
Arduino Mega 2560 Light and Shade Controls

Assumptions:
• Arduino Mega or clone used –
• Shade and Light control program on separate Megas – not combined on one
• Try to maximize number of out pins and in pins on each version – lights and shades

Requirements Lights:

• LightOffTimer implementation:
• Configurable timer and switch to light mapping via serial interface and web –
• Configuration conserved across reset
• Time of Day timer functions
• All lights off or all lights on functions

• Via switchpush counter and via mapping of dedicated switch
• Configurable to send light and switch status via serial and/or web interface
• NTP client
• Webserver

• HTTP
• UDP – used for initiation of registration of Arduino with Raspy

• Broadcast
• Multicast

Arduino Mega 2560 Light and Shade Controls

Assumptions:
• Arduino Mega or clone used –
• Shade and Light control program on separate Megas – not combined on one
• Try to maximize number of out pins and in pins on each version – lights and shades

Requirements Shades:

• shadeUpTimer and shadeDownTimer implementation: critical to make sure up and down relays are
never on at the same time

• Configurable timer and switch to shade mapping via serial interface and web –
• Configuration conserved across reset
• Configurable to send shade and switch status via serial and/or web interface
• NTP client
• Webserver

• HTTP
• Heartbeat monitoring from Raspy – with configurable timeout – initially 30 minutes

• UDP – used for initiation registration of arduino with Raspy
• Broadcast
• Multicast

Arduino Mega 2560 Light and Shade Controls

Future Development:

• Arduino web interface consolidation on Raspy
• Configuration storage in db on Raspy
• ArdID storage on Raspy
• Authentication controlled by Raspy through web interface
• Tunneling out to cloud from Raspy

• Registration Procedure
• Secure communication – potentially implementation of chacha encryption if possible

• Thoughts about this – maybe a second Arduino is needed just for the comms?
• Physical interfaces

• Input I/O protection against overload and EMF etc.
• Output I/O protection against overcurrent

• Transistors?
• Optical isolation?

lightOffTi
mer

Light Controls

Light Status

On

Light Status

Off

OutPin

High

OutPin

Low

InPin

High

InPin

Low

ligntOffTimer
Start

Running

lightOffTi
mer
Stopped

lightOffTimer
Expire

Push
LightSwitch

Release
LightSwitch

debounce

lightOffTimer not yet
implemented –
Timer to be settable via web
interface for each light
independently

Light Status and Timer to be
written to EEPROM to conserve
the value through restart

lightTimerSet
After 1.5sec timeout

Count number of pushes
and set lightOff Timer

Light Controls

Startup/Setup
• check for all timer values in EEPROM – if there use those if not use hardcoded default values

• lightTimer[numOfLights]
• Light timer to be configurable during runtime – by webserver or serial interface or via switch as

below
• If light switch is pressed quickly [y] number of times then light timer is set to y*15minutes

• check for Light Status for each light in EEPROM and set appropriate outPin – cycling through all pins and
initializing – put a delay between each so that you don’t generate too much current at the same time

• Intitialize all needed global variables
• Initialize all inPins and outPins
• Check for device ID in EEPROM – if none then starting first time – make firstTimeStart variable True
• Check for Mac Address in EEPROM – if default then make defMac variable True
• Setup Mapping of inPin[x] -> outPin[x] – many to one (I haven’t done this yet – not sure how)

• This should be configurable – so not constants but changeable during runtime
• Read timeOfDayOn[] timeOfDayOff[] for each light – default is always on – to be made configurable by

the web server or serial interface

Light Controls

Main Loop

• Check if first start – if ArdID is not default then not starting first time –
• If NOT first time

• Go to Program Loop
• If first start init NTP, Webserver

• Look for Raspy by sending out multicast or broadcast
• Check for message from Raspy initiating registration
• Raspy answers with raspyID and ArdID

• Set ardRegWithRaspy = True
• Raspy ID is written to EEPROM
• ArdID is written to EEPROM

Maybe below is better in the Startup/Setup phase

Light Controls

Program Loop
• Check status of all InPin[x]

• If status is high –
• Check lightStatus[y] where y is the light that is manipulated by this particular inPin[x] based on

the mapping
• If lightStatus is On

• go into routine to turn off light
• If lightStatus is Off

• go into routine to turn on light

• Check NTP and update clock
• Check inbound ethernet interface and HTTP
• Check connectivity to Raspy if exists and if registered – if ardRegWithRaspy = True
• Check for request for configuration page on HTTP

• Go to function to process inbout webpage
• Go to function to process response

• Back to start of Program Loop

Light Controls

fnTurnOnLight(x)

