозинофилы, базофилы; моноциты/макрофаги, дендритные клетки, тучные клетки)
- 2. <u>клетки лимфоидного происхождения</u> нормальные киллеры (NK)

Гуморальные факторы врожденного иммунитета

Система комплемента

Цитокиновая сеть

Нормальные антитела

<u>Белки воспаления</u> (острой фазы): пентраксины, в т.ч. С-реактивный белок

Бактерицидные пептиды: дефензины; белок, связывающий ЛПС, и др.

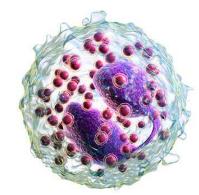
<u>Факторы развития аллергических реакций</u>: биогенные амины (гистамин, серотонин), эйкозаноиды и др.

Нейтрофилы

- созревают в костном мозге, после чего 70%
 депонируется на его территории, остальные выходят в кровоток;
- это наиболее многочисленная (50-70%) фракция лейкоцитов периферической крови, имеют 4 типа гранул;
- очень мобильны, под действием хемокинов экстренно мигрируют из кровотока в очаг тканевого воспаления;
- короткоживущие клетки, погибающие после миграции в ткань в течение 3-5 суток в результате апоптоза.

Основные функции:

- 1. фагоцитоз с молниеносным запуском внутриклеточного переваривания и наиболее выраженной его интенсивностью
- 2. секреция цитокинов


Эозинофи

гранулярные с**етмен**тоядерные лейкоциты крови (0,5-2,0%), после циркуляции в крови мигрирует в ткани, преимущественно пищеварительного тракта.

80

Основные функции:

- 1. уничтожение многоклеточных паразитов (гельминтов, мелких эукариотов) путем внеклеточного цитолиза;
- 2. разрушение вирусной РНК за счет фермє

Эозинофил

РНК-азы;

- 3. секреция цитокинов
- 4. обладают слабой фагоцитарной активностью

Базофилы и тучные клетки

Имеют сегментированное ядро, базофильные гранулы и дополнительные этапы созревания после костного мозга в селезенке и др. органах.

Базофилы являются клетками крови, но быстро мигрируют в ткани; мастоциты — тканевые н

Основные функции — участие в формирова

- 1. воспаления
- 2. реакций аллергической гиперчувствительности

Базофилы

3. защиты от многоклеточных паразитов

Дендритные клетки (ДК)

Гетерогенная популяция, преимущественно миелоидного ряда, малая часть — лимфоидного ряда.

Имеют характерную отростчатую форму.

Незрелые ДК мигрируют из кровотока в барьерные ткани (подтип ДК эпидермиса называется клетками Лангерганса).

Созревают при перемещении их из барьерных тканей в лимфу (вуалевые клетки), далее в Т-зоны лимфоузлов (интердигитальные клетки).

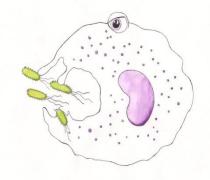
Зрелые миелоидные ДК заселяют селезенку, брыжеечные лимфоузлы, лимфоузы кожи; лимфоидные ДК - тимус.

<u>Основная функция:</u>

Моноциты и макрофаги (система

мононуклеарных фагоцитов)

Моноциты – циркулирующие в крови клетки, при миграции в ткань трансформируются в макрофаги и дендритные клетки.


Разновидности макрофагов:

- 1. резидентные (возникают при спонтанной миграции практически во все ткани, имеют различия в морфологии и названии в зависимости от типа ткани);
- 2. воспалительные (формируются при экстренной миграции в очаг воспаления)

Продолжительность жизни – 40-60 суток

Основные функции моноцитов/макрофагов:

- распознавание всех видов паттернов
- фаго- и пиноцитоз клеток-мишеней и клеточных фрагментов с последуюш внутриклеточным киллингом,

- секреция широкого спектра цитокинов (семейства ИЛ-1 и провоспалительных), гормонов, компонентов комплемента, белков межклеточного матрикса и др. (иммунорегуляция)
- процессинг и представление антигенов Тлимфоцитам

Естественные, или нормальные, киллеры

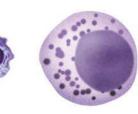
большие гранулярные лимфоциты; отделяются в костном мозге от Т-клеточной линии; мигрируют в периферические лимфоидные органы. Не имеют антигенраспознающих рецепторов.

