


## МИНИСТЕРСТВО ОБРАЗОВАНИЯ НИЖЕГОРОДСКОЙ ОБЛАСТИ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «УРЕНСКИЙ ИНДУСТРИАЛЬНО-ЭНЕРГЕТИЧЕСКИЙ ТЕХНИКУМ»

# Курсовая работа по дисциплина: МДК 02.02. Эксплуатация систем электроснабжения сельскохозяйственных организаций На тему :Монтаж трансформаторной подстанции 10\0.4 кВ







#### Актуальность темы

Подстанцией называют электроустановку, служащую для преобразования и распределения электроэнергии и состоящую из трансформаторов или других преобразователей энергии, распределительного устройства, устройства управления и вспомогательных сооружений. В зависимости от преобразования той или иной функции они называются трансформаторными (ТП) или преобразовательными (ПП). Трансформаторную подстанцию называют комплектной – КТП (КПП) – при поставке трансформаторов (преобразователей), щита низкого напряжения и других элементов в собранном виде или в виде полностью подготовленном для сборки. Подстанции могут быть комплектными или сборными.







## Комплектные трансформаторные подстанции назначение и классификация

Комплектные трансформаторные подстанции (КТП) применяют для приема, распределения и преобразования электрической энергии трехфазного тока частотой 50 Гц. По числу трансформаторов КТП могут быть однотрансформаторными, двухтрансформаторными и трехтрансформаторными.

По роду установки КТП могут быть:

- внутренней установки с масляными, сухими или заполненными негорючей жидкостью трансформаторами;
- наружной установки (только с масляными трансформаторами);
- смешанной установки с расположением РУ высшего напряжения и трансформатора снаружи, а РУ низшего напряжения внутри помещения.





#### Коммутационные аппараты

Коммутационные аппараты (выключатели) предназначены для осуществления оперативной и аварийной коммутации в энергосистемах, для выполнения операций включения и отключения отдельных цепей при ручном или автоматическом управлении. Во включенном состоянии выключатели должны беспрепятственно пропускать токи нагрузки. Характер режима работы этих аппаратов несколько необычен: нормальным для них считается как включенное состояние, когда они обтекаются током нагрузки, так и отключенное, при котором они обеспечивают необходимую электрическую изоляцию между разомкнутыми участками цепи. Коммутация цепи, осуществляемая при переключении выключателя из одного положения в другое, производится нерегулярно, время от времени, а выполнение им специфических требований по отключению возникающего в цепи короткого замыкания чрезвычайно редко.







### Определение номинальных токов двигательной нагрузки и нагрузки уличного освещения

Номинальный ток двигателя:

$$I_{HOM.DB} = \frac{P_{HOM}}{\sqrt{3} \cdot U_{HOM.D} \cdot h \cdot \cos f}$$

$$I_{HOM.DB} = \frac{45 \cdot I_{HOM.DB}}{\sqrt{3} \cdot U_{HOM.D} \cdot h \cdot \cos f}$$

где: Рном – номинальная мощность двигателя;

Uном.л – номинальное линейное напряжение на обмотке статора;

 $\eta$  – к.п.д. при номинальном моменте на валу двигателя.



Выбор силового трансформатора КТП. Расчёт параметров трансформатора: номинальные токи и токи КЗ первичной и вторичной обмоток, сопротивления

Силовые трансформаторы являются основной составляющей всех понижающих подстанций.

Существует шесть уровней систем электроснабжения, в которых применяются подстанции в зависимости от назначения номиналов напряжений.

Для электроснабжения потребителей напряжением до 1 кВ (220 В, 380 В, 500 В, 600 В) создают трансформаторные подстанции с высшим напряжением на 6,10 кВ.

Мощность трансформатора должна быть больше или равной суммарной мощности нагрузки (как правило, равна мощности КТП).





#### Выбор автоматических выключателей

Автоматические выключатели являются самыми распространенными аппаратами защиты цепей и потребителей от аварийных режимов. Они также предназначены для нечастых включений и отключений токов нагрузки (номинальных токов).

Автоматические выключатели рекомендуется выбирать по следующим основным техническим параметрам: назначению, области применения и исполнению; роду тока и числу главных контактов; типу расцепителя, встроенного в выключатель; номинальному току расщепителя;

Основным элементом выключателя, который контролирует состояние цепи и выдает команду на отключение при наличии ненормальных режимов, является встроенный в него расцепитель.

Современные автоматические выключатели имеют встроенные расцепители, устанавливаемые заводом-изготовителем и рассчитанные на заданные номинальные токи.

