Hash Tables

SDP-4

Dictionary

\square Dictionary:
\square Dynamic-set data structure for storing items indexed using keys.
\square Supports operations Insert, Search, and Delete.
\square Applications:
\square Symbol table of a compiler.
\square Memory-management tables in operating systems.
\square Large-scale distributed systems.
■ Hash Tables:
\square Effective way of implementing dictionaries.
\square Generalization of ordinary arrays.

Direct-address Tables

\square Direct-address Tables are ordinary arrays.
\square Facilitate direct addressing.

- Element whose key is k is obtained by indexing into the $k^{\text {th }}$ position of the array.
\square Applicable when we can afford to allocate an array with one position for every possible key.
\square i.e. when the universe of keys U is small.
\square Dictionary operations can be implemented to take $O(I)$ time.
\square Details in Sec. II.I.

Hash Tables

\square Notation:
$\square \cup$ - Universe of all possible keys.
$\square K-$ Set of keys actually stored in the dictionary.
$\square|K|=n$.
\square When U is very large,
\square Arrays are not practical.

- $|K| \ll|U|$.
\square Use a table of size proportional to $|K|-$ The hash tables.
\square However, we lose the direct-addressing ability.
\square Define functions that map keys to slots of the hash table.

Hashing

- Hash function h: Mapping from U to the slots of a hash table T0..m-I].

$$
h: U \rightarrow\{0, I, \ldots, m-I\}
$$

\square With arrays, key k maps to slot $A[k]$.

- With hash tables, key k maps or "hashes" to slot $T h[k]]$.
$\square h[k]$ is the hash value of key k.

Hashing

Issues with Hashing

\square Multiple keys can hash to the same slot - collisions are possible.
\square Design hash functions such that collisions are minimized.
\square But avoiding collisions is impossible.
\square Design collision-resolution techniques.
\square Search will cost $\Theta(n)$ time in the worst case.
\square However, all operations can be made to have an expected complexity of $\Theta(I)$.

Methods of Resolution

\square Chaining:
\square Store all elements that hash to the same slot in a linked list.
\square Store a pointer to the head of the linked list in the hash table slot.
\square Open Addressing:

\square All elements stored in hash table itself.
\square When collisions occur, use a systematic (consistent) procedure to store elements in free slots of the table.

Collision Resolution by Chaining

Collision Resolution by Chaining

Hashing with Chaining

Dictionary Operations:

\square Chained-Hash-Insert (T, x)
\square Insert x at the head of list $T h(\operatorname{key}[x])]$.
\square Worst-case complexity - O(I).
\square Chained-Hash-Delete (T, x)
\square Delete x from the list $T h(\operatorname{key}[x])]$.
\square Worst-case complexity - proportional to length of list with singly-linked lists. O(I) with doubly-linked lists.
\square Chained-Hash-Search (T, k)
\square Search an element with key k in list $\Pi h(k)]$.
\square Worst-case complexity - proportional to length of list.

Analysis on Chained-Hash-Search

\square Load factor $a=n / m=$ average keys per slot.
$\square m$ - number of slots.
$\square \quad n$ - number of elements stored in the hash table.
\square Worst-case complexity: $\Theta(n)+$ time to compute $h(k)$.
\square Average depends on how h distributes keys among m slots.
■ Assume

\square Simple uniform hashing.

Any key is equally likely to hash into any of the m slots, independent of where any other key hashes to.
$\square O(I)$ time to compute $h(k)$.
\square Time to search for an element with key k is $\Theta(\mid T h(k)] \mid)$.
\square Expected length of a linked list $=$ load factor $=a=n / m$.

Expected Cost of an Unsuccessful Search

Theorem:
 An unsuccessful search takes expected time $\Theta(1+\alpha)$.

Proof:
\square Any key not already in the table is equally likely to hash to any of the m slots.
\square To search unsuccessfully for any key k, need to search to the end of the list $T h(k)]$, whose expected length is α.
\square Adding the time to compute the hash function, the total time required is $\Theta(1+\alpha)$.

Expected Cost of a Successful Search

Theorem:

A successful search takes expected time $\Theta(1+\alpha)$.
Proof:
\square The probability that a list is searched is proportional to the number of elements it contains.
\square Assume that the element being searched for is equally likely to be any of the n elements in the table.

- The number of elements examined during a successful search for an element x is I more than the number of elements that appear before x in x's list.
\square These are the elements inserted after x was inserted.
\square Goal:
\square Find the average, over the n elements x in the table, of how many elements were inserted into x's list after x was inserted.

Expected Cost of a Successful Search

Theorem:

A successful search takes expected time $\Theta(1+\alpha)$.

Proof (contd):

- Let x_{i} be the $i^{\text {th }}$ element inserted into the table, and let $k_{i}=\operatorname{key}\left[x_{i}\right]$.
\square Define indicator random variables $X_{\mathrm{ij}}=I\left\{h\left(k_{\mathrm{i}}\right)=h\left(k_{\mathrm{j}}\right)\right\}$, for all i, j.
\square Simple uniform hashing $\Rightarrow \operatorname{Pr}\left\{h\left(k_{\mathrm{i}}\right)=h\left(k_{\mathrm{j}}\right)\right\}=\mathrm{I} / m$

$$
\Rightarrow \mathrm{E}\left[X_{\mathrm{ij}}\right]=\mathrm{I} / \mathrm{m} .
$$

- Expected number of elements examined in a successful search is:

$$
E\left[\frac{1}{n} \sum_{i=1}^{n}\left(1+\sum_{j=i+1}^{n} X_{i j}\right)\right]
$$

No. of elements inserted after x_{i} into the same slot as x_{i}.

