
Arduino Mega 2560 Light and Shade Controls

Assumptions:
• Arduino Mega or clone used –
• Shade and Light control program on separate Megas – not combined on one 
• Try to maximize number of out pins and in pins on each version – lights and shades

Requirements Lights:

• LightOffTimer implementation:
• Configurable timer and switch to light mapping via serial interface and web – 
• Configuration conserved across reset
• Time of Day timer functions
• All lights off or all lights on functions

• Via switchpush counter and via mapping of dedicated switch
• Configurable to send light and switch status via serial and/or web interface
• NTP client
• Webserver

• HTTP
• UDP – used for initiation of registration of Arduino with Raspy

• Broadcast
• Multicast



Arduino Mega 2560 Light and Shade Controls

Assumptions:
• Arduino Mega or clone used –
• Shade and Light control program on separate Megas – not combined on one 
• Try to maximize number of out pins and in pins on each version – lights and shades

Requirements Shades:

• shadeUpTimer and shadeDownTimer implementation: critical to make sure up and down relays are 
never on at the same time

• Configurable timer and switch to shade mapping via serial interface and web – 
• Configuration conserved across reset
• Configurable to send shade and switch status via serial and/or web interface
• NTP client
• Webserver

• HTTP
• Heartbeat monitoring from Raspy – with configurable timeout – initially 30 minutes

• UDP – used for initiation registration of arduino with Raspy
• Broadcast
• Multicast



Arduino Mega 2560 Light and Shade Controls

Future Development:

• Arduino web interface consolidation on Raspy
• Configuration storage in db on Raspy
• ArdID storage on Raspy
• Authentication controlled by Raspy through web interface
• Tunneling out to cloud from Raspy

• Registration Procedure
• Secure communication – potentially implementation of chacha encryption if possible

• Thoughts about this – maybe a second Arduino is needed just for the comms?
• Physical interfaces

• Input I/O protection against overload and EMF etc.
• Output I/O protection against overcurrent 

• Transistors?
• Optical isolation?
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Light Controls

Startup/Setup
• check for all timer values in EEPROM – if there use those if not use hardcoded default values

• lightTimer[numOfLights]
• Light timer to be configurable during runtime – by webserver or serial interface or via switch as 

below
• If light switch is pressed quickly [y] number of times then light timer is set to y*15minutes

• check for Light Status for each light in EEPROM and set appropriate outPin – cycling through all pins and 
initializing – put a delay between each so that you don’t generate too much current at the same time

• Intitialize all needed global variables
• Initialize all inPins and outPins
• Check for device ID in EEPROM – if none then starting first time – make firstTimeStart variable True
• Check for Mac Address in EEPROM – if default then make defMac variable True
• Setup Mapping of inPin[x] -> outPin[x] – many to one (I haven’t done this yet – not sure how)

• This should be configurable – so not constants but changeable during runtime
• Read timeOfDayOn[] timeOfDayOff[] for each light – default is always on – to be made configurable by 

the web server or serial interface



Light Controls

Main Loop

• Check if first start – if ArdID is not default then not starting first time – 
• If NOT first time

• Go to Program Loop 
• If first start init NTP, Webserver

• Look for Raspy by sending out multicast or broadcast
• Check for message from Raspy initiating registration
• Raspy answers with raspyID and ArdID

• Set ardRegWithRaspy = True
• Raspy ID is written to EEPROM
• ArdID is written to EEPROM

Maybe below is better in the Startup/Setup phase



Light Controls

Program Loop
• Check status of all InPin[x]

• If status is high – 
• Check lightStatus[y] where y is the light that is manipulated by this particular inPin[x] based on 

the mapping
• If lightStatus is On

• go into routine to turn off light
• If lightStatus is Off

• go into routine to turn on light

• Check NTP and update clock
• Check inbound ethernet interface and HTTP 
• Check connectivity to Raspy if exists and if registered – if ardRegWithRaspy = True
• Check for request for configuration page on HTTP

• Go to function to process inbout webpage
• Go to function to process response

• Back to start of Program Loop



Light Controls

fnTurnOnLight(x)

• Debounce Timer – settable but currently 200ms
• Count number of times pressed in z time in sec ( z to be configurable) 1.5sec initially thinking

• If only once then use lightTimer[x] value as gotten when initialized
• If more than once- 

• Start light timer based on above z*x where x = integer(minutes) or equivalent millis()
• Set outPin[x] to value to turn on light – may be high or low depending on config
• Set lightStatus[a] per config mapping

fnTurnOffLight(x)

• Debounce Timer – settable but currently 200ms
• Stop light timer 
• Set outPin[x] to value to turn off light depending on config
• Set lightStatus[a] per config mapping
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Light Controls

Startup/Setup
• check for all timer values in EEPROM – if there use those if not use hardcoded default values

• shadeTimerUP[numOfShades]
• shadeTimerDown[]
• shadeStatus[numOfShades]
• shade timers to be configurable during runtime –

• By web interface or via serial interface
• check for Shade Status for each Shade in EEPROM and set appropriate outPin – cycling through all pins 

and initializing – put a delay between each so that you don’t generate too much current at the same 
time

• Intitialize all needed global variables
• Initialize all inPins and outPins
• Check for device ID in EEPROM – if none then starting first time – make firstTimeStart variable True
• Check for Mac Address in EEPROM – if default then make defMac variable True
• Setup Mapping of inPin[x] -> outPin[x] – many to one (I haven’t done this yet – not sure how)

• This should be configurable – so not constants but changeable during runtime
• Read timeOfDayStatus[] for each shade– default is always half open – to be made configurable by the 

web server or serial interface



Light Controls

Main Loop

• Check if first start – if ArdID is not default then not starting first time – 
• If NOT first time

• Go to Program Loop 
• If first start init NTP, Webserver

• Look for Raspy by sending out multicast or broadcast
• Check for message from Raspy initiating registration
• Raspy answers with raspyID and ArdID

• Set ardRegWithRaspy = True
• Raspy ID is written to EEPROM
• ArdID is written to EEPROM

Maybe below is better in the Startup/Setup phase



Light Controls

Program Loop
• Check status of all InPin[x]

• If status is high – 
• Check lightStatus[y] where y is the light that is manipulated by this particular inPin[x] based on 

the mapping
• If lightStatus is On

• go into routine to turn off light
• If lightStatus is Off

• go into routine to turn on light

• Check NTP and update clock
• Check inbound ethernet interface and HTTP 
• Check connectivity to Raspy if exists and if registered – if ardRegWithRaspy = True
• Check for request for configuration page on HTTP

• Go to function to process inbout webpage
• Go to function to process response

• Back to start of Program Loop



Light Controls

fnShadeUp(x)

• Debounce Timer – settable but currently 200ms
• Count number of times pressed in z time in sec ( z to be configurable) 1.5sec initially thinking

• If only once then use lightTimer[x] value as gotten when initialized
• If more than once- 

• Start light timer based on above z*x where x = integer(minutes) or equivalent millis()
• Set outPin[x] to value to turn on light – may be high or low depending on config
• Set lightStatus[a] per config mapping

fnShadeDown(x)

• Debounce Timer – settable but currently 200ms
• Stop light timer 
• Set outPin[x] to value to turn off light depending on config
• Set lightStatus[a] per config mapping


