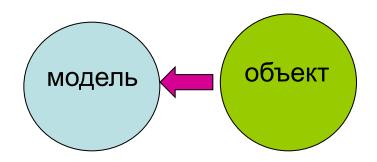

Математические модели

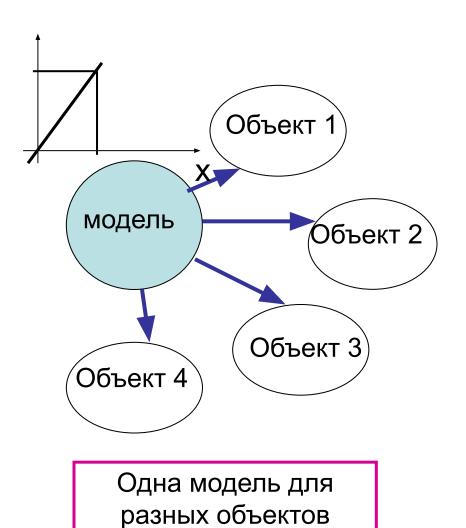
модели

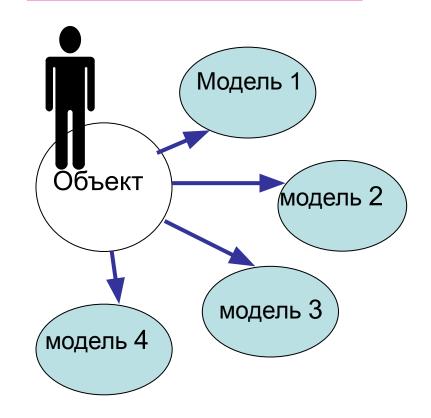

Познавательные

отражают существующие реальные объекты

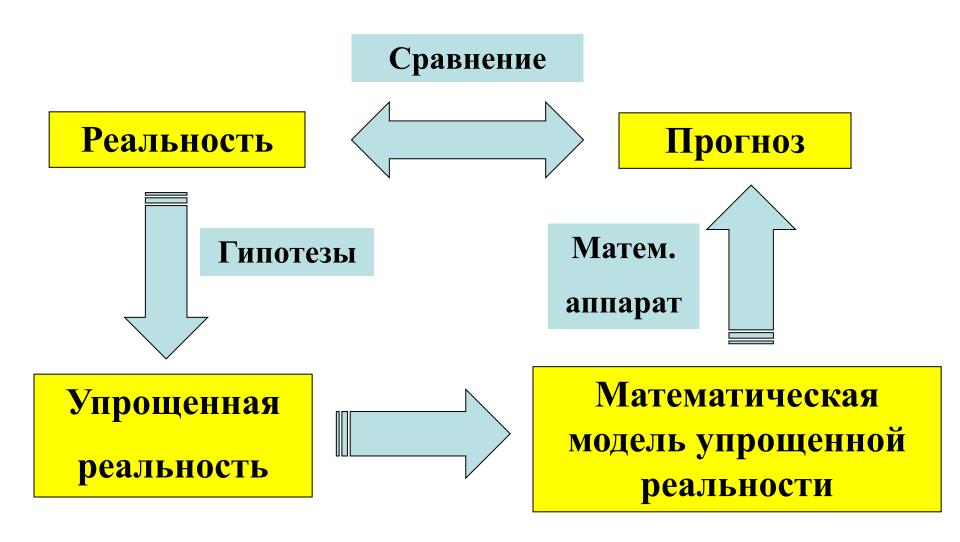
Прагматические

Нормативные Идеал несуществующего объекта

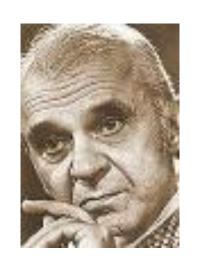

модели


(состояние системы)

Динамические


во времени)

Разные цели исследования порождают различные модели одного объекта


Концепция экономикоматематического моделирования

Алгоритм экономикоматематического моделирования Шаг 1

Выделить переменные, поведение которых в рамках поставленной задачи подлежит исследованию

Переменные, поведение которых подлежит исследованию, называются эндогенными.