Proof - Contd.

$$
\begin{aligned}
& E\left[\frac{1}{n} \sum_{i=1}^{n}\left(1+\sum_{j=i+1}^{n} X_{i j}\right)\right] \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(1+\sum_{j=i+1}^{n} E\left[X_{i j}\right]\right) \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(1+\sum_{j=i+1}^{n} \frac{1}{m}\right) \\
& =1+\frac{1}{n m} \sum_{i=1}^{n}(n-i) \\
& =1+\frac{1}{n m}\left(\sum_{i=1}^{n} n-\sum_{i=1}^{n} i\right) \\
& =1+\frac{1}{n m}\left(n^{2}-\frac{n(n+1)}{2}\right) \\
& =1+\frac{n-1}{2 m} \\
& =1+\frac{\alpha}{2}-\frac{\alpha}{2 n}
\end{aligned}
$$

> Expected total time for a successful search $=$ Time to compute hash function + Time to search
> $=O(2+\alpha / 2-\alpha / 2 n)=O(1+\alpha)$.

Expected Cost - Interpretation

If $n=O(m)$, then $a=n / m=O(m) / m=O(1)$. \Rightarrow Searching takes constant time on average.
\square Insertion is $O(I)$ in the worst case.
\square Deletion takes $O(\mathrm{I})$ worst-case time when lists are doubly linked.

- Hence, all dictionary operations take $O(I)$ time on average with hash tables with chaining.

Good Hash Functions

\square Satisfy the assumption of simple uniform hashing.
\square Not possible to satisfy the assumption in practice.
\square Often use heuristics, based on the domain of the keys, to create a hash function that performs well.
\square Regularity in key distribution should not affect uniformity. Hash value should be independent of any patterns that might exist in the data.
\square E.g. Each key is drawn independently from U according to a probability distribution P.

$$
\sum_{k, h(k)=j} P(k)=I / m \quad \text { for } j=0, I, \ldots, m-I
$$

\square An example is the division method.

Keys as Natural Numbers

\square Hash functions assume that the keys are natural numbers.
\square When they are not, have to interpret them as natural numbers.
\square Example: Interpret a character string as an integer expressed in some radix notation. Suppose the string is CLRS:
\square ASCII values: $C=67, L=76, R=82, S=83$.
\square There are 128 basic ASCII values.
\square So, CLRS $=67 \cdot 128^{3}+76 \cdot 128^{2}+82 \cdot 128^{1}+83 \cdot 128^{0}$
$=|4|, 764,947$.

Division Method

\square Map a key k into one of the m slots by taking the remainder of k divided by m. That is,

$$
h(k)=k \bmod m
$$

- Example: $m=31$ and $k=78 \Rightarrow h(k)=16$.
- Advantage: Fast, since requires just one division operation.
- Disadvantage: Have to avoid certain values of m.
- Don't pick certain values, such as $m=2^{p}$
\square Or hash won't depend on all bits of k.
\square Good choice for m :
\square Primes, not too close to power of 2 (or 10) are good.

Multiplication Method

\square If $0<A<I, h(k)=\lfloor m(k A \bmod I)\rfloor=\lfloor m(k A-\lfloor k A\rfloor)\rfloor$ where $k A \bmod I$ means the fractional part of $k A$, i.e., $k A$ $-\lfloor k A\rfloor$.
\square Disadvantage: Slower than the division method.
\square Advantage: Value of m is not critical.
\square Typically chosen as a power of 2, i.e., $m=2^{p}$, which makes implementation easy.

- Example: $m=1000, k=123, A \approx 0.6180339887 \ldots$ $h(k)=\lfloor 1000(123 \cdot 0.6 I 80339887 \bmod I)\rfloor$

$$
=\lfloor 1000 \cdot 0.018169 \ldots\rfloor=18 .
$$

Multiplication Mthd. - Implementation

\square Choose $m=2^{p}$, for some integer p.
\square Let the word size of the machine be w bits.
\square Assume that k fits into a single word. (k takes w bits.)
\square Let $0<s<2^{w}$. (s takes w bits.)
\square Restrict A to be of the form $s / 2^{w}$.
\square Let $k \times s=r_{1} \cdot 2^{w}+r_{0}$.
$\square r_{1}$ holds the integer part of $k A([k A])$ and r_{0} holds the fractional part of $k A(k A \bmod I=k A-\lfloor k A\rfloor)$.
\square We don't care about the integer part of $k A$.
\square So, just use r_{0}, and forget about r_{1}.

Multiplication Mthd - Implementation

\square We want $\lfloor m(k A \bmod I)\rfloor$. We could get that by shifting r_{0} to the left by $p=\lg m$ bits and then taking the p bits that were shifted to the left of the binary point.
\square But, we don't need to shift. Just take the p most significant bits of r_{0}.

How to choose A?

\square Another example: On board.
\square How to choose A?
\square The multiplication method works with any legal value of A.
\square But it works better with some values than with others, depending on the keys being hashed.
\square Knuth suggests using $A \approx(\sqrt{ } 5-I) / 2$.

