
Hash Tables

SDP-4

Dictionary

� Dictionary:
� Dynamic-set data structure for storing items indexed using keys.
� Supports operations Insert, Search, and Delete.
� Applications:

� Symbol table of a compiler.
� Memory-management tables in operating systems.
� Large-scale distributed systems.

� Hash Tables:
� Effective way of implementing dictionaries.
� Generalization of ordinary arrays.

Direct-address Tables
� Direct-address Tables are ordinary arrays.
� Facilitate direct addressing.
� Element whose key is k is obtained by indexing into the kth position

of the array.
� Applicable when we can afford to allocate an array with one

position for every possible key.
� i.e. when the universe of keys U is small.

� Dictionary operations can be implemented to take O(1) time.
� Details in Sec. 11.1.

Hash Tables
� Notation:
� U – Universe of all possible keys.
� K – Set of keys actually stored in the dictionary.
� |K| = n.

� When U is very large,
� Arrays are not practical.
� |K| << |U|.

� Use a table of size proportional to |K| – The hash tables.
� However, we lose the direct-addressing ability.
� Define functions that map keys to slots of the hash table.

Hashing
� Hash function h: Mapping from U to the slots of a hash table

T[0..m–1].
 h : U → {0,1,…, m–1}

� With arrays, key k maps to slot A[k].
� With hash tables, key k maps or “hashes” to slot T[h[k]].
� h[k] is the hash value of key k.

Hashing

0

m–1

h(k1)

h(k4)

h(k2)=h(k5)

h(k3)

U
(universe of keys)

K
(actual
keys)

k1

k2

k3

k5

k4

collision

Issues with Hashing
� Multiple keys can hash to the same slot – collisions are

possible.
� Design hash functions such that collisions are minimized.
� But avoiding collisions is impossible.

� Design collision-resolution techniques.

� Search will cost Ө(n) time in the worst case.
� However, all operations can be made to have an expected

complexity of Ө(1).

Methods of Resolution
� Chaining:
� Store all elements that hash to the same slot in a

linked list.
� Store a pointer to the head of the linked list in

the hash table slot.
� Open Addressing:
� All elements stored in hash table itself.
� When collisions occur, use a systematic

(consistent) procedure to store elements in free
slots of the table.

k2

0

m–1

k1 k4

k5 k6

k7 k3

k8

Collision Resolution by Chaining

0

m–1

h(k1)=h(k4)

h(k2)=h(k5)=h(k6)

h(k3)=h(k7)

U
(universe of keys)

K
(actual
keys)

k1

k2

k3

k5

k4

k6

k7k8

h(k8)

X

X

X

Collision Resolution by Chaining

k2

0

m–1

U
(universe of keys)

K
(actual
keys)

k1

k2

k3

k5

k4

k6

k7k8

k1 k4

k5 k6

k7 k3

k8

Hashing with Chaining

Dictionary Operations:
� Chained-Hash-Insert (T, x)
� Insert x at the head of list T[h(key[x])].
� Worst-case complexity – O(1).

� Chained-Hash-Delete (T, x)
� Delete x from the list T[h(key[x])].
� Worst-case complexity – proportional to length of list with

singly-linked lists. O(1) with doubly-linked lists.
� Chained-Hash-Search (T, k)
� Search an element with key k in list T[h(k)].
� Worst-case complexity – proportional to length of list.

Analysis on Chained-Hash-Search
� Load factor α=n/m = average keys per slot.
� m – number of slots.
� n – number of elements stored in the hash table.

� Worst-case complexity: Θ(n) + time to compute h(k).

� Average depends on how h distributes keys among m slots.
� Assume
� Simple uniform hashing.

� Any key is equally likely to hash into any of the m slots, independent of
where any other key hashes to.

� O(1) time to compute h(k).
� Time to search for an element with key k is Θ(|T[h(k)]|).
� Expected length of a linked list = load factor = α = n/m.

Expected Cost of an Unsuccessful Search

Proof:
� Any key not already in the table is equally likely to hash to

any of the m slots.
� To search unsuccessfully for any key k, need to search to

the end of the list T[h(k)], whose expected length is α.
� Adding the time to compute the hash function, the total

time required is Θ(1+α).

Theorem:
An unsuccessful search takes expected time Θ(1+α).

Expected Cost of a Successful Search

Proof:
� The probability that a list is searched is proportional to the number of

elements it contains.
� Assume that the element being searched for is equally likely to be any of

the n elements in the table.
� The number of elements examined during a successful search for an

element x is 1 more than the number of elements that appear before x in
x’s list.
� These are the elements inserted after x was inserted.