Леонтьев В.В. 1906-1999

"Основными переменными, с помощью которых описывается экономическая система, являются объемы различных товаров и услуг, которые производятся и потребляются, ... а также цены, по которым продаются и покупаются товары и услуги"[*, с. 48].

* Леонтьев В.В. Применение математики в экономике // В кн. «Экономические эссе». – М., 1990.

Алгоритм экономикоматематического моделирования Шаг 2

Выделить переменные, изменение которых влечет изменение эндогенных переменных

Переменные, изменение которых влечет изменение эндогенных переменных, называются экзогенными.

Проблема идентификации экзогенных переменных

Переменные, находящиеся под контролем фирмы:

Р – цена товара;

 $\Box C_v$ – средние переменные издержки (подразумевается, что увеличение их связано с улучшением качества продукции, снижением времени поставки, улучшением сервиса);

М – затраты на маркетинг;

• • • •

Проблема идентификации экзогенных переменных

Переменные, находящиеся вне контроля фирмы:

доходы и, отчасти, предпочтения целевых потребительских групп;

цены конкурентов;

затраты на маркетинг конкурентов;

• • • •

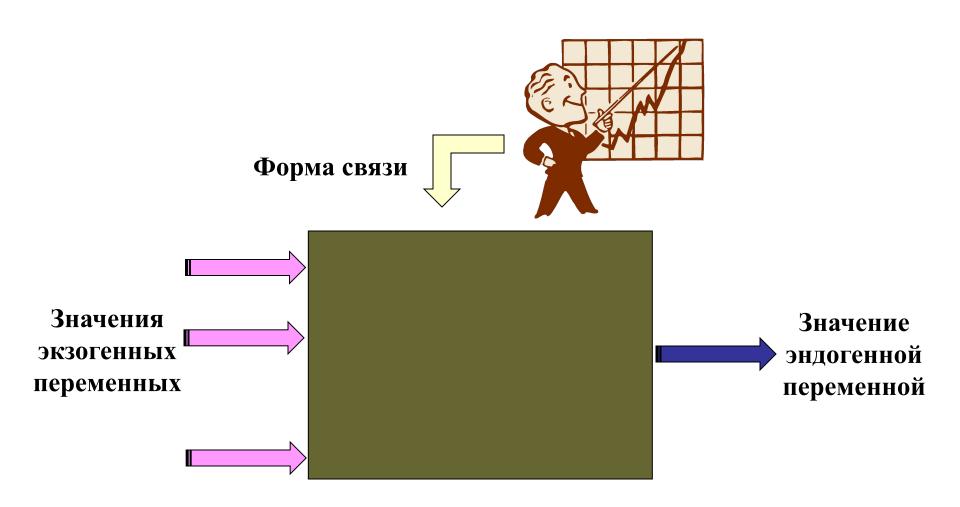
Алгоритм экономикоматематического моделирования Шаг 3

Выдвинуть гипотезы, упрощающие экономическую реальность

Поскольку выделить все переменные, от которых зависит изменение эндогенных переменных, обычно невозможно, попытки непосредственно построить модель экономической реальности обречены на неудачу. В связи с этим принимаются ряд тех или иных предложений (гипотез) об экономической реальности, после чего строится математическая модель уже не исходной, а упрощенной экономической реальности.