• Debounce Timer – settable but currently 200ms
• Count number of times pressed in z time in sec (z to be configurable) 1.5sec initially thinking

• If only once then use lightTimer[x] value as gotten when initialized
• If more than once-

• Start light timer based on above z*x where x = integer(minutes) or equivalent millis()
• Set outPin[x] to value to turn on light – may be high or low depending on config
• Set lightStatus[a] per config mapping

fnTurnOffLight(x)

• Debounce Timer – settable but currently 200ms
• Stop light timer
• Set outPin[x] to value to turn off light depending on config
• Set lightStatus[a] per config mapping

Timer

Shade Controls

Shade Opening

On

Shade Stopped

Off

OutPinShadeUp

High

OutPinShadeUp

Low

InPin

High

InPin

Low

Timer
Start

Running

Timer

Stopped

Timer
Expire

Push
LightSwitch

Release
LightSwitch

debounce

Timer required to calculate if
shade full open or closed or 50%
open etc.
Total time for closing and opening
and incremental positions by 10%
independently so timer for
closing is different than for
opening as shade changes speed
as it rolls up and down

Shade UP

shadeStatus
If Shade Opening/ClosingIf Shade Not/Opening/Closing

inPinShadeUP

OutPinShadeDown

Low

Must be careful
never to have
both up and
down relays
active at the
same time

OutPinShadeUP
Low

Timer

Shade Controls

Shade Opening

On

Shade Stopped

Off

OutPinShadeDown

High

OutPinShadeDown

Low

InPin

High

Timer
Start

Running

Timer

Stopped

Timer
Expire

Push
LightSwitch

debounce

Timer required to calculate if
shade full open or closed or 50%
open etc.
Total time for closing and opening
and incremental positions by 10%
independently so timer for
closing is different than for
opening as shade changes speed
as it rolls up and down

Shade Down

shadeStatus
If Shade Opening/ClosingIf Shade Not/Opening/Closing

inPinShadeDown

OutPinShadeUP

Low

Must be careful
never to have
both up and
down relays
active at the
same time

OutPinShadeUP
Low

InPin

Low

Release
LightSwitch

Light Controls

Startup/Setup
• check for all timer values in EEPROM – if there use those if not use hardcoded default values

• shadeTimerUP[numOfShades]
• shadeTimerDown[]
• shadeStatus[numOfShades]
• shade timers to be configurable during runtime –

• By web interface or via serial interface
• check for Shade Status for each Shade in EEPROM and set appropriate outPin – cycling through all pins

and initializing – put a delay between each so that you don’t generate too much current at the same
time

• Intitialize all needed global variables
• Initialize all inPins and outPins
• Check for device ID in EEPROM – if none then starting first time – make firstTimeStart variable True
• Check for Mac Address in EEPROM – if default then make defMac variable True
• Setup Mapping of inPin[x] -> outPin[x] – many to one (I haven’t done this yet – not sure how)

• This should be configurable – so not constants but changeable during runtime
• Read timeOfDayStatus[] for each shade– default is always half open – to be made configurable by the

web server or serial interface

Light Controls

Main Loop

• Check if first start – if ArdID is not default then not starting first time –
• If NOT first time

• Go to Program Loop
• If first start init NTP, Webserver

• Look for Raspy by sending out multicast or broadcast
• Check for message from Raspy initiating registration
• Raspy answers with raspyID and ArdID

• Set ardRegWithRaspy = True
• Raspy ID is written to EEPROM
• ArdID is written to EEPROM

Maybe below is better in the Startup/Setup phase

Light Controls

Program Loop
• Check status of all InPin[x]

• If status is high –
• Check lightStatus[y] where y is the light that is manipulated by this particular inPin[x] based on

the mapping
• If lightStatus is On

• go into routine to turn off light
• If lightStatus is Off

• go into routine to turn on light

• Check NTP and update clock
• Check inbound ethernet interface and HTTP
• Check connectivity to Raspy if exists and if registered – if ardRegWithRaspy = True
• Check for request for configuration page on HTTP

• Go to function to process inbout webpage
• Go to function to process response

• Back to start of Program Loop

Light Controls

fnShadeUp(x)

• Debounce Timer – settable but currently 200ms
• Count number of times pressed in z time in sec (z to be configurable) 1.5sec initially thinking

• If only once then use lightTimer[x] value as gotten when initialized
• If more than once-

• Start light timer based on above z*x where x = integer(minutes) or equivalent millis()
• Set outPin[x] to value to turn on light – may be high or low depending on config
• Set lightStatus[a] per config mapping

fnShadeDown(x)

• Debounce Timer – settable but currently 200ms
• Stop light timer
• Set outPin[x] to value to turn off light depending on config
• Set lightStatus[a] per config mapping