� Goal:
� Find the average, over the n elements x in the table, of how many elements were

inserted into x’s list after x was inserted.

Theorem:
A successful search takes expected time Θ(1+α).

Expected Cost of a Successful Search

Proof (contd):
� Let xi be the ith element inserted into the table, and let ki = key[xi].
� Define indicator random variables Xij = I{h(ki) = h(kj)}, for all i, j.
� Simple uniform hashing ⇒ Pr{h(ki) = h(kj)} = 1/m
 ⇒ E[Xij] = 1/m.
� Expected number of elements examined in a successful search is:

Theorem:
A successful search takes expected time Θ(1+α).

No. of elements inserted after xi into the same slot as xi.

Proof – Contd.

(linearity of expectation)

Expected total time for a successful search
= Time to compute hash function + Time
to search
= O(2+α/2 – α/2n) = O(1+ α).

Expected Cost – Interpretation
� If n = O(m), then α=n/m = O(m)/m = O(1).
 ⇒ Searching takes constant time on average.
� Insertion is O(1) in the worst case.
� Deletion takes O(1) worst-case time when lists are

doubly linked.
� Hence, all dictionary operations take O(1) time on

average with hash tables with chaining.

Good Hash Functions
� Satisfy the assumption of simple uniform hashing.
� Not possible to satisfy the assumption in practice.

� Often use heuristics, based on the domain of the keys, to
create a hash function that performs well.

� Regularity in key distribution should not affect uniformity.
Hash value should be independent of any patterns that might
exist in the data.
� E.g. Each key is drawn independently from U according to a

probability distribution P:
∑k:h(k) = j P(k) = 1/m for j = 0, 1, … , m–1.

� An example is the division method.

Keys as Natural Numbers

� Hash functions assume that the keys are natural numbers.
� When they are not, have to interpret them as natural

numbers.
� Example: Interpret a character string as an integer expressed

in some radix notation. Suppose the string is CLRS:
� ASCII values: C=67, L=76, R=82, S=83.
� There are 128 basic ASCII values.
� So, CLRS = 67·1283+76 ·1282+ 82·1281+ 83·1280

= 141,764,947.

Division Method

� Map a key k into one of the m slots by taking the
remainder of k divided by m. That is,

 h(k) = k mod m
� Example: m = 31 and k = 78 ⇒ h(k) = 16.
� Advantage: Fast, since requires just one division

operation.
� Disadvantage: Have to avoid certain values of m.
� Don’t pick certain values, such as m=2p

� Or hash won’t depend on all bits of k.
� Good choice for m:
� Primes, not too close to power of 2 (or 10) are good.

Multiplication Method
� If 0 < A < 1, h(k) = ⎣m (kA mod 1)⎦ = ⎣m (kA – ⎣kA⎦) ⎦
 where kA mod 1 means the fractional part of kA, i.e., kA

– ⎣kA⎦.
� Disadvantage: Slower than the division method.
� Advantage: Value of m is not critical.
� Typically chosen as a power of 2, i.e., m = 2p, which makes

implementation easy.

� Example: m = 1000, k = 123, A ≈ 0.6180339887…
h(k) = ⎣1000(123 · 0.6180339887 mod 1)⎦
 = ⎣1000 · 0.018169... ⎦ = 18.

Multiplication Mthd. – Implementation
� Choose m = 2p, for some integer p.
� Let the word size of the machine be w bits.
� Assume that k fits into a single word. (k takes w bits.)
� Let 0 < s < 2w. (s takes w bits.)
� Restrict A to be of the form s/2w.
� Let k × s = r1 ·2

w+ r0 .
� r1 holds the integer part of kA (⎣kA⎦) and r0 holds the fractional

part of kA (kA mod 1 = kA – ⎣kA⎦).
� We don’t care about the integer part of kA.
� So, just use r0, and forget about r1.

Multiplication Mthd – Implementation

� We want ⎣m (kA mod 1)⎦. We could get that by shifting r0 to the
left by p = lg m bits and then taking the p bits that were shifted to
the left of the binary point.

� But, we don’t need to shift. Just take the p most significant bits of
r0.

k

s = A·2w

r0r1

w bits

×

h(k)
extract p bits

·

binary point

How to choose A?
� Another example: On board.
� How to choose A?
� The multiplication method works with any legal value of A.
� But it works better with some values than with others, depending

on the keys being hashed.
� Knuth suggests using A ≈ (√5 – 1)/2.