Компоненты гранул: перфорины, гранзимы, гранулолизин

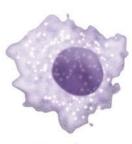
Распознают эндогенные стрессорные молекулы, появляющиеся на клетках-мишенях собственного Natural killer cell

иа при их трансформации, инфицировании

и, при клеточном стрессе и др.



Kill


Perforin

and

Основные маркеры:

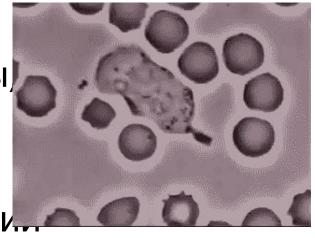
Natural killer cell

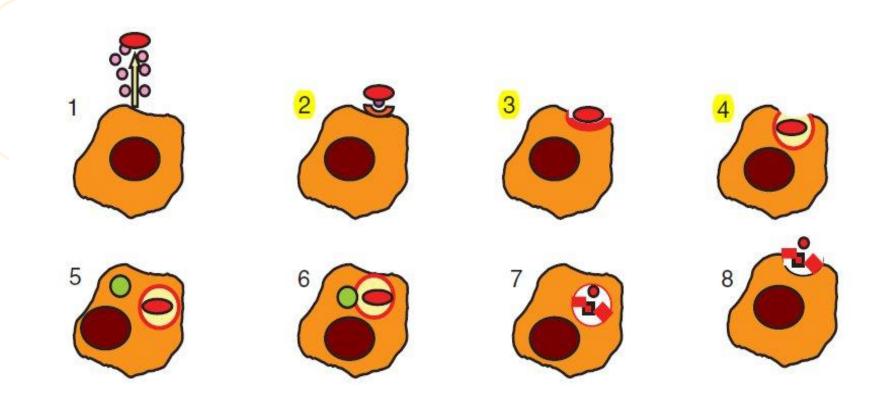
Monocyte

Macrophage

Фагоцитоз

 Это захват и поглощение специализированными клетками организма корпускулярных частиц размером не менее 0,5 мкм. Является одним из вариантов эндоцитоза.


Клетки, обладающие фагоцитарной активностью:


- 1. «Профессиональные» фагоциты Нф и Мн/Мф,
- 2. Прочие клетки эозинофилы, базофилы, тучные и дендритные клетки.

Стадии фагоцитоза

- . Хемотаксис,
- . Адгезия,
- . Активация мембраны,
- Погружение,
- . Образование фагосомы,
- Образование фаголизосомы)
- Киллинг и переваривание,
- Выброс продуктов деградаци....

Стадии фагоцитоза

1 — хемотаксис, 2 — адгезия, 3 - активация мембраны, 4 — погружение, 5 - образование фагосомы, 6 - образование фаголизосомы, 7 - киллинг и переваривание, 8 - выброс продуктов деградации

<u>В зависимости от реализации</u> бактерицидного эффекта различают фагоцитоз:

- а). Завершенный (с лизисом мишени)
- б). Незавершенный (при туберкулезе, гонорее, менингококковых, стафилококковых инфекциях, бруцеллезе, чуме и др.) «Нейтрофильный» фагоцитоз

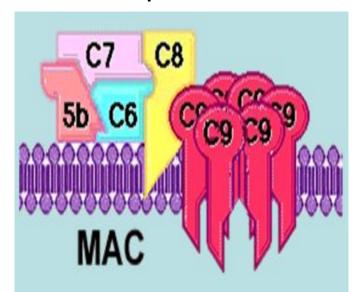
эффективен

при инфекциях, вызванных внеклеточными патогенами (гноеродные кокки, энтеробактерии и др.),

«макрофагальный» - при инфицировании внутриклеточными бактериями.

Гуморальные факторы Система комплемента

– это многокомпонентная полиферментная самособирающаяся система сывороточных белков (более 20), которые в норме находятся в неактивном состоянии.