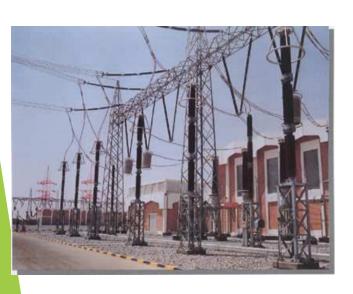




#### Выбор предохранителей высокого напряжения в цепи силового трансформатора и предохранителей линии уличного освещения

Выбор предохранителей высокого напряжения для защиты силовых трансформаторов осуществляется по условию:

 $I_{\text{откл пр}}$   $\geq$  max ( $I_{\text{кз.т1}}$ ,  $I_{\text{кз.т2}}$ ) где: Iкз.т1 и Iкз.т2 максимальные токи K3 высокой и низкой стороны силового трансформатора.


Рубильник предназначен для ручного включения и отключения тока в цепях с напряжением источника до 220 В постоянного, и 380 В переменного тока, при больших значениях напряжения этот аппарат коммутирует цепь только при отсутствии тока.







#### Выбор разрядника высокого напряжения



Разрядники служат для защиты КТП от перенапряжений, возникающих в процессе коммутации воздействий атмосферных явлений. При повышении напряжения сверхноминального значения, разрядник срабатывает и ограничивает напряжение на фазе уставки.

Выбор разрядника происходит по номинальному значению напряжения, которое должно быть равно номинальному напряжению уставки, т. е. первичному напряжению силового трансформатора:

$$U_{\text{номраспр}} = U_{\text{ном}} = 10 \text{ kB}$$



### NA ST

#### Выбор высоковольтного выключателя нагрузки

При выборе выключателя, его номинальные параметры сравниваются с параметрами сети в точке, где они устанавливаются. Номинальное напряжение должно быть не меньше номинального напряжения установки:

$$I_{\text{номр}} \ge I_{\Sigma \text{ном потр.}}$$

Номинальный длительный ток выключателя должен быть больше тока установки:  $I_{\text{номвыкл}} \ge I_{\text{уст}}$ 

Когда длительный ток установки не велик, выключатель с релейной защитой можно заменить выключателем нагрузки (ВН) и высоковольтными предохранителями. Тогда для отключения номинальных токов нагрузки используют выключатель, имеющий дугогасительное устройство небольшой мощности - выключатель нагрузки, а токи к.з. отключаются предохранителями.







- для линии освещения -3\*10+1\*6 мм2.

#### Заключение

```
В результате проделанных расчетов выбраны следующие аппараты и соединительные кабели:
силовой трансформатор ТМ-160/10;
автоматический выключатель серии АЕ-2050М для защиты двигателя 1;
автоматический выключатель серии АЕ-2443 для защиты двигателя 2;
автоматический выключатель серии А-3710Б для защиты силового трансформатора;
трансформатор тока типа ТПЛ-10;
предохранитель высокого напряжения типа ПКЭ106-10-5-20-12,5УЗ;
предохранителей для защиты осветительных сетей типа ПР-2-60;
трехполюсный переключатель-разъединитель типа П11;
трубчатый разрядник высокого напряжения типа РТФ-10-0,2/1 УХЛ1;
автогазовый выключатель нагрузки ВН-10/400-203 У2ВН;
кабель марки АВВГ на разные сечения:
- для двигательной нагрузки 1 - 3*35+1*16 мм2;
- для двигательной нагрузки 2 - 3*16+1*10 мм2;
```



- https://www.google.ru/search?q=Монтаж+трансформаторной+подстанции+10%5C0.4+кВ&newwind ow=1&source=lnms&tbm=isch&sa=X&ved=0ahUKEwjjq\_aFj\_bXAhWhFZoKHcL\_DogO\_AUICigB& biw=1600&bih=723
- <a href="http://www.kgau.ru/distance/etf">http://www.kgau.ru/distance/etf</a> 02/montag/tema43.htm
- <a href="http://electricalschool.info/main/electromontag/375-montazh-transformatornykh-podstancijj-i.html">http://electricalschool.info/main/electromontag/375-montazh-transformatornykh-podstancijj-i.html</a>
- <a href="http://forca.ru/knigi/arhivy/montazh-ekspluataciya-i-remont-selskohozyaystvennogo-elektrooborudovaniz-a-20.html">http://forca.ru/knigi/arhivy/montazh-ekspluataciya-i-remont-selskohozyaystvennogo-elektrooborudovaniz-a-20.html</a>
- https://ru.wikipedia.org/wiki/%



## МИНИСТЕРСТВО ОБРАЗОВАНИЯ НИЖЕГОРОДСКОЙ ОБЛАСТИ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «УРЕНСКИЙ ИНДУСТРИАЛЬНО-ЭНЕРГЕТИЧЕСКИЙ ТЕХНИКУМ»

## Курсовая работа по дисциплина: МДК 02.02. Эксплуатация систем электроснабжения сельскохозяйственных организаций

На тему :Монтаж трансформаторной подстанции 10\0.4 кВ



Выполнил: Соболев А.А., обучающийся 3 курса, гр. ЭА-370 по специальности 35.02.08 Электрификация и автоматизация сельского хозяйства