Алгоритм экономикоматематического моделирования Шаг 4

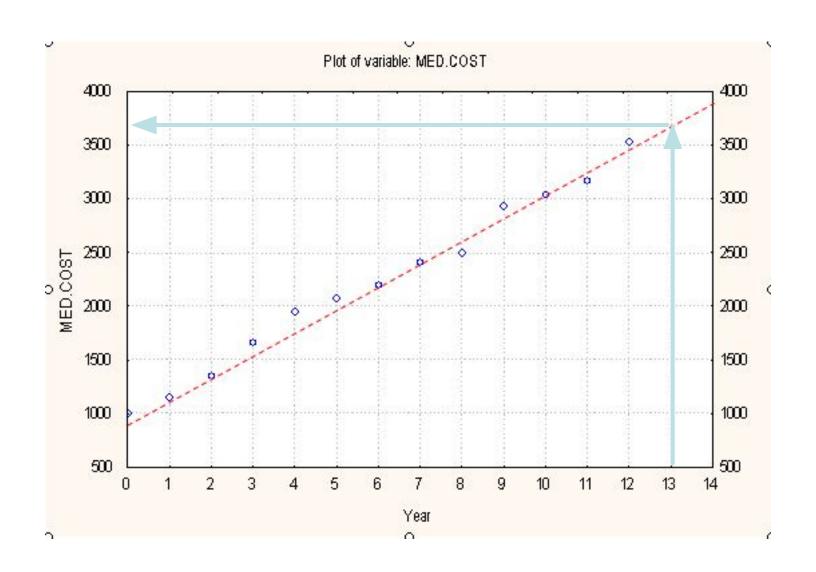
Построить математическую модель упрощенной экономической реальности


Дедуктивный подход к экономико- математическому моделированию

В рамках этого подхода математическая модель строится, как правило, только на основании гипотез об экзогенных переменных и механизме их воздействия на эндогенные. Затем, с помощью построенной теоретической моде-ли, пытаются объяснить имеющиеся частные статистические данные (Дедукция – метод рассуждений от общего к частному).

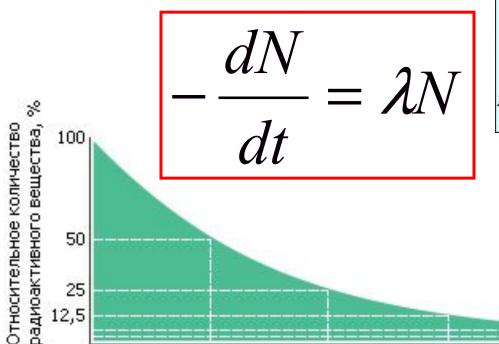
Индуктивный подход к экономико-математическому моделированию

В рамках этого подхода, выделив переменные, собирают исходные статистические данные для построения модели: фиксируют значения экзогенных переменных и соответствующие им значения эндогенных. После этого выбирается такая форма связи переменных, которая наилучшим образом объясняет собранные данные (Индукция – метод рассуждений от частного к общему).


Концепция «черного ящика»

Алгоритм экономикоматематического моделирования Шаг 5

Использовать математическую модель для выдвижения прогноза об экономической реальности (значениях эндогенных переменных)


Планирование от достигнутого

Алгоритм экономикоматематического моделирования Шаг 6

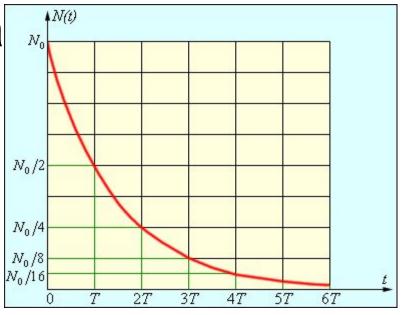
В зависимости от результатов сравнения прогноза и реальности скорректировать построенную модель

Уравнение радиоа **радиодитивного** распада

1/2

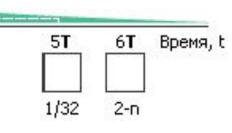
1/1

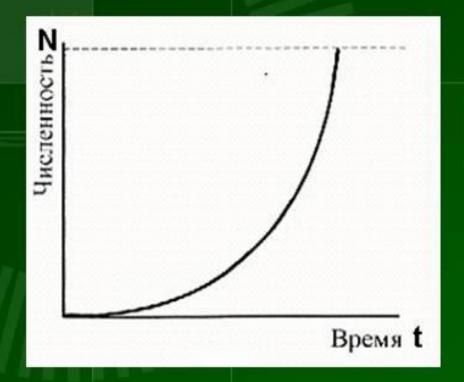
2**T**


1/4

3**T**

1/8


4T


1/16

$$N_t = N_0 e^{-\frac{0.693}{T}t}$$

T- период полураспада

Уравнение функции, описывающей рост:

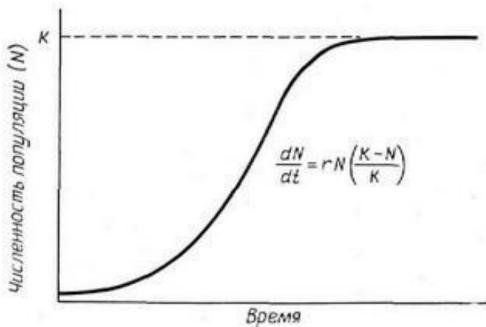
$$N_t = N_0 \cdot e^{rt}$$

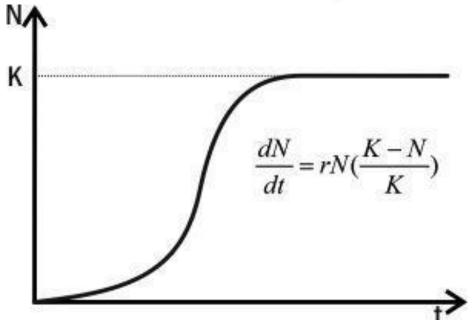
Скорость роста:

$$\frac{dN}{dt} = N_0 \cdot r$$

N - плотность популяции;

 N_0 – начальная плотность популяции;


 N_t – плотность на момент времени t;


 r – скорость роста популяции, обусловленная свойствами организма (потенциальная скорость роста) Такая модель роста, называемая экспоненциальной, или Ј-образной, характерна для популяций, не испытывающей ограничений в росте. Считают, что почти любой вид теоретически способен увеличить свою численность до заселения всей Земли при достатке пищи, воды, пространства, постоянстве условий среды и отсутствии хищников.

Однако неограниченный рост ведет к популяционной нестабильности. После достижения некоторого уровня К (поддерживающей емкости среды или предельной нагрузки на среду), после экспоненциального роста («бума») наступает резкий спад численности – «крах» популяции» (модель «бума и краха»):

Логистич Логистич Логистическая кривая

Эластичность функции

Абсолютные и относительные изменения

Пример: $y=x^2$, x=10, Пусть $\Delta x = 2$ – это абсолютный прирост.

Относительные приращения и их смысл:

- $\Delta x/x = 0.2$ показывает, что значение аргумента изменилось на 20% процентов;
- ∆ *y*/*y* =0,44 показывает, что значение функции изменилось на 44% процента;
- (Δ *y*/*y*)100 показывает, на сколько процентов изменилось значение функции.

Эластичность функции

y=f(x), не равной нулю и дифференцируемой в точке x≠0, число

$$E_{x}(y) = \frac{x}{f(x)} f'(x).$$

$$E_{x}(y) = \frac{x}{f(x)} \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\frac{f(x + \Delta x) - f(x)}{f(x)}}{\frac{\Delta x}{x}}$$

$$\underline{f(x + \Delta x) - f(x)}$$

$$E_{x}(y) \approx \frac{\frac{f(x + \Delta x) - f(x)}{f(x)}}{\frac{\Delta x}{x}} = \frac{f(x + \Delta x) - f(x)}{f(x)} \times 100$$

- Предположим, что при Δ x/x=0,01 погрешность применения приближенной формулы будет допустимой.
- эластичность функции показывает, на сколько примерно процентов изменится значение функции, если значение аргумента изменится на 1%.