<u>Пути активации:</u>

- 1. классический
- 2. альтернативный
- 3. лектиновый

Фазы активации комплемента

- 1. Запуск активации (участвуют факторы С1-С5, конвертазы С3, С5 и ряд других белков)
- 2. Формирование литического комплекса факторами C5-C9, атака клеточной мембраны, ее перфорция и коллоидно-осмотический лизис клетки-мишени

Пути активации отличаются особенностями 1-й фазы, а фаза клеточного лизиса проходит однотипно.

1-ая фаза активации

Классический путь

- 1. Активатор иммунный комплекс Аг-Ат, который узнается С1-компонентом;
- 2. последующая активация С4 и С2 и формирование фермента С3-конвертазы;
- 3. расщепление ключевой молекулы С3 на фрагменты С3в и С3а;
- 4. формирование С5-конвертазы и расщепление С5 на фрагменты «а» и «в».

Энергетически наиболее выгоден, активируется вся молекула комплемента

Лектиновый путь

- 1. распознавание углеводов на поверхности микробной клетки маннозосвязывающим лектином сыворотки крови (белком, подобным С1 классического пути);
- 2. активация сразу с С4 и С2-компонентов
- 3. далее идет аналогично классическому пути.

Альтернативный путь

- 1. гидролиз С3 на поверхности микробной клетки (обычно на ЛПС клеточной стенки Гр- бактерий)
- 2. образование С3-конвертазы с участием белков системы комплемента В, Д и Р (пропердина)*, которая представлена комплексом С3bBbP и фиксирована на ЛПС
 - 3. запуск дальнейшей цепочки, минуя С1, С4 и С2.

Биологические эффекты продуктов активации комплемента

1. лизис клеток

(все пути активации завершаются образованием мембраноатакующего комплекса);

2. «анафилотоксическое» действие

(С3а, С4а и С5а связываются с рецепторами базофилов, индуцируют выброс гистамина, серотонина и др. медиаторов воспаления, привлекают фагоциты в очаг);

3. Опсонинизация

(C3b, C4b повышают адгезию объекта фагоцитоза на мембранах Мф, Нф, Эф и тем самым усиливают поглотительную активность фагоцитов.

Цитокины

• Это система низкомолекулярных белков организма, синтезируемых преимущественно активированными клетками иммунной и кроветворной систем, регулирующих межклеточные взаимодействия.

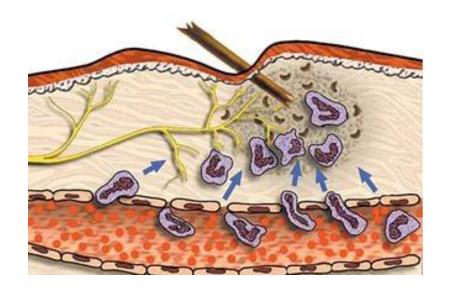
(«универсальный» язык общения всех клеток)

Классификация цитокинов

<u>Участвующие в</u> развитии воспаления

(провоспалительные): ИЛ-1, ФНО, ИЛ-6, ИЛ17, ИЛ18, хемокины, колониестимулирующие факторы

Сдерживающие воспалительную реакцию


(противовоспалительны е):ИЛ-4, ИЛ-10

Структурно-функциональные семейства цитокинов:

- 1. интерфероны типа I III (ИФН-α, β, γ и др.);
- 2. интерлейкины 1, 6, 10, 12, 17 (в настоящее время насчитывается до 34 различных ИЛ);
- 3. хемокины;
- 4. фактор некроза опухолей;
- 5. цитокины Т-хелперов (1 и 2);
- 6. гемопоэтические факторы и др.

Свойства цитокинов

- Отсутствие специфичности в отношении антигенов,
- . Функционирование по принципу сети,
- Участие в регуляции межклеточных взаимодействий при воспалении, иммунном ответе, гемопоэзе,
- Растворимая (секретируемая) форма или связанная с мембранами клеток форма

Результат активации гуморальных и клеточных факторов врожденного иммунитета – формирование базовой реакции инфекционного воспаления

(в течение нескольких часов после внедрения патогена во внутреннюю среду организма)