Свойства эластичности

- 1) Эластичность безразмерная величина, значение которой не зависит от того, в каких единицах измеряются переменные.
- 2) Если эластичности сомножителей существуют, эластичность произведения также существует и равна сумме эластичностей сомножителей:

$$E_{x}(f g) = E_{x}(f) + E_{x}(g)$$

3) Если эластичности делимого и делителя существуют, эластичность частного также существует и равна разности эластичностей делимого и делителя:

$$E_{x}(f/g) = E_{x}(f) - E_{x}(g)$$

4) Эластичности взаимно обратных функций – взаимно обратные величины

$$E_{x}(y) = \frac{1}{E_{y}(x)}$$

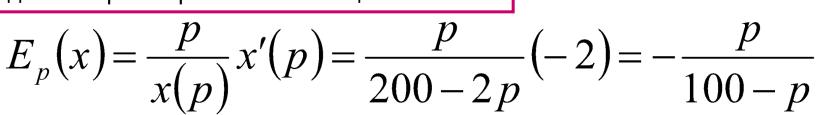
 $E_{_{X}}(y) = \frac{1}{E_{_{Y}}(x)}$ 5) Эластичность можно представить в форме «логарифмической производной»

$$E_x(y) = \frac{d \ln y}{d \ln x}$$

I Іример. Функция спроса и её эластичность

$$x = 200 - 2p$$
 прямая функция спроса

ограничения
$$p \in [0,100], x \in [0,200]$$


$$x' = -2$$

обратная функция спроса p=100 - 0.5x

если увеличить цену на 1рубль (абсолютный прирост)

то спрос уменьшится на 2кг

Производная отражает абсолютную величину падения спроса при повышении цены.

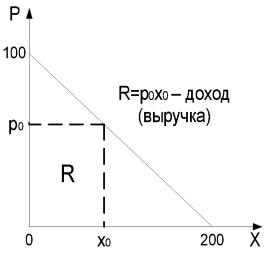


Рис 1. Кривая спроса.

Ценовая эластичность спроса

• Как реагируют потребители определенного товара на изменение его цены или цены заменяющего его товара?

• Каким образом производитель решает проблему назначения цены

на произведенный им товар?

Эластичность функции спроса $E_p(x) = \frac{P}{x(x)}$

$$E_p(x) = \frac{p}{x(p)} x'(p)$$

называется **ценовой эластичностью спроса** при цене *p*.

Поскольку функция спроса является убывающей, то
 E_n(x) ≤ 0.

Экономический смысл: ценовая эластичность спроса показывает, на сколько примерно процентов уменьшится (увеличится) объем спроса, если цена товара увеличится (уменьшится) на 1%.

В экономической литературе эластичность берут по модулю, т.е. со знаком плюс.

Обозначим

Идентификация типа спроса

• Из уравнения $E_p(x) = -1$ найдем цену, при которой спрос нейтральный:

$$\frac{p}{100 - p} = 1 \Leftrightarrow p = 100 - p \Leftrightarrow 2p = 100 \Leftrightarrow p = 50$$

- По цене 50 будет продано x = 200 2*50 = 100 кг сахара. Продавец получит в этом случае максимальный доход (выручку) 100*50 = 5000 рублей.
- В диапазоне цен *от 0 до 50 спрос является неэластичным*.
- Например: при цене р = 20:

$$E_p(x)\Big|_{p=20} = -\frac{p}{100-p}\Big|_{p=20} = -\frac{20}{100-20} = -\frac{1}{4}$$

Это означает, что если при этой цене продавец *понизит цену на 1%, то спрос увеличится всего на 0.25%,* что приведет к уменьшению выручки, а это невыгодно продавцу. Наоборот, продавцу выгодно при неэластичном спросе увеличивать цену. •

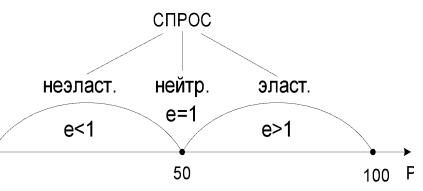


Рис 2. Идентификация типа спроса.

спрос является эластичным при ценах от 50 до 100.

Дуговая эластичность

• Оценка ценовой эластичности спроса при неизвестной функции спроса

$$\overset{\mathbb{Z}}{E_{p}}(x) = -\frac{\frac{|x(p_{1}) - x(p_{2})|}{0.5[x(p_{1}) + x(p_{2})]}}{\frac{|p_{1} - p_{2}|}{0.5(p_{1} + p_{2})}} = \frac{x_{1} - x_{2}}{x_{1} + x_{2}} \cdot \frac{p_{1} + p_{2}}{p_{1} - p_{2}}$$

Пример. x(3)=300, x(3,15)=270, если в качестве базовой цены взять 3, то $E_p(x)$ ≈–2, а если 3,15, то $E_p(x)$ ≈–2,33

дуговая эластичность $E_{p}(x)$ ≈ –2,16.

Коэффициенты эластичности выпуска по затратам ресурсов

• определяются следующими формулами:

$$e_{x_1}(q) = \frac{x_1}{f(x_1, x_2)} \cdot \frac{\partial f(x_1, x_2)}{\partial x_1} \quad e_{x_2}(q) = \frac{x_2}{f(x_1, x_2)} \cdot \frac{\partial f(x_1, x_2)}{\partial x_2}$$

• Коэффициенты эластичности равны отношению предельной отдачи ресурса к средней отдаче ресурса:

$$e_{x_i}(q) = \frac{MP_i}{AP_i}$$

• Экономический смысл: коэффициент эластичности выпуска по затратам первого ресурса показывает, на сколько примерно процентов изменится выпуск продукции, если затраты первого ресурса увеличить на 1%.

Перекрестная ценовая эластичность

характеризует влияние цены одного товара на спрос другого товара.

функции спроса от цен двух товаров:

$$x_1 = x_1(p_1, p_2), x_2 = x_2(p_1, p_2).$$

вектор цен в текущей рыночной ситуации $p^0 = (p_1^0, p_2^0)$.

• Перекрестной ценовой эластичностью спроса на первый товар называется число

$$e_{p_2}(x_1)=e_{12}=rac{p_2}{x_1(p_1,p_2)} imesrac{\partial x_1(p_1,p_2)}{\partial p_2}igg|_{p=p_0}.$$
 • Аналогично вводится e_{21} .

Товары замещающие и дополняющие

$$e_{12} > 0$$

первый товар является

Замещающим по отношению ко второму (с ростом цены второго товара спрос на него падает, а на первый товар растет).

первый товар является

ДОПОЛНЯЮЩИМ ПО отношению ко второму.

$$e_{12} < 0$$
 $e_{21} < 0$ Взаимодополняющие товары

Пример

В некотором регионе недельный спрос на чай и кофе задан формулами:

$$x_1 = 40p_2p_1^{-1}, x_2 = 10p_1p_2^{-1}.$$

• Вычислим перекрестные ценовые эластичности спроса

$$e_{12} = \frac{p_2}{x_1} \cdot \frac{\partial x_1}{\partial p_2} = \frac{p_2 \cdot p_1}{40p_2} \cdot \frac{40}{p_1} = 1 \qquad e_{21} = \frac{p_1}{x_2} \cdot \frac{\partial x_2}{\partial p_1} = \frac{p_1 \cdot p_2}{10p_1} \cdot \frac{10}{p_2} = 1$$

$$e_{21} = \frac{p_1}{x_2} \cdot \frac{\partial x_2}{\partial p_1} = \frac{p_1 \cdot p_2}{10 p_1} \cdot \frac{10}{p_2} = 1$$

независимо от цен, обе перекрестные эластичности равны 1. Это означает, что увеличение цены одного из товаров на 1% всегда приводит к увеличению спроса на другой товар тоже на 1%. Товары являются взаимозамещающими.